Command Line Interface (Shell)

Organization of a computer system

. . .
users ’\——? ¢ » applications
. N
graphical user
interface (GUI) } { shell 1

Vv
operating system E};’x & }

hardware
(or software acting like hardware: “virtual machine”)

Organization of a computer system

Easier to use;
Not so easy to
program with,
automate

users ’_—? ¢ » applications
. O\

interface (GUI)

[graphical user

|

system

calls

I

Vv
operating system ‘7\3 X & }

I

hardware

(or software acting like hardware: “virtual machine”)

Organization of a computer system

Easier to program > applications
with and automate; i

Not so convenient to
operating system ‘J X & }

hardware
(or software acting like hardware: “virtual machine”)

use (maybe)

system
calls

Organization of a computer system

class

graphical user
interface (GUI)

I

operating system E\? X & }

I

hardware
(or software acting like hardware: “virtual machine”)

What is a Command Line Interface?

* Interface: Means it is a way to interact with the Operating System.

What is a Command Line Interface?

* Interface: Means it is a way to interact with the Operating System.

* Command Line: Means you interact with it through typing commands

at the keyboard.

What is a Command Line Interface?

* Interface: Means it is a way to interact with the Operating System.

* Command Line: Means you interact with it through typing commands

at the keyboard.
So a Command Line Interface (or a shell) is a program that lets you

interact with the Operating System via the keyboard.

Why Use a Command Line Interface?

A.In the old days, there was no choice

Why Use a Command Line Interface?

A.In the old days, there was no choice

a. No commercial computer had a GUI until Apple released the Lisa in 1983 (at
$10, 000!!!)

10

Why Use a Command Line Interface?

A.In the old days, there was no choice

a. No commercial computer had a GUI until Apple released the Lisa in 1983 (at
$10, 000!!!)

b. There might still be no choice if you are interacting with a computer via a
non-graphical terminal.

11

Why Use a Command Line Interface?

A.In the old days, there was no choice
a. No commercial computer had a GUI until Apple released the Lisa in 1983 (at
$10, 000!!!)
b. There might still be no choice if you are interacting with a computer via a
non-graphical terminal.
B. Many tasks are faster than in a GUI

a. Suppose you wanted to see all the files in a directory that had the word
“lecture” in their name.

12

Why Use a Command Line Interface?

A.In the old days, there was no choice

a. No commercial computer had a GUI until Apple released the Lisa in 1993 (at
$10, 000!!!)

b. There might still be no choice if you are interacting with a computer via a
non-graphical terminal.

B. Many tasks are faster than in a GUI

a. Suppose you wanted to see all the files in a directory that had the word
“lecture” in their name.

C. Most shells let you write scripts (programs) to automate complex tasks
which you could not do with a GUI

13

Three Different “Shells”

There are (and have been) 100’s (maybe thousands) of shells. We will
briefly mention 3 of them still in use:
1.Command Prompt

2. Windows Powershell

3. Bash

14

Command Prompt

All versions of Windows have included a Command Prompt program.
It acts like a MSDOS interface to the computer.

Bl Command Prorrm = | = S b

\a7-380-201%7 12:85 PH <DIR> - -

12:85 PH <DIR> i ’
A7-380-2017 12:85 PH <DIR> .eclip=ze
LA A22.2017 B82:44 PM <DIR> .idlerc =

a7-38-201%7 12:85 PH <DIR> - Jjmc

A7.-38,-2817 12:84 PM <DIR> -p2 i
@a7-380-201%7 12:84 PH <DIR> -tooling
2832817 B2:88 PM <DIR> MNirtualBox
A7-84-2017 B6:41 AM <DIR> Contacts

B4:17 PH <DIR> Desktop
A7-84-2017 ©B6:41 AM <DIR> Documents
A8 122817 B2:83 PHM <DIR> Down loads
A7-29-201%7 ©B4:16 PH <DIR> eclipze
A7-380-2817 12:84 PH <DIR> eclipse—workspace
@7?/-04-2017 B6:41 AHM <DIR> Favorites

B2:85 FH <DIR> Intel
A7-84-2017 ©G6:41 AM <DIR> Links
A7-84.-2817 B6:41 AM <DIR> Saved Games
@7-04-2017 B6:41 AM <DIR> Searches
A7-84-2817 B6:41 AM <DIR> Videos
311820017 ©G8:89 PH <DIR> UirtualBox UMs

B File(s> A hytes
21 Dirds> 39.198.942.376 hytes free

C:sUserssEric? >

15

Windows Powershell

Windows Powershell was an improved shell for Windows first released in
2006. The latest version came out in 2016.

E¥ Windows PowerShell | = | =] |ﬂh]

To42017 b:41 AM Searches
742817 6:41 AM Uideos
1-18-2817 8:82 FH UVirtualBox UMs

PS C-sUsers“Eric» cd ..
PSS C-xlUsers> 1=

Directory: C:-sUsers

LastWriteT ime Length Mame

Y-38-.2017 12:85 PM
2142815 11:36 AM Public

16

Bash and UNIX

In this class we will be learning a little bit about the Bash shell, which is
currently the most popular shell used on the UNIX family of systems.

This is NOT a UNIX class, and we will not go into UNIX in any depth, but
we will talk about Bash and some common UNIX commands.

17

What is Unix?

* Unix is an operating system
— sits between the hardware and the user/applications
— provides high-level abstractions (e.g., files) and services (e.g., multiprogramming)

e Linux:

— a “Unix-like” operating system
* Whether an OS is Unix or “Unix-like” is mostly about whether the OS has a tiny bit of original
Unix code and/or the activity of lawyers

How Do | Get Access to Bash?

If you’re using a MAC, then you have it. Just open up a terminal window.
That is a Bash shell.

(MAC OS have been based on UNIX since OS X)

19

How Do | Get Access to Bash?

If you have a Windows Machine you have the 3 options given in the
Introduction Lecture.

