
Why User-Defined Classes?

• Primitive data types (int, long, double, etc.) provide only a limited ability to

represent data from complex objects such as:

• Books:

• ISBN.

• Title.

• Author(s).

• Publisher.

• Year published.

• Pages.

• ...

• Baseball batting statistics for one player:

• Hits.

• Walks.

• Batting average.

• Strike outs.

• ...

1

A class/object:

• Combines data and the methods that operate on the data.

• Advantages:

• Class is responsible for the validity of the data.

• Implementation details can be hidden.

• It is a way to organize and think about a program/solution.

• Classes are easily reused in many programs.

• A class is a template (think "cookie cutter")

• An object is an instance of a class (think cookie)

• That said, there are data/methods tied to the class instead of an object

• Terminology: a client of a class is a program that uses that class

• For example, you have been writing programs that create String objects and call

String methods.

• Thus, you have been writing clients of the String class.

2

Not a new idea

• You've seen and used classes/objects before in Python

• The basic idea is the same in Java, but the syntax is different.

• Some differences are:

• In Python a class has one constructor - in Java it may have many

• In Java class/object variables must be declared

• In Java everything has to have a type, including the return value of methods

3

Syntax of a Class:

• Combine data and the methods that operate on the data.
public class ClassName {

// declare Fields here...

// declare one or more Constructor methods here...

// declare methods that the programmer calls here...

// these methods will manipulate the instance variables,

// compute values, format results, etc.

}

• Conventions:

• Use a noun for the class name.

• Begin the class name with a Capital letter.

• Capitalize interior words.

• Examples:

public class Train

public class MedicalRecord

public class PlayingCards

4

Terminology:

• Fields: identifiers declared inside the class, but outside any method.

• Instance variables: the data for each object created.

• Contain the data specific to each instance of the object.

• Class variables: static data that all objects of the class share.

• Both types are available to all the methods.

• For example, we might have an identifier of type int to hold the number of hits.

• Each instance of the object (each player) will have a different number of hits.

• Method:

• Each method in the class contains code that can manipulate one (or more) of the fields.

• Members:

• Refers to both fields and methods.

5

• Access Modifier:

• Determines the access rights for the class and its members (fields and methods).

• Defines where the class and its members can be used.

6

Access Modifier Class or member can be referenced by…

public
methods of the same class
methods of other classes

private methods of the same class only

protected
methods of the same class,

methods of subclasses,
methods of classes in the same package

No access modifier
(known as package access)

methods in the same package only

We will
primarily use
either public
or private.

Rules of Thumb

• Instance variables are usually declared to be private.

• Methods that will be called by clients of the class are usually declared public.

• Methods that are only called by other methods of the same class are declared
private.

• You may only have one class declared as public per file, and the file name must

match the class name (with the extension .java)

7

Defining Instance Variables:

• Declared usually at the beginning of the class.

• Will normally all be private.

• Can be any identifier and any of the types that we have covered.

• char, byte, short, int, long, float, double

• Can be instances of other classes; i.e., String, Random, Scanner.

8

Defining Instance Variables (continued):

• Example:

• A class to hold statistics regarding hitting for a baseball player.

import java.text.*;

public class BaseballStats

{

private String playerName;

private int singles, doubles, triples, homeRuns;

private int walks, outs, rbis;

private DecimalFormat averageFormat;

9

• The DecimalFormat class provides a way to control the appearance of numbers that are
converted to String’s.

• You create an instance of DecimalFormat for each format you want to use.

• Note: Have to import the DecimalFormat class from the java.text package:

import java.text.DecimalFormat;

Private vs Public:

• What is the difference between public and private fields?

• public fields can be accessed by any code

• For example, suppose we had declared the singles field to be public in the
previously defined BaseballStats class?

public int singles;

• Then any code that creates a BaseballStats object can use the field directly:

BaseballStats player;

// code here to instantiate player

System.out.println(“Singles = “ + player.singles);

player.singles = 3;

10

Private vs Public:

• Declaring a field to be public violates the notion of encapsulation or information

hiding.

• Encapsulation is the idea that clients of the class do not know how the class is

implemented. They just know how to work with it through public methods.

• Why would you want this?

• It allows you to protect the integrity of the objects data.

• It allows you to change how the class is implemented without causing code that used the

object to break.

