
Command Line Interface (Shell)

1

Organization of a computer system

2

hardware
(or software acting like hardware: “virtual machine”)

shell

operating system

users applications

graphical user
interface (GUI)

Easier to use;
Not so easy to
program with,
automate

Organization of a computer system

3

hardware
(or software acting like hardware: “virtual machine”)

shell

operating system

applications

system

calls

graphical user
interface (GUI)

interactive actions
(click, drag, tap, …)

users

Easier to program
with and automate;
Not so convenient to
use (maybe)

Organization of a computer system

4

hardware
(or software acting like hardware: “virtual machine”)

shell

operating system

applications

graphical user
interface (GUI)

system
calls

users

typed commands

Organization of a computer system

5

hardware
(or software acting like hardware: “virtual machine”)

shell

operating system

users applications

graphical user
interface (GUI)

this
class

What is a Command Line Interface?

• Interface: Means it is a way to interact with the Operating System.

6

What is a Command Line Interface?

• Interface: Means it is a way to interact with the Operating System.

• Command Line: Means you interact with it through typing commands

at the keyboard.

7

What is a Command Line Interface?

• Interface: Means it is a way to interact with the Operating System.

• Command Line: Means you interact with it through typing commands

at the keyboard.

So a Command Line Interface (or a shell) is a program that lets you

interact with the Operating System via the keyboard.

8

Why Use a Command Line Interface?

A. In the old days, there was no choice

9

Why Use a Command Line Interface?

A. In the old days, there was no choice
a. No commercial computer had a GUI until Apple released the Lisa in 1983 (at

$10, 000!!!)

10

Why Use a Command Line Interface?

A. In the old days, there was no choice
a. No commercial computer had a GUI until Apple released the Lisa in 1983 (at

$10, 000!!!)
b. There might still be no choice if you are interacting with a computer via a

non-graphical terminal.

11

Why Use a Command Line Interface?

A. In the old days, there was no choice
a. No commercial computer had a GUI until Apple released the Lisa in 1983 (at

$10, 000!!!)
b. There might still be no choice if you are interacting with a computer via a

non-graphical terminal.

B. Many tasks are faster than in a GUI
a. Suppose you wanted to see all the files in a directory that had the word

“lecture” in their name.

12

Why Use a Command Line Interface?

A. In the old days, there was no choice
a. No commercial computer had a GUI until Apple released the Lisa in 1993 (at

$10, 000!!!)
b. There might still be no choice if you are interacting with a computer via a

non-graphical terminal.

B. Many tasks are faster than in a GUI
a. Suppose you wanted to see all the files in a directory that had the word

“lecture” in their name.

C. Most shells let you write scripts (programs) to automate complex tasks
which you could not do with a GUI

13

Three Different “Shells”

There are (and have been) 100’s (maybe thousands) of shells. We will
briefly mention 3 of them still in use:

1. Command Prompt

2. Windows Powershell

3. Bash

14

Command Prompt

All versions of Windows have included a Command Prompt program.
It acts like a MSDOS interface to the computer.

15

Windows Powershell

Windows Powershell was an improved shell for Windows first released in
2006. The latest version came out in 2016.

16

Bash and UNIX

In this class we will be learning a little bit about the Bash shell, which is
currently the most popular shell used on the UNIX family of systems.

This is NOT a UNIX class, and we will not go into UNIX in any depth, but
we will talk about Bash and some common UNIX commands.

17

What is Unix?

• Unix is an operating system
– sits between the hardware and the user/applications

– provides high-level abstractions (e.g., files) and services (e.g., multiprogramming)

• Linux:
– a “Unix-like” operating system

• Whether an OS is Unix or “Unix-like” is mostly about whether the OS has a tiny bit of original
Unix code and/or the activity of lawyers

How Do I Get Access to Bash?

If you’re using a MAC, then you have it. Just open up a terminal window.
That is a Bash shell.

(MAC OS have been based on UNIX since OS X)

19

How Do I Get Access to Bash?

If you have a Windows Machine you have the 3 options given in the
Introduction Lecture.

20

How Do I Get Access to Bash?

If you have a Windows Machine you have the 3 options given in the
Introduction Lecture.

1. For Windows 10, you can use the Windows Subsystem for Linux
a. This might be the future of “running UNIX” on Windows systems
b. This won’t work if you’re using something earlier than Windows 10
c. Also this may take a little more work to configure

21

How Do I Get Access to Bash?

If you have a Windows Machine you have the 3 options given in the
Introduction Lecture.

1. For Windows 10, you can use the Windows Subsystem for Linux
a. This might be the future of “running UNIX” on Windows systems
b. This won’t work if you’re using something earlier than Windows 10
c. This also might take a little more work to configure

2. You can download and run Cygwin
a. This should work on all Windows systems later than XP

22

How Do I Get Access to Bash?