20

How Do | Get Access to Bash?

If you have a Windows Machine you have the 3 options given in the
Introduction Lecture.

1.For Windows 10, you can use the Windows Subsystem for Linux
a. This might be the future of “running UNIX” on Windows systems
b. This won’t work if you’re using something earlier than Windows 10
C. Also this may take a little more work to configure

21

How Do | Get Access to Bash?

If you have a Windows Machine you have the 3 options given in the
Introduction Lecture.

1.For Windows 10, you can use the Windows Subsystem for Linux
a. This might be the future of “running UNIX” on Windows systems
b. This won’t work if you’re using something earlier than Windows 10
c. This also might take a little more work to configure

2.You can download and run Cygwin
a. This should work on all Windows systems later than XP

22

How Do | Get Access to Bash?

If you have a Windows Machine you have the 3 options given in the
Introduction Lecture.

1.For Windows 10, you can use the Windows Subsystem for Linux
a. This might be the future of “running UNIX” on Windows systems
b. This won’t work if you’re using something earlier than Windows 10
c. This also might take a little more work to configure
2.You can download and run Cygwin
a. This should work on all Windows systems later than XP
3. You can connect to the cs dept computer lectura using a terminal

a. This requires the least resources on your computer
b. You must be connected to the Internet, lectura can get slow, files not local, etc

23

Unix Commands

 We tell the shell what to do on our behalf by typing commands

 Each command performs [variations of] a single task
— “options” can be used to modify what a command does
— different commands can be “glued together” to perform more complex tasks

* Syntax:

command options arguments

* options and/or arguments are not always needed
— they might have defaults or might not be relevant

24

Executing commands

* Typing a command name at the bash prompt and pressing the ENTER key causes
the command to be executed.

* The command's output, if any, is displayed on the screen. Examples:

o

% hostname

lectura.cs.arizona.edu

PID TTY TIME CMD
22758 pts/18 00:00:00 bash
30245 pts/18 00:00:00 ps

25

Command-line arguments

* Most commands accept one or more arguments:

% cal 9 2015
September 2015
Su Mo Tu We Th Fr Sa
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

% echo Hello, world!
Hello, world!

% factor 223092870
223092870: 2 3 5 7 11 13 17 19 23

26

Command-line options

* Many commands accept options that adjust the behavior of the command.

* Options almost always begin with a '-' (minus sign). Options are usually specified immediately
following the command. For most programs the ordering of options is not significant but that is a
convention, not a rule.

* Examples: ot
% date

Thu Jan 13 02:19:20 MST 2005

% date -u
Thu Jan 13 09:19:22 UTC 2005

% wc Hello.java
5 14 127 Hello.java

% wc -1 -w Hello.java
5 14 Hello.java

e Thecommandwc -1 -w Hello. java has two options and one operand (the file Hello.java).

27

Options, continued

* Whitespace 1s often significant in command lines. For example, the
following commands are all invalid: (Try them!)

5 date-u
5 wc -1l-w Hello. java

5 wc —-- notes Hello.java

28

Finding out about commands (continued)

Figuring out how to use a command

man command
“displays the on-line manual pages”

* Provides information about command options, arguments, return
values, bugs, etc.

29

Example: “man man”

man(1) man(1)

man — format and display the on-line manual pages

man [—acdfrhkkKtwli]l [—path] [= system] [string]l [€ config file] [-W pathlist] [# pager] [-8 browser] [-H htmlpager]
[-S section_list] [section] name ...

man formats and displays the on-line manual pages. If you specify section, san only looks in that section of the manual.
name is normally the name of the manual page, which is typically the name of a command, function, or file. However, if
name contains a slash (/) then san interprets it as a file specification, so that you can do wam ./fo0.5 or even man
FSod/fon/har.1.g2.

See below for a description of vhere man looks for the manual page files.

MANUAL SECTIDNS
The standard sections of the manual include:

User Commands
System Calls
C Library Functions

Devices and Special Files

1
2
E|
4
5 File Formats and Conventions
G Games et. &l.

7 Hiscellanea

| System Administration tools and Deamons

Distributions customize the manual section to their specifics, which often include additional sections.

— config File
Specify the configuration file to use; the default is fetc/man.config. (See san.config(5).)

30

Example: “man man”

man(1) man(1)

NANE
man — format and display the on-line manual pages

SYNINSIS
man [—acdfrhkiktel] path] [m system] [string]l [€ config file] [-M pathlist] [# pager] [-8 hrowser] [-H htmlpager]
[section list] ane ...

DESCRIPTIDN

man formats and displays the on-1ine manual pages. If you specify section, san only looks in that section of the manual.
name is normally the name of the manwal page, which is typically the name of a command, function, or file. However, if
name contains a slash (/) then san interprets it as a file specification, so that you can do wam ./fo0.5 or even man
FSod/fon/har.1.g2.

See below for a description of vhere man looks for the

MANUAL SECTIDNS
The standard sections of the manual include:

User Commands

we can specify what
kind of information
we want

System Calls
C Library Functions
Devices and

File Formats and Conventions

Games et. Al.

Hiscellanea

B =1 M| fn A A A e

System Administration tools and Deamons

Distributions customize the manual section to their specifics, which often include additional sections.
FTIONS
— config File
Specify the configuration file to use; the default is fetc/man.config. (See san.config(5).)

31

Example: “man Is”

hed: /home/debray
User Commands LS{1)

DESCRIPTION
List information about the
—cftuvSUX nor —sort.

Es (the current directory by default). Sort entries alphabetically if none of

Mandatory arguments to long options aréNpandatory for short options too.

-a, —all
do not ignore entries starting with .

A, —almost—all

do not Tist implied . and ..