11

Private vs Public:

• If we have the fields declared to be private

private int singles;

• Then the following code causes a compiler error:

BaseballStats player;

// code here to instantiate player

System.out.println(“Singles = “ + player.singles);

player.singles = 3;

• So how do we access private fields?

12

Accessor Methods:

• If instance variables are private — not accessible from outside the class.

• Provide an Accessor Method for each instance variable that will be needed by

outside users (clients) of the class.

• General form of accessor methods:

public returnType getInstanceVariable() {

return instanceVariable;

}

• By convention, the name of the accessor method will be:

• The word get

• The name of the instance variable with the first letter capitalized.

13

• For the baseball example, we have the following private variables that need accessor

methods:
private String playerName;

private int singles, doubles, triples, homeRuns;

private int walks, outs, rbis;

• Following the naming convention, the accessor methods will be named:
public String getPlayerName()

public int getSingles()

public int getDoubles()

public int getTriples()

Etc.

• Example of how this would be used to print the number of triples hit by a player:

BaseballStats veteran;

veteran = new BaseballStats("Chipper Jones", 86, 23, 2,

18, 101, 359, 71);

System.out.print(veteran.getPlayerName() + " hit ");

System.out.println(veteran.getTriples() + " triples.");

14

Mutator Methods:

• Instance variables are usually private — not accessible from outside the class.

• How do new values get assigned to these hidden variables?

• Provide an Mutator Method for each instance variable that will be needed by outside

users of the class.

• General form of mutator methods:

public void setInstanceVariable(dataType newValue) {

// validate newValue

// then assign newValue to the instance variable

}

• By convention, the name of the mutator method will be:

• The word set followed by:

• The name of the instance variable with the first letter capitalized.

15

• Mutator methods do
not return anything.

• Baseball example: How to modify the number of triples a player has hit:
public void setTriples(int newTriples) {

if (newTriples >= 0)

triples = newTriples;

else

triples = 0;

}

• How do we add one to the number of triples for a player?

• First, we need to get the current number of triples.

• Use the getTriples() method to do this: veteran.getTriples()

• Second, need to add 1 to the number of triples: veteran.getTriples() + 1

• Third, use this as the new value for triples:

veteran.setTriples(veteran.getTriples() + 1);

16

• Write the validation code for the instance variable in the mutator method:
public void setTriples(int newTriples) {

if (newTriples >= 0)

triples = newTriples;

else

triples = 0;

}

• Make the mutator method take care of validating the value of the instance variable.

• Makes other code simpler, since only the mutator worries about the correct values. i.e.,

we do not have to worry about making the value of triples negative:

favoritePlayer.setTriples(favoritePlayer.getTriples() - 1);

17

Validation: Cannot have a
negative number of triples.

• Do not give the parameter the same name as the instance variable:
public void setTriples(int newTriples) {

if (newTriples >= 0)

triples = newTriples;

else

triples = 0;

}

• In general, do not use the name of an instance variable as the name of a local

variable (one that is declared inside the method).

• Note that we say in the style guide that all methods should start with comments

saying what their parameters are and what they do. Accessor and mutator methods

are and exception to this rule.

18

The parameter is newTriples.

The instance variable is triples.

Constructors:

• Special-purpose methods that are called only when an object is instantiated using
the new keyword.

• A class can have several constructors.

• We’ve seen two constructors for the Scanner class:
Scanner in;

File inFile = new File(“myFile”);

in = new Scanner(System.in); //one form of constructor

in = new Scanner(inFile); //second form of constructor

• These calls might look the same, but the use different types for the parameter.

• System.in is an InputStream object

• inFile is a File object

• There are actually 10 different constructors for Scanner in Java 8

19

Constructors, Python vs Java:

• A constructor in Python looks like this:
class Word:

def __init__(self, word):

self.word = word.lower()

self.count = 0

• The name of the constructor is __init__. In Java constructors have the same

name as the class.

• In Python the object itself is a parameter (self). In Java the object is not passed as an

explicit parameter.

• The constructor above in Python would look something like:
public Word(String newWord) {

word = newWord.toLowerCase();

count = 0;

}

20

• A class can have several constructors.

• A constructor initializes (some or all) of the instance variables for the new object.

• Syntax:

public ClassName(parameter list) {

// constructor body

}

21

• Notes:

• There is no return type, not even void.

• Constructors do not ever specify a return type.

