
Super-Classes and sub-classes

• Subclasses.

• Overriding Methods

• Subclass Constructors

• Inheritance Hierarchies

• Polymorphism

• Casting
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Subclasses:

• Often you want to write a class that is a special case of an existing class.

• For example, you have an employee class and you want to have a special class for 

employees who are salespeople. 

• Salespeople are employees, so they share all the qualities of employees, but they 

also make commission which other employees don't

• We don't want to rewrite all the employee information for the new class, so we 

make Salesperson a subclass of Employee.

• Informally, a subclass satisfies the "is-a" criteria. A salesperson "is a" employee.
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Subclasses:

• A subclass inherits fields and methods from it's parent.

• Other names for the parent of a subclass are superclass and base class.

• Other names for the sub-class of a parent are derived class and child class.

• The hierarchy (sub-class/superclass relationships) of classes can go many levels.

• A class can have exactly one parent class, but it might have many child classes.
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Subclasses:

• Back to our example, suppose the Employee class starts like: 
public class Employee {

private String name;

private double salary;

public Employee(String newName, double newSalary) {

name = newname;

salary = newSalary;

}

. . . 

• The Salesperson class also needs a name and salary, but it doesn't need to define 

them, since it inherits them from its super class.
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Subclasses:

• We define the Salesperson class like this: 
public class Salesperson extends Employee {

private double salesAmt;

private double rate;

. . . 

public double getRate() {

return rate;

}

. . .

• Notice the keyword extends which tells the compiler that Salesperson is a 

subclass of Employee.

• We don't need to declare name and salary in the Salesperson class because it 

inherits them from its parent.
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Subclasses:

• Suppose now we have a reference to a Salesperson object:
SalesPerson p = . . . 

• We can call any method defined in salesperson:
double r = p.getRate();   // Salesperson method returns rate

• Or any method from the parent class:
String name = p.getName(); // Employee method

• This does not work the other way. An Employee object can't call methods defined 

only in Salesperson.
Employee e = . . .

double r = e.getRate(); // generates a compiler error
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Overriding Methods:

• What if we want a method in the child class to behave differently than in it's parent 

class.

• For example, suppose the Employee class contained the following method:
double getSalary() {

return salary;

}

• But for a salesperson we want the getSalary method to include the commission (the 

salesAmt * rate).

• We can write a new getSalary method in our SalesPerson class. 

• When a SalesPerson object calls the getSalary method, the method defined in 

the SalesPerson class will be called instead of the one in the Employee class.

• This is called overriding the method of the superclass.
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Overriding Methods:

• So how can we write the new getSalary method? The following won't work:

double getSalary() {

return salary + salesAmt * rate;

}

• This is because the salary field is private to the Employee class, so the SalesPerson

class does not have access to it. 

• How can we get around this?

• Call the accessor method?

• This will also NOT work:
double getSalary() {

return getSalary() + salesAmt * rate;

} 

• The problem is getSalary() will call the method in this class, which is itself!

8



Overriding Methods:

• The solution is to use the super keyword:

double getSalary() {

return super.getSalary() + salesAmt * rate;

}

• super refers to a class's parent, so in this case super.getSalary() calls the 

getSalary method from the Employee class.
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Subclass Constructors:

• Here is a constructor for our SalesPerson class:

public SalesPerson(String newName, double newSalary, 

double newRate, double amt) {

super(newName, newSalary);

salesAmt = amt;

rate = newRate

}

• Here super is used to call the constructor of the parent class.

• This is needed since the SalesPerson class does not have access to private fields in 

the Employee parent class.

• The call using super must be the first statement in the constructor.

• If the call to the parent constructor is missing, the compiler will add one that calls 

the parent constructor with no arguments.

• This will cause an error if the parent class does not have a constructor with no 

arguments defined. 
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• You may assign a child object to a reference to its parent. For example:

Employee emp = new SalesPerson("Paul", 200000, .2, 1050);

• This is legal is a SalesPerson "is an" Employee.