—author
with =1, print the author of each file

—b, —escape o . .
print octal escapes for nongraphic characters Iitems W|th|n Square
—block—size=SI1ZE
use SIZE-byte blocks braCketS
—B., —ignore-backups g
do not list implied entries ending with ~ are Optlonal
— with —1t: sort by, and show, ctime (time of last modification of file status information) with -1: show
ctime and sort by name otherwise: sort by ctime
-C list entries by columns
—color[=WHEN]

control whether color is used to distinguish file types. WHEN may be "never', “always', or "auto’

32

Finding commands

Figuring out which command to use
apropos keyword

man -k keyword

Two ways to do the same thing --- “searches a set of database files containing short descriptions of
system commands for keywords”

* Helpful, but not a panacea:
— depends on appropriate choice of keywords
* may require trial and error

— may return a lot of results to sift through
* pipe through more

— Google might be faster

33

The file system

* Collections of files are

grouped into directories
(folders)

 Adirectory is itself a file

* file system has a hierarchical
structure (i.e., like a tree)
o the root is referred to as “/”

bb

/
—

I

CcC | dd —

.
.

34

Referring to files: Absolute Paths

* The agbsolute path specifies a file (or /
directory) by how you to get to it starting

at the file system root /N

— The absolute path lists the directories on the bb cc
path from the root (“/”), separated by “/”

35

Referring to files: Absolute Paths

* The agbsolute path specifies a file (or /
directory) by how you to get to it starting
at the file system root

— The absolute path lists the directories on the bb
path from the root (“/”), separated by “/”

[absolute path: /dd/ee/gg

36

The current directory

* Invariably you are in a particular
directory in the tree called the
current (working) directory

— commands are executed in this context

* To find out the absolute path of the
current directory, you can use the
command “pwd”

If ee is the current directory, then pwd should say ?

bb

/

JE—

I

CcC | dd -

|y
|y

37

The current directory

* Invariably you are in a particular
directory in the tree called the
current (working) directory

— commands are executed in this context
bb

* To find out the absolute path of the
current directory, you can use the
command “pwd”

If ee is the current directory, then pwd should say /dd/ee

/

JE—

I

CcC | dd -

|y
|y

38

Referring to files: Relative Paths

* A relative path specifies how to /
get to a file starting from the

current directory n /%

CcC =
— ‘.. means “move up one level” -

— ‘. means current directory

— lists the directories along the
path separated by “/”

ff relative to ee is: ../ff

[Example:

Referring to files: Relative Paths

* A relative path specifies how to ! il

get to a file starting from the
current directory

— ‘.. means “move up one leve

bb

IH

— ‘. means current directory

— lists the directories along the
path separated by “/”

Example:
cc relativeto ee is: ?

40

Referring to files: Relative Paths

* A relative path specifies how to ! il
get to a file starting from the
current directory

— ‘.. means “move up one leve

bb

IH

— ‘. means current directory

— lists the directories along the
path separated by “/”

Example:
cc relative to ee is: ../../cc

41

Home directories

e Each user has a “home directory”
— specified when the account is created
— given in the file /etc/passwd

* When you log in, your current directory is your home directory

* Notational shorthand:
— absolute path to one’s own home directory: ~
— absolute path to some other user joe’s home directory: ~joe

42

Absolute versus relative?

* Absolute paths start with “/” or shorthand symbols like
* Relative paths are anything else.

(Uro))

43

Unix commands for dealing with files and directories

* Moving (changing current directory) to another directory
— cd targetdir

Examples:

cd ~ move to one’s home directory
(also: just “cd” by itself)
cd /usr/local/src move to /usr/local/src

cd ../.. move up two levels

44

Seeing What Files are in a Directory

e Command:ls

— Examples:

Is

Is /usr/bin

Is -I

Is -a

Is -al /usr/local

— lists the contents of a directory

list the files in the current directory
& won’t show files whose names start with .’

list the files in the directory /usr/bin
give a “long format” listing (provides additional
info about files)

list all files in the current directory, including
those that start with ‘.’

give a “long format” listing of all the files (incl.
those starting with “.”) in /usr/local

45

Handy options for 1s

e -t Sort by modification time instead of alphabetically.

e -h Show sizes with human-readable units like K, M, and G.
e —-r Reverse the order of the sort.

e -S Sortbyfile size

e —-d Bydefault, when an argument is a directory, 1 s operates on
the entries contained in that directory. —d says to operate on the
directory itself. Try"1ls -1 ."and"ls -1d .".

e -R Recursively list all the subdirectories.

* There are many more and you might want to look at the man page
and play with them

More commands for dealing with files

cp file, file,
* copy file, to file,
mv file, file,
* move file, to file,
rm file
* removes the file
* for directories use the option “-r”

mkdir dir

* make a (sub) directory in the current directory

vi [file]

* the vi editor

vimtutor
* a tutorial for using vi

47

Three handy options for cp:

*-R Recursively copy an entire directory tree

o 7’
-r

(For many unix commands either “-R” or will mean do it
recursively down whatever is below the directory)

°*—p Preserve file permissions, ownerships, and timestamps

—1] Inquire before overwriting destination file.

Some other useful commands

* wc [file]
* word count: counts characters, words, and lines in the input
* (already used as an example)

cat [file] [file,]...