• Rectangle example:

public class Rectangle {

private int width;

private int length;

public Rectangle(int newWidth, int newLength) {

setWidth(newWidth);

setLength(newLength);

} // end of constructor for a rectangle

public void setWidth(int wide) {

// We want rectangles that have

// a positive width

if (wide > 0)

width = wide;

else

width = 1;

}

public int getWidth() {

return width;

}

22

Use the methods for setting the
width and length.

Basic idea: Pass in an initial value
for each instance variable.

• A client of Rectangle can create instance(s) of Rectangle:

public class RectangleClient {

public static void main(String[] args) {

Rectangle one, two, square;

one = new Rectangle(4, 12);

two = new Rectangle(9, 5);

Rectangle aSquare;

aSquare = new Rectangle(8, 8);

System.out.println("One printing a rectangle:");

one.printRectangle();

System.out.println();

System.out.println("Two printing a rectangle:");

two.printRectangle();

System.out.println();

...

23

• A class needs one constructor, but can have more than one!

• Java allows this provided the types and/or number of the arguments is different for each.

public class Rectangle {

private int width;

private int length;

public Rectangle(int newWidth, int newLength) {

setWidth(newWidth);

setLength(newLength);

} // end of constructor for a rectangle

public Rectangle(int side) {

setWidth(side);

setLength(side);

} // end of constructor for a square

24

• A second constructor, used for creating a Rectangle
that is a square.
• This method has one int parameter, compared with

the two int parameters of the first constructor.

• Example:
public class BaseballStats {

private String playerName;

private int singles, doubles, triples, homeRuns;

private int walks, outs, rbis;

private DecimalFormat averageFormat;

// Constructor for new player who has a batting record

public BaseballStats(String newName, int newSingles,

int newDoubles, int newTriples,

int newHomeRuns, int newWalks,

int newOuts, int newRbis) {

setPlayerName(newName);

setSingles(newSingles);

setDoubles(newDoubles);

setTriples(newTriples);

setHomeRuns(newHomeRuns);

setWalks(newWalks);

setOuts(newOuts);

setRbis(newRbis);

averageFormat = new DecimalFormat("#.000");

}

...

25

• When we want to create a player who has been playing:

public class BaseballClient {

public static void main(String[] args) {

BaseballStats veteran;

veteran = new BaseballStats("Chipper Jones", 86, 23, 2,

18, 101, 359, 71);

• What about a new player, with no batting record?

• We could do:

BaseballStats rookie;

rookie = new BaseballStats("The New Guy", 0, 0, 0, 0, 0, 0, 0);

26

• Java will auto-assign default values depending on the instance variable data type.

• And, Java allows multiple constructors within the same class.

// Constructor for new player with no statistics

public BaseballStats(String newName) {

setPlayerName(newName);

averageFormat = new DecimalFormat("#.000");

// rest of instance variables default to zero

}

27

• The instance variables not specifically set within a constructor will be set to auto-

assigned default values, depending on the type.

28

Data Type Default Value

byte, short, int, long 0

float, double 0

char nul character

boolean false

String (and any other object reference) null

• For our baseball example, there is a minimum realistic constructor:

• We would have a name for each player, even one with no hitting record.

• We always want the averageFormat to be the same for all players, even those

whose average is 0.

• Our client can now create both new players and players who already have a hitting

record:
public class BaseballClient {

public static void main(String[] args) {

BaseballStats rookie, veteran;

rookie = new BaseballStats("The New Guy");

veteran = new BaseballStats("Chipper Jones", 86, 23, 2, 18,

101, 359, 71);

BaseballStats shortstop;

shortstop = new BaseballStats("Cal Ripken, Jr.", 123, 19,

1, 17, 53, 402, 82);

...

29

The Object Reference this:

• this is an object reference to the object for which the method was called. It is
analogous to self in Python.

• this is an implicit parameter automatically sent to methods.
public void setTriples(int newTriples) {

if (newTriples >= 0)

this.triples = newTriples;

else

this.triples = 0;

}

• this.triples is the instance variable.

• The code above is equivalent to:

public void setTriples(int newTriples) {
if (newTriples >= 0)

triples = newTriples;

else

triples = 0;

}

• Either form is fine.

30

• Using this, we could write:
public void setTriples(int triples)

{

if (triples >= 0)

this.triples = triples;

else

this.triples = 0;

}

• The code above will work just fine.

• It is not a good way to write clear, understandable code.

• It works much better to use a different name for the parameter

• I.e., newTriples from the previous slide.