• The reverse is NOT legal. You can't assign a parent object to a child reference:
SalesPerson sp = new Employee("John",  200000); //error!

• The statement above is cause a compiler error since an Employee is not necessarily a 

SalesPerson.

• In the example on top, even though emp actually points to a SalesPerson, the 

reference is of type Employee, so you can't use it to access SalesPerson specific 

methods.
double r = emp.getRate(); // ERROR!

• This will cause a compiler error because the Employee class does not have a 

method called getRate.
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Employee emp = new SalesPerson("Paul", 200000, .2, 1050);

• The emp variable can call any Employee methods:

String name = emp.getName();  // legal

• What if you call a method in the parent that has been overridden in the child?

• For example suppose we make the call:

double salary = emp.getSalary();

• Which version of getSalary is called?

• The version defined in the SalesPerson class.
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• The fact an object variable can refer to objects of different types is called 

polymorphism.

• One way this is very useful is that I can write a method that acts on a parent class, 

and can send it any object that is descended from that class.

• For example I could write a method to print paychecks:

public void printPaycheck(Employee emp) {

. . .

• And I can call it using a SalesPerson object as an argument.

• I do NOT have to write a different method for every type of employee.
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Casting:

• Just like you can use a cast to force type conversions where you might lose 

information:

double d = 45.6;

float f = (float) d;

• You can also use a cast to tell the compiler a class reference is really to an inherited 

class type.

SalesPerson sp = new SalesPerson(...);

Employee emp = sp; // legal because a SalesPerson is an Employee

SalesPerson sp2 = emp; // Compile ERROR!! 

• The last statement will generate a compiler error. Not all Employees are SalesPersons

• However if I know the object referred to by emp is a SalesPerson I can use a cast.

SalesPerson sp = (SalesPerson) emp;  // legal
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Casting:

• You must be careful using casting. Casting a reference to on object down in the 

inheritance chain will avoid a compiler error.

• However, you will have a runtime exception if the object is not of the type you cast.

Employee emp = new Employee(); 

SalesPerson sp = (SalesPerson) emp; // Runtime ERROR!! 

• The last statement will compile, but cause an error at runtime.

• Note that you can't use a cast to try to cast unrelated types.

String str = "I'm a salesperson!";

SalesPerson sp = (SalesPerson) str; // Compiler ERROR!!

• The last statement will fail at compile time. The compiler knows the classes are 

unrelated.
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Casting:

• Why would anyone ever need to do casting?

• Suppose we had our general printCheck method that printed the checks of all 

employees.
public static void printCheck(Employee emp) {

• As we saw we can send this method a reference to a SalesPerson or an Employee

object

• This is great because it will do the same thing for both.

• But what if we wanted to print a gold star on the paychecks of salespeople whose sales 

amount was above 10000?

• Inside the method could we write?

if (emp.getSalesAmt() > 10000) {

• No, because the Employee class does not have a getSalesAmt method!
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Casting:

• We can use a cast.
public static void printCheck(Employee emp) {

. . . // code to write most of check

SalesPerson sp = (SalesPerson) emp;

if (sp.getSalesAmt() > 10000) {

. . . 

• This will compile. ☺

• It will work fine when a SalesPerson object is sent to the method ☺

• It will break at runtime if the object is not a SalesPerson method. 

• How can we tell at runtime if casing is safe?

• You can use the instanceof operator to check if the type is correct:

if (emp instanceof SalesPerson) {

SalesPerson sp = (Salesperson) emp;

. . .
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Abstract Classes:

• Sometimes you don’t want to implement all the methods for a class that's going to 

be used as a super class.

• Take our Employee class example from before. Say a store wants to have classes 

for employees, contractors, customers, and suppliers.

• Perhaps the programmer decides to create a parent class called Person for all of 

these.

• This class would contain fields common to all, like perhaps name, address, phone 

number, etc.

• It might even contain common methods like printEnvelope() 

• However, imagine a method for granting access to a room which requires us to know 

what type of person (employee, customer, etc.) the object is.