* concatenates files and writes them to standard output

head —n [file]

* show the first n lines of the input

tail —n [file]

* show the last n lines of the input

touch [filel] [filez] e

* updates the timestamp on files, creating them as needed

49

Getting more information about files

* |s—|: provides additional info about files

- hed: /cs/www TTT
% 1s =1 | more

total 228

drwxrwxr—-x 11 patrick 29427 4096 2009-09-24 22:27 acm
drwxrwsr-x 31 137 officweb 4096 2009-12-23 09:30 admin
drwxrws—— 22 gmt dept 4096 2006-10-17 10:03 archives
drwxrwxr—x 3 gmt officweb 4096 2006-02-06 09:38 _baks
drwxrwsr-x 19 gmt wheel 4096 2009-06-20 03:33 camera
drwxrwsr—-x 76 root officweb 4096 2010-01-06 08:19 classes
drwxrwsr—-x 16 gmt officweb 4096 2009-08-05 16:32 colloguia
drwxrwsr—-x 19 gmt wheel 16384 2009-08-24 08:01 computing
drwxrwsr—-x 19 gmt officweb 4096 2009-10-30 14:16 courses
drwxr—-xr-x 2 root wheel 4096 2008-09-29 17:38 data
—rw—rw—-r—— 1 gmt wheel 0 2007-08-30 13:01 favicon.ico
drwxrwsr-x 4 gmt wheel 4096 2009-04-03 07:41 general
drwxrwsr—x 8 gmt officweb 4096 2009-12-09 16:38 graduate
drwxrwx—x 7 gmt wheel 4096 2007-11-18 05:25 groups
drwxrwsr—-x 23 gmt icon 4096 2009-11-24 13:17 icon
—-Pw—p——p—— 1 jharriso jharriso 3599 2009-12-22 16:41 index.html
drwxrwspr—x 5 gmt officweb 4096 2008-08-05 11:20 intranet
drwy—————— 2 root root 4096 1996-06-07 09:32 lost+found
—rwxr—r— 1 1jacobo Tl1jacocho 2515 2009-09-18 16:12 Microsoft Office Word 2007.1nk
drwxrwsr—x 4 Tuiten wheel 4096 2008-01-04 13:39 _mm
drwxrwxr—x 5 Tuiten dept 4096 2005-10-04 15:45 MMWIP
drwxrwspr—x 6 gmt rpm 4096 2007-12-12 15:29 mpd
drwxrwxr—-x 2 storkerr root 4096 2007-01-10 08:06 msdnaa
drwxkrwsr—-x 10 gmt officweb 4096 2009-12-16 16:04 news
drwxrwxr—x 2 gmt officweb 4096 2006-02-06 09:38 _notes
drwxrwsr—x 5 gmt officweb 4096 2009-01-07 14:09 partners

T rwXrwx rwx 1 root root 15 2008-09-30 10:32 patterns —> fcs/wwwpatterns
drwxrwxr—-x 428 root root 20480 2010-01-08 02:14 people
drwxrwspr—x 6 gmt officweb 4096 2010-01-12 08:30 personnel
drwxkrwsr-x 4 gmt wheel 4096 2009-08-17 14:21 policies

50

Getting more information about files...

gmt icon 4096 2009-11-24 13:17 1icon

jharriso jharriso 3599 2009-12-22 16:41 index.html

gmt officweb 4096 2008-08-05 11:20 intranet
—————— - root root 4096 1996-06-07 09:32 lost+found

\ J \ J |) \ J | J
| | | | |

owner group size last-modified time file name

no. of hard links

access permissions

file type - d directory
| (ell) symbolic link

51

File access permissions

drwxrwsr—-x 23 gmt icon 4096 2009-11-24 13:17 1icon
—rw—pr—r— 1 jharriso jharriso 3599 2009-12-22 16:41 index.html
drwxrwsr—x 5 gmt officweb 4096 2008-08-05 11:20 intranet
drwy————— 2 root root 4096 1996-06-07 09:32 lost+found
L access permissions for others (0) _
W | write

access permissions for group (g) X | execute (executable file)

o enter (directory)
access permissions for owner (u)

— | no permission

52

How does this relate to Windows and File Explorer

Directories are organized as trees and the GUI lets you navigate those
trees:

4 My Big Docs
. Books
4 Comics
4 ASM
4 Spider-Man_CD1
1962
1963
1964
1965
. 1966
Files
install
Spider-Man_CD2
Spider-Man_CD3

53

How does this relate to Windows and File Explorer

One difference in organization is that Windows has a tree per “drive”
instead of one root.

4 '8 Computer
&, Local Disk (C)
' a Data (F)
* e | 1avelDrive (G:)

- amw Demovable Disk ()

Notice it kind of looks like “Computer” is the root of the tree, but it
doesn’t show up in the command line.

54

How does this relate to Windows and File Explorer

e PrilloapetErie™ ol v This is in the Windows Powershell

PS5 C:sUsers> od ..
PSS Gaxe ed L

You can’t change directories above the C: root. You can get to another
drive by using cd <drive letter>:

CosUserssEricr cd .. This works in the Powershell by NOT
CzsUzep=> cd .. the Command Prompt.

e ied o
e e BT O -
Fisz

95

So What About Cygwin?

Cygwin sets up a root directory at the location where cygwin was
installed. But it mounts the drive root directories under:

/cygdrive
This means if | want to access a file under say
f:\”My Big Docs”\comics\ASM\Spider-Man_CD1

| could find them in cygwin at:
/cydrive/f/”My Big Docs”/comics/ASM/Spider-Man_CD1

56

So What About Cygwin?

Eric@odin
$ cd /

Eric@odin
$ 1s cygdrive/

c T g 7]

Eric@odin
$ cd /cygdrive/f/"My Big Docs"/comics/ASM/Spider-mMan_CD1

Erjc@odin

Screenshot from previous slide. Using spaces in a directory or file name is
a Windows thing, but should be avoided in UNIX (it is a pain).

Y

And What About Linux Subsystem for Windows?

* The location of the root directory is hidden in the Windows File System
— This is because files created by linux programs/commands in this area are not
compatible with Windows programs

* The computer drives are in the directory /mnt

— Files created in directories /mnt/<drive letter> will be compatible (can be
opened by) windows programs.

* A good solution is to make a symbolic link to a directory you want to
work with.