31

Writing Methods:

• Syntax:

accessModifier returnType methodName(parameter list)

{

// method body goes here

}

• where:

• accessModifier is one of public, private, protected, or absent (which means

package access).

• returnType is what the method produces. Can be any type or class we have covered (int,

long, String, double, etc.). Can also be void if the method does not return anything.

• The parameter list is zero or more arguments. These are values that are sent into the

method by the caller of the method.

• Inside the method, they are known as parameters.

• When the client calls the method these are arguments.

• The method name uses the same conventions as an identifier.

• The method name should start with a verb (or describe an action).
32

• Examples:

public class BaseballStats
{

private String playerName;
private int singles, doubles, triples, homeRuns;
private int walks, outs, rbis;
private DecimalFormat averageFormat;

public void setPlayerName(String newName)
{

playerName = newName;
}

public String getPlayerName()
{

return playerName;
}
...

33

• getPlayerName returns the current
contents of the instance variable
playerName.

• The method’s return type is String, since
that is the type of playerName.

• setPlayerName assigns a value to
the instance variable playerName.

• The method does not return anything;
thus, the return type is void.

• The return statement in Java returns
the value of the indicated expression.

• Here, the expression is the contents of
the variable playerName.

public int getHits()
{

return singles + doubles + triples + homeRuns;
}

public int getAtBats()
{

return getHits() + walks + outs;
}

public String getBattingAverage()
{

double average;

int hits, atBats;

hits = getHits();

atBats = getAtBats();

if (atBats != 0)

average = (double) hits / atBats;

else

average = 0.0;

return averageFormat.format(average);
}

34

• The number of hits is not an instance variable;
it is a value computed from other variables.

• We “hide” the detail of whether the number
of hits is stored as an instance variable or is
computed.

• We make public the ability to retrieve the
number of hits.

public int getHits()
{

return singles + doubles + triples + homeRuns;
}

public int getAtBats()
{

return getHits() + walks + outs;
}

public String getBattingAverage()
{

double average;

int hits, atBats;

hits = getHits();

atBats = getAtBats();

if (atBats != 0)

average = (double) hits / atBats;

else

average = 0.0;

return averageFormat.format(average);
}

35

• A String is returned instead of a double.

• Baseball averages are always printed with
exactly 3 decimal places.

• The batting average is computed, rather
than being an instance variable.

• We make public the ability to retrieve
the batting average.

public class BaseballClient {
public static void main(String []args)
{

BaseballStats myPlayer, nextPlayer;
myPlayer = new BaseballStats("");
nextPlayer = new BaseballStats("");

myPlayer.setPlayerName("Patrick");
nextPlayer.setPlayerName("Bob");

System.out.print("The player's are ");
System.out.print(myPlayer.getPlayerName() + " and ");
System.out.println(nextPlayer.getPlayerName());

nextPlayer.setSingles(3);

int someSingles;
someSingles = nextPlayer.getSingles() + 2;
nextPlayer.setSingles(someSingles);

nextPlayer.setSingles(nextPlayer.getSingles() + 2);
myPlayer.setSingles(myPlayer.getSingles() + 1);

System.out.println("hits: " + nextPlayer.getSingles());
}

} // end of class BaseballClient

36

public vs private methods

• Just like with field access, public methods can be called by anyone and private

methods can only be called by the class itself.

• Why would we ever want to use private methods?

• Clearly any method which performs an action an object in the class is expected to do

should be made public.

• For example our BaseballStats class should have public methods for getting or updating

stats and our Rectangle class might have a method for printing the rectangle.

• Sometimes you write "helper" methods to make your implementation of the main class

methods neater, better organized, and easier to maintain.

• What not make those methods public? What's the harm?

• It violates the "spirit" of what the object is.

• You now need to support the helper method to maintain compatibility. In other words,

if you would like to change what it does or what parameters it takes or even get rid of

it, you can't without breaking all the clients that call it.

37

Overloading

• Remember a class can have more than one constructor.

• It can also have more than one method with the same name.

• It is the concept of overloading that allows this.

• Java identifies a method not just by it’s class and name, but also by the types of its

parameters.

• For example, suppose you wanted to have a method to square a number. You might

write

public static integer squareMe(int x) {

return x * x;

}

• This would work to square an integer, but not a double. 

• How would I square a double?

38

Overloading

• How would I square a double?