• I want to be able to say every Person has such a method, but I can’t define it for a 

person in general.

18



Abstract Classes:

• A method can be declared as abstract. For example:
public abstract boolean roomAccess();

• Notice there is no implementation.

• An abstract method is not implemented in the class it is declared in.

• Abstract methods act as placeholders for methods that are implemented in the 

subclasses.

• In this case the roomAccess() method should be implemented in the Employee, 

Customer, Supplier, etc classes

• If a class has one or more abstract methods, then it must be declared to be abstract.
public abstract class Person {

. . .

public abstract boolean roomAccess();

. . .
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Abstract Classes:

• An abstract class cannot be instantiated. 

• In our previous example Person is an abstract class.

• You may have a Person reference variable:
Person her;  // legal and good

• But you can’t create a Person object:
her = new Person();  // compiler ERROR

• So how can I even use a Person reference?

• I can use it to refer to any object of a subclass of Person.

her = new Employee();
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Abstract Classes:

• Just because abstract classes cannot be instantiated, does not mean they can’t have 

constructors.

• For example:

public abstract class Person {

private String name;

. . .

public Person(String newName) {

name = newName;

}

. . .

• Why would I want to have constructors defined if I can’t have statements that 
include new Person?
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Protected Access:

• We have talked about and mostly used the public and private modifiers.

• We now know enough to understand all the modifiers:

1. Private – Visible to the class only.

2. Public – Visible to the world.

3. Protected – Visible to subclasses and to the package.

4. Default (no modifier) – Visible to the package.

• The recommendation is that you mostly use public or private modifiers.

• All fields should be made private (to support encapsulation) 
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The Object Class:

• The Object class is at the top of the java class hierarchy.

• Every class in Java is a descendent of the Object class.

• You don't ever write something like:

public class MyClass extends Object

• Any class defined without an extends keyword is automatically a child of the Object 

class.

• This means a variable of type Object can reference any object.

Object obj = new AnyClass(); // legal

obj = "I'm now a string."; // legal since String is an object

obj = new int[34]; // also legal
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The Object Class:

• Do you think the Object class contains any fields?

• The Object class has no fields, but several methods.

• Even though some of the methods don't really do anything if they are not 

overridden, the Object class is not abstract.

• You can find a description of the Object class on the Java API:

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
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The equals Method Revisited:

• equals(Object obj) is a method of the Object class.

• By default the equals method does the same thing as ==

• In other words obj1.equals(obj2) is true iff obj1 and obj2 refer to the 

same object (same location in memory).

• Often we choose to override this method.
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The equals Method Revisited:

• The Java Language Specification requires that an equals method meets the 

following:

1. It is reflexive (x.equals(x) is true)

2. It is symmetric (x.equals(y) iff y.equals(x))

3. It is transitive (x.equals(y) && y.equals(z) => x.equals(z) )

4. It is consistent ( x.equals(y) should return the same value every time called if 

x and y have not changed. )

5. x.equals(null) should be false.
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The equals Method Revisited:

• We had earlier slides where we defined an equals method like:
public boolean equals(Employee otherEmp) {

. . .

• As part of the definition of the Employee class.

• Does this override the Object class equals method?

• No, because the parameter is not an Object, this overloads the method, but does not 

override the existing method.

• To override the Object method equals we need to write
public boolean equals(Object otherObj) {

. . .

• But now we will need to be able to know what type of object is being sent as an 

argument.
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The equals Method Revisited:

public boolean equals(Object otherObj) {

. . .

• To tell whether the object being tested is the same type as the class the method is 
defined in, we might be able to use the instanceof operator.

public class Employee {

. . .

public boolan equals(Object otherObj) {

. . .

if (!(otherObj instanceof Employee))

return false;

. . .

• The expression a instanceof b returns true iff a is the same class or b

descendant of b

• This works great if we don't want to override the equals method in our decedents, 

but it can cause transitivity problems otherwise. 
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The equals Method Revisited:

• If you want to get the class of an object, you can use the Object method 

getClass(). 