58

Symbolic Links

Motivation:
Often you will want to reach a “distant” directory from your home directory. For example,
in the Linux Subsystem for Windows the files that can be modified by windows programs
are 1n the directory /mnt/<drive letter>. On my system I want to work with files here:

/mnt/c/Users/Eric/Documents/UofA/cs210/WorkArea
My home directory is /home/eanson

Using the following command will set up a symbolic link to my desired directory
$ 1n -s /mnt/c/Users/Eric/Documents/cs210/WorkArea/ cs210

59

Symbolic Links

Doing an Is after creating the link I see:
% 1s

This can be treated like a directory. I can usd ¢d to enter it. However, if I do a
5 1s -1
lrwxrwxrwx 1 eanson eanson 48 Aug 22 10:49 ¢s210 ->
/mnt/c/Users/Eric/Documents/cs210/WorkArea/

That lowercase "L" at the start of the line indicates that cs210 1s a symbolic link, often
shortened to "symlink".

The ¢cs210 -> /mnt/c/Users/Eric/Documents/cs210/WorkArea/ indicates that
cs352 references (or "points to") that entry.

60

Symbolic Links

5 1ls ¢s210
simple.py

The ¢cs210 symlink creates the i1llusion that my home directory hasan cs210
subdirectory

~/352/a2 % 1ls /mnt/c/Users/Eric/Documents/cs210/WorkArea
simple.py

61

Symbolic Links

Key point:
Symbolic links are handled by the operating system.

Benefit:
A program doesn't have to do anything special to follow a symlink to its destination.

62

Symbolic Links

* Asymlinkis kind of like a "Windows shortcut done right.”
* Ditto for Mac “aliases”
* Macs are UNIX underneath and also have symbolic links

* Unix also has quite a different kind of link (hard) which we won’t say
anything more about (just be aware that you usually want symbolic).

Sidebar: Windows shortcuts

I've made a Windows shortcut named 1 f.txt
that references 1ongFileName. txt.

AEE
kes .'*ir
I can open either with Explorer but watch what | () ©- -3 Oseach 7
type, the Windows analog of cat (1), does: | 0O cimannironeimesossizsz v| [6o
= IR

Shortout
1 KB

langFiletame, bt

Text Document

* C:>type longFileName. txt
* Tue, Sep 01, 2015 5:50:25 PM

YL m H'.

*C:>type 1f.txt.1lnk
° L :

* If a Windows program wants to handle shortcuts, it's got to have special code to do it!

Symbolic Links

* File-related utility programs often have special handling for symbolic
links.

* One exampleis 1s, whose -1 option says to "follow" the link.
s 1s -1 ¢s210

*lrwxrwxrwx 1 eanson eanson 48 Aug 22 10:49 c¢s210
-> /mnt/c/Users/Eric/Documents/cs210/WorkArea/

~/inClass % 1ls -1L ¢s210
*—rwXrwxrwx 1 root root 62 Aug 22 1111 simple.py

65

Input and output

* Data are read from and written to i/o streams

* There are three predefined streams:

stdin : “standard input” — usually, keyboard input
stdout : “standard output” — usually, the screen
stderr : “standard error” — for error messages (usually, the screen)

e Other streams can be created using system calls (e.g., to read or write a
specific file)

66

/O Redirection

e Default input/output behavior for commands:
— stdin: keyboard; stdout: screen; stderr: screen

* We can change this using |I/O redirection:

cmd > file redirect cmd’s stdout to file
cmd >> file append cmd’s stdout to file
cmd &> file redirect cmd’s stdout and stderr to file

cmd, | cmd, redirect emd,’s stdout to cmd,’s stdin

67

Combining commands

* The output of one command can be fed to another command as input.

— Syntax: command, | command,
-
AN

Example:

(Ipipe”

more foo shows the file foo one screenful at a time

Is | more lists the files in a directory one screenful at a time

How this works:

* Is writes its output to its stdout

* more’s input stream defaults to its stdin

* the pipe connects Is’s stdout to more’s stdin
* the piped commands run “in parallel”

68

* A key element of the UNIX philosophy is to use pipelines to combine
programs to solve a problem, rather than writing a new program.

* Problem: How many unique users are on lectura?

vl: Get login names
% who| cut -f1 -d " "
ken

dmr

ken

francis

rob

walt24

dmr

rob

wn;

dmr

ken

v2: Sort login names
% who|cut -f1 -d" "|sort
dmr

dmr

dmr

francis

ken

ken

ken

rob

rob

walt24

wnj

v3: Get unique login names

% who|cut -f1 -d" "|sort|uniq
dmr

francis

ken

rob

walt24

wn;

v4: Get the count

% who|cut -f1 -d" "|sort|uniq]
wc -l

6

stdin and stdout and Python

Side note: You will want to be able to run Python from your command
line. MAC users should already be set.

If you're using Cygwin, you might want to install python3, and likewise 1f
you're using WSL (Windows Subsystem for Linux). Here 1s a link that
talks about installing Python (and other things) on WSL

https://blogs.windows.com/buildingapps/2016/07/22/fun-with-the-windo
ws-subsystem-for-linux/

70

https://blogs.windows.com/buildingapps/2016/07/22/fun-with-the-windows-subsystem-for-linux/
https://blogs.windows.com/buildingapps/2016/07/22/fun-with-the-windows-subsystem-for-linux/

stdin and stdout and Python

You have already read from stdin and written to stdout many times. Look
at the very simple program in a file called s1.py

line = input()
print (line)

When run from the command line this program waits for a line to be typed

in, and then prints it out to the terminal. By default input() reads from
stdin and print() outputs to stdout.

71

stdin and stdout and Python

The sys module allows you to be more explicit about the fact you’'re
writing to stdin or stdout. This program does the same as the last:
import sys
line = sys.stdin.readline()
sys.stdout.write(line)

72

stdin and stdout and Python
Putting this in a loop, we can read and write as long as there is input:
% cat partCat.py
import sys
line = sys.stdin.readline ()
while line:
sys.stdout.write(line)
line = sys.stdin.readline()

This program may seem silly and useless, but it can be somewhat useful
with file redirection:

73

stdin and stdout and Python

We can use it to show the contents of an ascii file:
S python3 partCat.py <sl.py

line = input()

print (line)

We see sl.py contains the two lines of our earlier stmple program.