• I could write

public static double squareMe(double x) {

return x * x;

}

• Now I have two methods named squareMe, but this is OK because the parameters are of

different types. If I write a client that does:

int x = 47;

int sx = MyClass.squareMe(x);

• The compiler knows to use the first version because the parameter is an int.

39

Overloading

• Java does NOT look at the return type when determining which method to use. In other

words, you are NOT allowed to have two methods in a class with the same name and the

same parameter types even if they have a different return type.

• Suppose I wanted to write a method to halve an integer, truncating the remainder.

public static int halveMe(int x) {

return x / 2;

}

• Now suppose I also want a version that returns a double to capture the .5 for odds.

• If I added the method:
public static double halveMe(int x) {

return x / 2.0;

}

• The compiler would give me an error because I have two methods named "halveMe" that

take a single int argument. The fact that the have different return values doesn't matter.

40

static fields

• If a field is declared with the static modifier, it is a static or class variable

instead of an instance variable.

• A class variable is tied to a class, not an object. Only one copy of that variable exists

and all objects in the class have access to it. For example

public class Nums {

private int num1;

private static int num2 = 1;

public Nums() {

num1 = 1;

}

public void incPrintNums() {

System.out.println(++num1); //increment and print

System.out.println(++num2);

}

41

static fields

• Given the code on the previous slide, what will the following print?.

Nums n1 = new Nums();

Nums n2 = new Nums();

n1.incPrintNums();

n2.incPrintNums();

• It will print:
2

2

2

3

42

static fields

• Why would we want static fields?

• A good example is an id number.

• Suppose you had a class students. You might want to have a unique identifier for

each student.

• Using the student’s name won’t work because some people have the same name.

• A common solution is to have a large integer that gets incremented each time you

create a new student.

• That integer would be stored as static variable (code on next slide)

43

static fields

public class Students {

private String name;

private long studentID;

private static long masterID = 1;

public Student (String newName) {

name = newName;

studentID = masterID++; //assigns student id and inc master

}

. . .

44

final fields

• A field can be declared final.

• A final instance field must be initialized when the object is constructed and afterwards

can never be modified.

• An example might be the student id from the previous slide. A student id would

presumable never change once set, so we could have written:

public class Students {

private String name;

private final long studentID;

private static long masterID = 1;

public Student (String newName) {

name = newName;

studentID = masterID++;

}

45

final fields

• Note that a final field can have an accessor method, but not a mutator method.

• Note that we didn’t use all caps for final instance fields in the last example since

fields tied to different objects will have different values.

• It can be very confusing to have a reference variable to a mutable class.

• A final static field is called a static constant.

• This will have a constant value for the life of the program.

• An example is the Math class which has a static final of PI

System.out.println(Math.PI); // prints 3.14159265358979323846

• Note we do use the all caps notation for static final fields.

46

static methods

• A static method is one that is tied to a class instead of an object.

• This means the class does not have to be instantiated for the method to be called.

• Recall an instance method is called like:

object.method(arguments);

• for example:

String str = “The Beatles”;

System.out.println(str.toLower());

• A static method is called like:

class.method(arguments);

• for example:

double x = Math.sqrt(y); // Math is a class

47

• the main method:
public static void main(String[] args)

{

// body of main

}

• main is public so it can be called from outside the class.

• The Java Virtual Machine (JVM) calls main.

• static means main can be called by the JVM without instantiating an object.

• Since the code in main is the first code executed, this is important. (What code would

have created the object containing main?)

• void means main does not return a value.

• main is passed an array of strings.

• Every class can have a main method, but it will only be called if the JVM is invoked

with that class.

48

The toStringMethod:

• Returns a String representing the data of an object.

• Example:

BaseballStats rookie, veteran;

veteran = new BaseballStats("Chipper Jones", 86, 23, 2, 18,

101, 359, 71);

System.out.println(veteran.toString());

System.out.println(veteran);

• Both print’s produce the same output.

• The toString method is a great way to check the correctness of a program!

• So, what does the method look like?

49

Clients can call toString
explicitly by coding the method call.

Clients can call toString implicitly by
using an object reference where a String is
expected.

• The toString method for any class always begins with:
public String toString() {

• The method is public so it can be called from outside the class.

• The method returns a String.

• The method has no parameter list.

• As to what should appear in the String that toString produces:

• That depends(!)

• What are the instance values stored in the class?

• Of these, which ones would be useful to a programmer using the class?

• For BaseballStats, we would want the player’s name. What else?

• singles? doubles? averageFormat?