• You can use this in your equals method to check whether the objects are of the 

same type. e.g.

public boolean equals(Object otherObj) {

. . .

if (getClass() != otherObj.getClass())

return false;

. . .

• Use this if you don't want to have parent and child classes to be considered equal
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The equals Method Revisited:

• Cay Horstmann in Core Java recommends the following formula for writing 
equals methods:

public boolean equals(Object otherObj) {

1. Test whether the objects refer to same place:
if (this == otherObj) return true;

2. Test whether the other object is null:

if (otherObj == null) return false;

3. Compare the classes using instanceof or getClass() depending on your 

definitions:

4. Cast the other object to your class type

5. Compare all the fields of the class, depending on your definition of equals, using the 

equals method for objects.
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The hashCode Method:

• The Object class has a hashCode() method which returns an integer. 

• This is actually the hash function that the HashMap class uses.

• Technically, if you override the equals method of a class, you should override the 

hashCode method as well.

• This is because according to the Java Language spec if two objects are equal according 

to the equals method, then the should produce the same hash code.

• We won't worry about that in this class, but is something you should be aware of as 

you become Java programmers.
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The toString Method:

• We've talked about the toString() method before. 

• This is actually a method of Object class, which is why things like print can use it 

automatically.

• The default implementation of this method is not very informative. Try printing an 

object that doesn't have this method overridden some time to see what it looks like.
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Interfaces:

• An interface is a set of requirements for a class.

• An interface gives a list of methods that the class must implement to satisfy the 

interface.

• For example:

public interface Comparable {

int compareTo(Object other);

}

• This says any class that implements the Comparable interface must have a 

compareTo method.

• Notice in the interface definition there is not access level on the method. All methods in 

an interface are automatically public.
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Interfaces:

• Why do we want interfaces?

• Remember the QuickSort class/method you wrote.

• It sorted an array of integers

• The same logic could have sorted and array of Strings or Doubles or anything else that 

has a notion of greater than.

• The only thing that would change is how you compare the items.

• The compareTo method gives a way to compare objects.

• If you know a class implements the Comparable interface, then you know it has a 

compareTo method you can call and you can sort the items.

• The Arrays class has a sort method that works for any array of objects that 

implement the Comparable interface.
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Interfaces:

• Suppose I want to be able to sort arrays of Employees

• Then I would have to have the Employee class implement the Comparable

interface.

• I indicate this in the header for the class using the implements keyword.

public class Employee implements Comparable {

• I also have to include a compareTo method.

public int compareTo(Object otherObj) {

Employee other = (Employee) otherObj;

return Long.compare(idNum, other.idNum);

}

• Here we are ordering by idNum, but we might choose by name or salary instead.
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Interfaces:

• You can actually implement the generic Comparable interface which saves you from 

having to do a cast in your method:

public class Employee implements Comparable<Employee> {

. . .

public int compareTo(Employee other) {

return Long.compare(idNum, other.idNum);

}
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Interfaces Properties:

• An interface is NOT a class. It can not be instantiated.

• For example the following gives an error:

c = new Comparable( . . .); // Compiler ERROR

• You can, however, have reference variables with interface types:

Comparable c = new Employee("Cindy", 75000); // correct

• You can also use the instanceof operator to check if an object implements an 

interface:

if (c instanceof Comparable) {

. . .
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Interfaces Properties:

• Interfaces can have hierarchies just like classes.

• For example the interface Collection includes a contains method:

public interface Collection {

. . .

boolean contains(Object o);

• The List interface extends the Collection interface and includes a 

lastIndexOf method. 

public interface List extends Collection {

. . .

int lastIndexOf(Object o);

• Any class the implements the List interface, must have definitions for all methods

in the Collection interface as well.
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Interfaces Properties:

• A class can have just one parent class, but it can implement multiple interfaces

• For example, the if the Employee class implements the Comparable, and 

Cloneable interfaces, it's header would be:

public class SalesPerson implements Clonable, Comparable { 

• Interfaces seem to be the answer to C++ 's multiple inheritance. 
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