74

stdin and stdout and Python

We can also use it as a very simple way to create a text file:

$ python3 partCat.py >README
I typed this in

S cat README
I typed this in

We tell Bash that we are finished with input from stdin by typing Ctrl-d

75

python and command line arguments

Our partCat.py program is almost like the UNIX cat command.

If cat isinvoked with no arguments it also reads from stdin and
writes to stdout. However, if you can invoke cat with the names of
files it will read from those instead of stdin.

S cat filel file2 file3

will print the contents of filel followed by file2 followed by file3 to stdout

76

python and command line arguments

You can use the sys module to read command line arguments in a python
program. sys contains the list argv which is a list of the arguments. The
first element is the name of the program itself.

77

python and command line arguments

$ cat argReader.py

import sys

for arg in sys.argv:
print (arg)

$ python3 argReader.py John Paul George
argReader.py

John

Paul

George

78

A Simple Python Program acting like cat

$ cat myCat.py
import sys
if len(sys.argv) ==
line = sys.stdin.readline()
while line:
sys.stdout.write (line)

line = sys.stdin.readline()
else:

for i in range(l, len(sys.argv)):

f = open(sys.argv[i])
line = f.readline()
while line:
sys.stdout.write (line)
line = f.readline()
f.close()

79

Text Editors

*You will want to find a good text editor to create programs and test
files.

—You have done and will do much of this work using an IDE (Integrated
Development Environment) that usually combines a text editor, compiler or
interpreter, 1/0 display, and some kind of file management.

—But it is often useful or necessary to load up a program file in a text editor.

*You do NOT want to use a word processor for this work (like Word)
—A word processor includes information in the file about formatting
—A text editor just creates the ASCII text you write.

80

Text Editors

*You will probably want to learn a little bit about using a nongraphical
editor that runs on a terminal. Three common ones in UNIX are:

*€émacs

*vim (vi iMproved)

*nano (pico clone)

*None are installed by default in Cygwin. ® But all are available ©

81

Text Editors

*You may also want to learn and use an editor that uses windows and a
mouse.

—Notepad comes installed on Windows, but it is not good.

—UNIX and Windows (and MACs?) use different ASCII characters to mark the end
of a line. A good editor for programmers will let you convert these.

—Some editors do auto indent (can be a useful or a pain), color coding, and/or
bracket matching, etc.

*A FEW of the commonly used text editors are listed on the next slide

82

Text Editors

*Notepad++ WindowsFree

*Sublime Text All S70 (but unlimited free trial)

*BBEdit MAC Free limited version
(TextWrangler)

*Brackets All Free

*jEdit All Free

*Atom All Free

There are MANY more. Find one you like and learn to use it.

You may want to visit
https://en.wikipedia.org/wiki/Comparison_of text_editors

83

https://en.wikipedia.org/wiki/Comparison_of_text_editors

The diff command

e The diff command looks for differences between files

* You will probably want to know this command since it will be used in
grading.

* |t also can be helpful when you have two version of a program and want
to see how they differ.

384

Back to the shell - command line editing and shortcuts

bash supports simple command line recall and editing with the "arrow keys" but many control-key and
escape sequences have meaning too. Here are a few:

A/ E Go to start/end of line.

W Erase the last "word".

~U Erase whole line. (~C works, too.)

"R Do incremental search through previous commands.

ESC-f/b Go forwards/backwards a word. (Two keystrokes: ESC, then f)
ESC-. Insert last word on from last command line. (Very handy!)

bash also does command and filename completion with TAB:

Hit TAB to complete to longest unique string.
If a "beep", hit TAB a second time to see alternatives.

example 1: Try typing “xc” followed by a TAB (or two)
example 2: Try typing “Is “ followed by a TAB (or two) (in a directory with some files!)

85

Shell metacharacters

* Many non-alphanumeric characters have special meaning to shells.

* Characters that have special meaning are often called metacharacters. Here are the
bash metacharacters:

c ~ I # S & ()N { I <>0

86

Shell metacharacters

* Many non-alphanumeric characters have special meaning to shells.

* Characters that have special meaning are often called metacharacters. Here are the
bash metacharacters:

c ~ I # S & ()N { I <>0

* If an argument has metacharacters or white space we suppress their special meaning
by enclosing the argument in single quotes.
— Double quotes suppresses most of the special meanings, but not all

87

Shell metacharacters

* Many non-alphanumeric characters have special meaning to shells.

* Characters that have special meaning are often called metacharacters. Here are the
bash metacharacters:

s~ L #FSsE&e* ()N It >

* If an argument has metacharacters or white space we suppress their special meaning
by enclosing the argument in quotes.
— Double quotes suppresses most of the special meanings, but not all

* An alternative is to use a backslash to "escape" each metacharacter.

88

Examples of escaping
-
EobuslBlectura: ™% mkdir test
kobusElectura:™F cd test
kobusElectura: ™ test$ 1ls -1

total O

kobusElectura:™ test$ touch a b
kobusElectura:™ test$ 1ls -1

total 1

—ru-rw-r—— 1 kobus kobus 0 Jan 1/ 13:5Z
=mipErph=r—— I EobBus Eoiotissl damtbicEsias
kobuslflectura:” test$® touch 'a b'
kobusElectura:™ test$ 1ls -1

total Z

—ruw-rw—r—— 1 kobus kobus 0O Jan 16 13:5Z2 a3
—ruw-ruw-—r—— 1 kobus kobus 0 Jan 16 13:53
—ru=-rw-—r—-—— 1 kobus kobus 0O Jan 1B 13:5Z
kobusElectura:™ test® rm a b
kobusElectura: ™ test$ ls -1

a b

kobusElectura: ™ test® rm ax b
kobusElectura: ™ test$ 1ls -1

total O 89

o o

o

Examples of escaping

kobusElectura:™% mkdir test
kobusElectura: ™% cd tecst

kobusElectura:™ /testi ls -1 This is a fun example,
total O) i
kobusBlectura: ™ test$ touch a b bUtf”ehaWES\Nnh
kobusElectura:™/testd ls -1 spaces in them should
total 1 . .
—ru-r-r—— 1 kobus kobus 0O Jan 16 13:52 35 be AVOIDED it pOSSIbIe.
—ru-r-r—— 1 kobus kobus 0O Jan 1b 13:52 b

kobusElectura: ™ test$ touch 'a b One has to know how
E::T%E'ztwa: Stesty ls =l to deal with them, but