50

• Creating the String inside toString:

• Take the different items and concatenate them together.

• If there are only a few items, you can create the String in the return statement:
public String toString() {

int playerHits = singles + doubles + triples + homeRuns;

return playerName + " has " + playerHits + " hits.";

}

Or

public String toString() {

int playerHits = getHits();

return playerName + " has " + playerHits + " hits.";

}

• But, for BaseballStats, it will likely be more useful to put more of the instance

variables into the String.

51

• Here’s an example for toString for BaseballStats:

public String toString() {

// Want to print:

// playerName:

// singles: num

// doubles: num

// etc.

String stats;

stats = playerName + ":\n";

stats = stats + " singles: " + singles + "\n";

stats = stats + " doubles: " + doubles + "\n";

stats = stats + " triples: " + triples + "\n";

stats = stats + " homeruns: " + homeRuns + "\n";

stats = stats + " walks: " + walks + "\n";

stats = stats + " outs: " + outs + "\n";

stats = stats + " rbis: " + rbis + "\n";

return stats;

}

52

The equalsMethod:

• If we have two BaseballStats objects, how can we determine if they contain

the same player?

• Classes have an equals() method for this purpose.

• We have seen this before when comparing two String’s. I.e.,

String zebra, xray;

zebra = new String("Hello");

xray = new String("Hello");

if (zebra.equals(xray))

System.out.println("the contents of zebra and xray are the same");

else

System.out.println("the contents of zebra and xray are NOT the same");

// This will also work:

if (xray.equals(zebra))

System.out.println("the contents of zebra and xray are the same");

else

System.out.println("the contents of zebra and xray are NOT the same");

53

• For a user-defined class, the author of the class has to write the equals() method.

• The equals() method is:

• public.

• Returns a boolean.

• Has one parameter, which will be of the same type as the class.

• In general, the method should compare the contents of all the instance variables.

• Return true if they all match; else return false.

54

• For the BaseballStats class:

public boolean equals(BaseballStats otherPlayer) {

if (playerName.equals(otherPlayer.playerName) &&

singles == otherPlayer.singles &&

doubles == otherPlayer.doubles &&

triples == otherPlayer.triples &&

homeRuns == otherPlayer.homeRuns &&

walks == otherPlayer.walks &&

outs == otherPlayer.outs &&

rbis == otherPlayer.rbis)

return true;

else

return false;

}

55

Why does the equals() method not check
the averageFormat instance variable?

Note that playerName is a String;
thus, we use the equals() method.

Notice that even though the variables
are private, values inside
otherPlayer can still be accessed.
This is because equals is in the same
class as otherPlayer.

• An alternative way to write the equals method for BaseballStats:

public boolean equals(BaseballStats obj) {

return (playerName.equals(otherPlayer.getPlayerName()) &&

singles == otherPlayer.getSingles() &&

doubles == otherPlayer.getDoubles() &&

triples == otherPlayer.getTriples() &&

homeRuns == otherPlayer.getHomeRuns() &&

walks == otherPlayer.getWalks() &&

outs == otherPlayer.getOuts() &&

rbis == otherPlayer.getRbis());

}

56

Using of Multiple Source Files

• You can define more than one class in a single file, though only one can be public.

• These classes can use each other.

• You can also write the classes in different files.

• When compiling a program that uses another class, the compiler will look for the

source code for that class (in the current directory by default)

• For example, your code in section had a source file for Driver, which used

MyLinkedList, which in turn might have used another class.

• In this case, when you use the command javac Driver.java

1. The compiler will see the MyLinkedList class is being used.

2. It will look for files called MyLinkedList.class and MyLinkedList.java.

3. If it finds MyLinkedList.java and MyLinkedList.class does not exist or

is older than the MyLinkedList.java file then it will compile

MyLinkedList.java

57

Packages

• Java allows you to group classes into a collection called a package.

• You have already used packages in the standard Java library: java.util, java.io

• One of the main reason for having packages is to guarantee uniqueness of class

names.

• For example, suppose someone else wrote a class called Node. How would you

specify which one you wanted to use?

• You could indicate which one by including the package it is in.

58

Packages

• A class can use all the classes from its own package and all public classes from

other packages.

• You can access classes in other packages one of two ways:

1. You can specify the full package name every time you access the class. e.g.

java.util.Scanner in = new java.util.Scanner();

2. You can use the import statement to import a class. e.g.

import java.util.Scanner;

. . . //code here

Scanner in = new Scanner()

• As we've seen, you can also import all the classes in a package using *. e.g.
import java.util.*;

59

Packages

• Packages are organized in hierarchies.

• We've seen java.util and java.io

• You could go deeper for example a package may be called

arizona.cs.anson.lectures

• While the hierarchy is useful for organization (and we'll see with your own classes it

dictates where they must be stored), but from the point of the view of the compiler it

does not specify a relationship.

• For example, packages arizona.cs.anson and

arizona.cs.anson.lectures have no relationship to each other.

60

Packages

• This means that while you can use:

import java.util.*;

To import all the classes in the java.util package and

import java.io.*;

• To import all the classes in the java.io package,

• You can NOT use:

import java.*;

• To import all the classes in both the java.util and java.io packages.

• This command would import all the classes in the java package (if there were such a

package) which has no relation to java.io or java.util

61

Packages

• Packages are used to resolve name conflicts, but what if you include classes with the

same name?

• For example, both the packages java.util and java.sql contain a class

called Date.

• If your program imports both packages and tries to use Date e.g.

import java.util.*;

import java.sql.*;

. . . //bunch of code

Date today;

• This will generate a compiler error because the compiler doesn't know which date to

use.

• So how can we get around this?

62

Packages (cont)

• In addition to specifying all the classes in a package, you can specify a particular

class. e.g.

import java.util.*;

import java.sql.*;

import java.util.Date;

. . . //bunch of code

Date today; //compiler knows to use java.util.Date

• This works since now the compiler knows which Date to use.

• What if you want to use both Dates in your program?

• You can always write out the full package name every time you use one.
java.sql.Date today;

63

Packages

• You can put a class inside a package by putting the name of the package at the top
of your source file along with the package statement:

package arizona.anson.lectures;

public class MyClass {

. . .

• Classes defined in source files that do not contain a package statement are located in

the default package.

• The source files should be placed in a subdirectory structures that matches the
package name. Each '.' in the package name represents a subdirectory.

• For the example above, the file should be placed in the directory:
arizona/anson/lectures

64

JAR Files

• Class files can be stored in JAR (Java ARchive) files.

• These files contain multiple class files and there directory structure in a compressed

format.

• This is the usual form that Java programmers distribute classes to be used by other

programmers.

• To use these classes the compiler and the JVM (Java Virtual Machine) must be told

to look in these files.

• The class path tells these programs where to look for classes.

65

The Class Path

• The class path tells Java compiler and the JVM where to look for classes.

• By default the class path is the current directory.

• The class path works a lot like the PATH in bash and it may contain several

directories.

• For example the class path might look like:

/home/usr/classdir:~/myClasses/anson.jar:.

• This contains the paths /home/usr/classdir , ~/myClasses/anson.jar and .

• Don't forget to include '.' the current directory in the path is you want it

66

The Class Path

• You may set the class path by using the class path option for javac or java

javac -cp /home/usr/classdir:~/myClasses/anson.jar:. MyProg.java

java -cp /home/usr/classdir:~/myClasses/anson.jar:. MyProg

• javac will actually always look in the current directory but the JVM will NOT if it is

not in the class path.

• You may also set the CLASSPATH environment variable, but do it with caution.

export CLASSPATH=/home/usr/classdir:~/myClasses/anson.jar:.

• It can cause problems if you forget the .

67

BaseballStats Source Code:
import java.text.DecimalFormat;

public class BaseballStats {

private String playerName;

private int singles, doubles, triples, homeRuns;

private int walks, outs, rbis;

private DecimalFormat averageFormat;

// Constructor for new player who has a batting record

public BaseballStats(String newName, int newSingles,
int newDoubles, int newTriples,
int newHomeRuns, int newWalks,
int newOuts, int newRbis) {

setPlayerName(newName);

setSingles(newSingles);

setDoubles(newDoubles);

setTriples(newTriples);

setHomeRuns(newHomeRuns);

setWalks(newWalks);

setOuts(newOuts);

setRbis(newRbis);

averageFormat = new DecimalFormat("#.000");

}

68

// Constructor for new player with no batting record

public BaseballStats(String newName) {

setPlayerName(newName);

averageFormat = new DecimalFormat("#.000");

// rest of instance variables default to zero

}

public void setPlayerName(String newName) {

playerName = newName;

}

public String getPlayerName() {

return playerName;

}

public void setSingles(int newSingles) {

if (newSingles >= 0)

singles = newSingles;

else

singles = 0;