—rw-rw-r—-— 1 kobus kohus 0 Jan 16 13:57 & using them in unix
—ruW-ru-r-— 1 kobus kobus 0 Jan 1b 13:53 o leads to grief.
—ru=-rw-—r—-—— 1 kobus kobus 0O Jan 1B 13:5Z
kobusElectura:™ test® rm a b
kobusElectura: ™ test$ ls -1

a b

kobusElectura: ™ test® rm ax b
kobusElectura: ™ test$ 1ls -1

total O 90

o

Wildcards

*Some metacharacters act as Wildcards allow the user to specity
files and directories using text patterns in bash commands.

*The simplest wildcard metacharacter 1s ?, a question mark. A
question mark matches any one character.

Wildcards

Observe:
s 1s
a out X Xy

5 1ls ?

a X Z

5 1s ?7?7

out

Wildcards, continued

*ccho is also good for exploring wildcards, and uses less vertical space
on slides:
% 1s

out xX Xy Z

Q

o\°

echo ?
X Z

Q

S echo 2?27?27 °?2°?

out Xy

Wildcards, continued

5 ls
a out x Xy Z

*Predict the output:

S echo ? ? ?
ada X Z a X Z a X %z

5 echo x7? %y
Xy XY

O

a X z Xy X out 2?2777

5 echo ? ?7? x 7?27?27 2?27?2727

If there's no match, like with 2?2?72, the
argument 1is passed through as-is.

The * wildcard

*A more powerful wildcard 1s * (asterisk). It matches any sequence
of characters, including an empty sequence.

— * Matches every name

— *.Jjava Matches every name that ends with . java

— *x* Matches every name that contains an x
* Examples: x, ax, axe, xxe, XOX0X

The * wildcard

*What would be matched by the following?
*X*y
—Names that contain an x and end with v.
* . *
—Names that contain at least one dot.
* . * . *
—Names that contain at least two dots.
ar*xex*i1*o*u
—Names that start with an a, end with a u, and have e, i, o, in
sequence in the middle.

Combining wildcards

*Wildcards can be combined. Examples:
??2* Matches names that are two or more characters long
* . ? Matches names whose next to last character is a dot
What would be matched by the following?
PX?*

Names that are at least three characters long and have an x as their
second character.

K —D =%k

Names that contain two dashes separated by a single character.

The character set wildcard

*The character set wildcard specifies that a single character must match one of a set.
°*3 1s

‘a b e n out x xy zZ

*% echo [m-z] # one-character names in the range m-z
‘n X Z

e Another:
% 1s
*Makefile fmt.c wutils.c utils.h

*3s echo *.[chy]
efmt.c utils.c utils.h

The character set wildcard

*More:
[A-Z]1.[0-9]
*Matches names that start with a capital letter and end with a dot and a digit.

e*x [10-9] (Leading ! complements the set.)
*Matches names that end with a dot and a non-digit character.
*Equivalent: *. [*0-9]

e [Tt]ext
eMatches Text and text.

Lots more with wildcards

*The bash man page uses the term "pathname expansion" for what I've called
wildcard expansion.

*Another term that's used is "globbing". Try searching for "glob" on the bash
man page.

*Wildcards don't match hidden files unless the pattern starts with a dot, like
. *rc.

*There are other wildcard specifiers but ?, *, and [...] are the most commonly
used.

Pattern matching: grep

GREP(1) GREP(1)
NAME

grep, egrep, fgrep — print lines matching a pattern

SYNOPSIS
grep [options] PATTERN [FILE...]
grep [options] [—e PATTERN | —f FILE] [FILE...]

DESCRIPTION
Grep searches the named input FILEs (or standard input if no files are named, or the
file name — is given) for lines containing a match to the given PATTERN. By default,

grep prints the matching lines.

In addition, two variant programs egrep and fgrep are available. Egrep is the same as
grep -E. Fgrep is the same as grep —F.

OPTIONS
—A NUM, —after—context=NUM

Print NUM lines of trailing context after matching lines. Places a 1line con-
taining — between contiguous groups of matches.

—a, —text

Process a binary file as if it were text; this is equivalent to the —binary-
files=text option.

—£ NUM, —before-context=NUM

Print NUM lines of leading context before matching lines. Places a 1line con-
taining — between contiguous groups of matches.

—C NUM, —context=NUM
Print NUM lines of output context. Places a line containing — between contigu-

101

Pattern matching: grep...

% 1s show the contents of this file

Be ess Hamlet War—and—Peate
%(cat GettysburgAddress
Four vears ago our fathers brought forth on this continent, a new nation, conceived

in Liberty, and dedicated to the proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived
and so dedicated, can long endure. We are met on a great battle-field of that war. We have come to
dedicate a portion of that field, as a final resting place for those who here gave their lives
that that nation might live. It is altogether fitting and proper that we should do this.

But, in a larger sense, we can not dedicate —— we can not consecrate — we can not hallow — this
ground. The brave men, living and dead, who struggled here, have consecrated it, far above our

poor power to add or detract. The w0r1d will little note, nor 10ng remember what we say here, but
it can never forget what they did here. It is for us the living z to

the unfinished work which they who fought here have thus far so
us to be here dedicated to the great task remaining before us -
take increased devotion to that cause for which they gave tha A7
that we here highly resolve that these dead shall not hawe
God, shall have a new birth of freedom —— and that-
the people, shall not perish from the earth
%

nat1on GettysburgAddress
: ars—ago our fathers brought forth on this continent, a new nation, conceived

Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived

that that nation might live. It is altogether fitting and proper that we should do this.

thit we here highly resolve that these dead shall not have died in vain —— that this nation, under

%

102

Pattern matching: grep...

% 1s

acm computing icon mpd personnel robots.txt style
admin courses index.html msdnaa policies scripts test
archives data intranet news prix sista torrent
_baks favicon.ico Tlost+found _notes projects solar undergrad
camera general Microsoft Office Word 2007.1nk partners recruiting sophos wics
classes graduate _mm patterns research sr Xiss
colloquia groups MMWIP people resources stork

“print all lines in the input
that match the string er”

103

Pattern matching: grep...

% 1s | grep —-E
camera

general
partners
patterns
personnel
recruiting
research
resources
torrent
undergrad

%

%

% 1s | grep -E
recruiting
research
resources

% N

% pwd

Fesfwuw

% 1s

acm computing icon mpd personnel robots.txt style
admin courses index.html msdnaa policies scripts test
archives data intranet news prix sista torrent
_baks favicon.ico Tlost+found _notes projects solar undergrad
camera general Microsoft Office Word 2007.1nk partners recruiting sophos wics
classes graduate _mm patterns research sr Xiss
colloquia groups MMWIP people resources stork

%

%

%

CerlreD

“print all lines in the input that
match the string er or re

print all lines in the input that

begin with the string er or re

104

Setting defaults for your commands

*Create an “alias” for your command
—syntax different for different shells

—bash: alias aliasName=“cmdName”
e.qg.: alias rm="rm —i”

However the alias will only last during this session of your shell

105

Good news and bad news

* Good news:

* The behavior of bash can be customized by putting commands in the initialization files that
bash reads.

* Bad news:
e Several files and rules are involved.

* The initialization files present and their contents vary from system to system and user to user.

* We'll first talk about the mechanics of bash's initialization files and then look at types of
things we might add to initialization files.

* Anything that's valid at the bash prompt can appear in an initialization file and vice-versa. In
other words, initialization files simply contain a sequence of bash commands.

The rules (simplified)

*If bash 1s specified as your shell in /etc/passwd and you
login, the instance of bash that's started 1s said to be a login

shell.

*When bash 1s started as a login shell it first reads
/etc/profile. It then looks for three files in turn:
~/ .bash profile, ~/.bash login, and
~/ .profile. Upon finding one, it executes the commands in
that file and doesn't look any further.

The rules (simplified)

*Sometimes you'll want to start another instance of bash from the bash prompt:
*s bash

O
®*3

*Such an instance of bash 1s an "interactive non-login shell". It reads
/etc/bash.bashrcand ~/.bashrc.

*Common practice:
(1) ~/.profileloads ~/ .bashrc.
*(2) All customizations are in ~/ .bashrc.

Shell variables

* bash supports variables that hold values of various types, including integers and arrays but we'll focus on
string-valued variables, which are the default.

* bash variables have four common uses:

e Specification of various bash behaviors

e Access to information maintained by bash

e Command line convenience variables

* Use as a conventional variable for programming

* The variable PS1 falls in the first category. Its value specifies the primary bash prompt. You may have
noticed that the prompt looks different in the various shells I've shown, that's because this variable is set

different.

* If we assign a value to PS1, the next prompt reflects it:
e~ % PS1="What now, master? "
* What now, master? PS1="C:>"
e C:>

Variables that make information available

*bash makes a variety of current shell-centric information available as
variables. Two simple ones are PWD and OLDPWD.

*Variables are accessed by prefixing their name with a dollar sign:
% echo SPWD
*/home/whm/352

*Practical example with OLDPWD:

°*s pwd
e~/src/ruby/examples

s cd ~/work

*S cp SOLDPWD/fbscores.rb

Command Line Variables

*You can also create your own vaiables.

°)

% net="/cs/www/classes"
% echo S$net
/cs/www/classes

% 1ls $net/cs210

falll?

The search path for commands (PATH)

*Your PATH variable specifies the directories that are to be searched
when you run a command.

% echo S$PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/b
in:/sbin:/bin:/usr/games:/usr/local/rvm/bin:/ho

me/stdntwm/bin

S echo SPATH | tr : " " | wc -w

O

The search path for commands (PATH)

*When you type in a command each directory in the PATH is searched
to see if an executable file of that name is there.

*The directorilies are searched 1n order from the
first to the last.

*The command which will tell you where the
command was first found (1f i1t was)

Setting the path in ~/ .bashrc.

*Here's a possible line from ~/ .bashrc. What's it doing?

PATH=SPATH:~/bin
—It's appendeing " : ~/bin'" to whatever PATH already is.

*When bash starts up, PATH gets set to a system-specific value.

*The net effect of PATH=SPATH:~/binis"If you don't find a
command in the standard directories on this system, look in my bin."

Dot danger?

* Some programmers have "dot" in their search path (PATH=...:.) so that a script x in the current directory
can be run with "x" instead of ". /x".

* "Dot in the path" can be convenient but imagine...
* Instead of typing 1s you accidentally typed s1.
* You happened to be in a "world-writable" directory like / tmp.
* A malicious student has put thisin /tmp/s1:
* chmod o+rwx ~
e ...or maybe this:
erm -rf ~/ & # "&"runs a command "in the background"

* In the first case, they've gained access to your home directory!

* In the second case, deletion of all your CS account files is in progress!

Dot danger, continued

*Should you include dot in your path?
Like with any risk, you need to weigh risk vs. convenience.

*Pro: When developing scripts and programs, not having to type . /x is
convenient.
—Your account on lectura has dot in the path by default
—| have always have had dot in my path and never had a problem
—On your own machine, the danger seems nearly nonexistent

*Con: People with a lot of experience think the danger is real and many
recommend not including it.