}

public int getSingles() {

return singles;

}

69

public void setDoubles(int newDoubles) {

if (newDoubles >= 0)

doubles = newDoubles;

else

doubles = 0;

}

public int getDoubles() {

return doubles;

}

public void setTriples(int newTriples) {

if (newTriples >= 0)

triples = newTriples;

else

triples = 0;

}

public int getTriples() {

return triples;

}

70

public void setHomeRuns(int newHomeRuns) {

if (newHomeRuns >= 0)

homeRuns = newHomeRuns;

else

homeRuns = 0;

}

public int getHomeRuns() {

return homeRuns;

}

public void setOuts(int newOuts) {

if (newOuts >= 0)

outs = newOuts;

else

outs = 0;

}

public int getOuts() {

return outs;

}

71

public void setWalks(int newWalks) {

if (newWalks >= 0)

walks = newWalks;

else

walks = 0;

}

public int getWalks() {

return walks;

}

public void setRbis(int newRbis) {

if (newRbis >= 0)

rbis = newRbis;

else

rbis = 0;

}

public int getRbis() {

return rbis;

}

72

public int getHits() {

return singles + doubles + triples + homeRuns;

}

public int getAtBats() {

return getHits() + outs;

}

public String getBattingAverage() {

double average;

int hits, atBats;

hits = getHits();

atBats = getAtBats();

if (atBats != 0)

average = (double) hits / atBats;

else

average = 0.0;

return averageFormat.format(average);

}

73

public String getOnbasePercentage() {

double onBasePercent;

int hitsAndWalks, atBatsAndWalks;

hitsAndWalks = getHits() + walks;

atBatsAndWalks = getAtBats() + walks;

if (atBatsAndWalks != 0)

onBasePercent = (double) hitsAndWalks / atBatsAndWalks;

else

onBasePercent = 0.0;

return averageFormat.format(onBasePercent);

}

74

public String getSluggingPercentage() {

double sluggingPercent;

int totalBases, atBats;

totalBases = singles + doubles * 2 + triples * 3 +

homeRuns * 4;

atBats = getAtBats();

if (atBats != 0)

sluggingPercent = (double) totalBases / atBats;

else

sluggingPercent = 0.0;

return averageFormat.format(sluggingPercent);

}

} // end of class BaseballStats

75

Rectangle Source Code:
public class Rectangle {

private int width;

private int length;

public Rectangle(int newWidth, int newLength) {

this.setWidth(newWidth);

this.setLength(newLength);

} // end of constructor for a rectangle

public Rectangle(int side) {

setWidth(side);

setLength(side);

} // end of constructor for a square

public void setWidth(int wide) {

// We want rectangles that have a positive width

if (wide > 0)

width = wide;

else

width = 1;

}
76

public int getWidth() {

return width;

}

public void setLength(int len) {

// We want rectangles that have a positive length

if (len > 0)

length = len;

else

length = 1;

}

public int getLength() {

return length;

}

77

public void printRectangle() {

// print the rectangle.

// Use the * character.

// The length determines the horizontal number of *'s printed.

// The width determines the number of rows printed.

int i, j;

for (i = 0; i < width; i++) {

for (j = 0; j < length; j++)

System.out.print("*");

System.out.println();

}

}

public void printRotatedRectangle() {

// print the rectangle.

// Use the * character.

// Print the rectangle rotated 90-degrees from the way that

// printRectangle does it.

int i, j;

for (i = 0; i < length; i++) {

for (j = 0; j < width; j++)

System.out.print("*");

System.out.println();

}

}
78

public boolean equals(Rectangle anotherRec) {

if (width == anotherRec.width &&

length == anotherRec.length)

return true;

else

return false;

}

public String toString() {

String answer;

answer = "width = " + width + "; length = " + length;

return answer;

}

79

public String toString() {

// Want to print:

// playerName:

// singles: num

// doubles: num

// etc.

String stats;

stats = playerName + ":\n";

stats = stats + " singles: " + singles + "\n";

stats = stats + " doubles: " + doubles + "\n";

stats = stats + " triples: " + triples + "\n";

stats = stats + " homeruns: " + homeRuns + "\n";

stats = stats + " walks: " + walks + "\n";

stats = stats + " outs: " + outs + "\n";

stats = stats + " rbis: " + rbis + "\n";

return stats;

}

} // end of class Rectangle

80