If you have a Windows Machine you have the 3 options given in the
Introduction Lecture.

1. For Windows 10, you can use the Windows Subsystem for Linux
a. This might be the future of “running UNIX” on Windows systems
b. This won’t work if you’re using something earlier than Windows 10
c. This also might take a little more work to configure

2. You can download and run Cygwin
a. This should work on all Windows systems later than XP

3. You can connect to the cs dept computer lectura using a terminal
a. This requires the least resources on your computer
b. You must be connected to the Internet, lectura can get slow, files not local, etc

23

Unix Commands

• We tell the shell what to do on our behalf by typing commands

• Each command performs [variations of] a single task
– “options” can be used to modify what a command does

– different commands can be “glued together” to perform more complex tasks

• Syntax:
command options arguments

• options and/or arguments are not always needed
– they might have defaults or might not be relevant

24

Executing commands

25

• Typing a command name at the bash prompt and pressing the ENTER key causes
the command to be executed.

• The command's output, if any, is displayed on the screen. Examples:

% hostname
lectura.cs.arizona.edu
% whoami
eanson
% true
% date
Sat Aug 15 18:54:39 MST 2015
% ps
 PID TTY TIME CMD
22758 pts/18 00:00:00 bash
30245 pts/18 00:00:00 ps

Command-line arguments

26

• Most commands accept one or more arguments:

% cal 9 2015
 September 2015
Su Mo Tu We Th Fr Sa
 1 2 3 4 5
 6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

% echo Hello, world!
Hello, world!

% factor 223092870
223092870: 2 3 5 7 11 13 17 19 23

Command-line options

27

• Many commands accept options that adjust the behavior of the command.

• Options almost always begin with a '-' (minus sign). Options are usually specified immediately
following the command. For most programs the ordering of options is not significant but that is a
convention, not a rule.

• Examples:

• The command wc -l -w Hello.java has two options and one operand (the file Hello.java).

% date
Thu Jan 13 02:19:20 MST 2005

% date -u
Thu Jan 13 09:19:22 UTC 2005

% wc Hello.java
 5 14 127 Hello.java

% wc -l -w Hello.java
 5 14 Hello.java

Options, continued

28

• Whitespace is often significant in command lines. For example, the
following commands are all invalid: (Try them!)

% date-u

% wc -l-w Hello.java

% wc -- notes Hello.java

Finding out about commands (continued)

Figuring out how to use a command
 man command
“displays the on-line manual pages”

• Provides information about command options, arguments, return
values, bugs, etc.

29

Example: “man man”

30

Example: “man man”

31

we can specify what
kind of information
we want

Example: “man ls”

32

items within square
brackets

 are optional

Finding commands

Figuring out which command to use
 apropos keyword

 man –k keyword
Two ways to do the same thing --- “searches a set of database files containing short descriptions of

system commands for keywords”

• Helpful, but not a panacea:
– depends on appropriate choice of keywords

• may require trial and error

– may return a lot of results to sift through
• pipe through more

– Google might be faster

33

The file system

• Collections of files are
grouped into directories
(folders)

• A directory is itself a file
• file system has a hierarchical

structure (i.e., like a tree)
o the root is referred to as “/”

34

…

ddccbb

/

ffee

Referring to files: Absolute Paths

• The absolute path specifies a file (or
directory) by how you to get to it starting
at the file system root
– The absolute path lists the directories on the

path from the root (“/”), separated by “/”

35

ddccbb

/

ffee

gg

Referring to files: Absolute Paths

36

ddccbb

/

ffee

gg

absolute path: /dd/ee/gg

• The absolute path specifies a file (or
directory) by how you to get to it starting
at the file system root
– The absolute path lists the directories on the

path from the root (“/”), separated by “/”

The current directory

• Invariably you are in a particular
directory in the tree called the
current (working) directory
– commands are executed in this context

• To find out the absolute path of the
current directory, you can use the
command “pwd”

37

…

ddccbb

/

ffee

If ee is the current directory, then pwd should say ?

The current directory

• Invariably you are in a particular
directory in the tree called the
current (working) directory
– commands are executed in this context

• To find out the absolute path of the
current directory, you can use the
command “pwd”

38

…

ddccbb

/

ffee

If ee is the current directory, then pwd should say /dd/ee

Referring to files: Relative Paths

• A relative path specifies how to
get to a file starting from the
current directory
– ‘..’ means “move up one level”

– ‘.’ means current directory

– lists the directories along the
path separated by “/”

39

ddccbb

/

ffee

gg
Example:
ff relative to ee is: ../ff

Referring to files: Relative Paths

40

ddccbb

/

ffee

gg
Example:
cc relative to ee is: ?

• A relative path specifies how to
get to a file starting from the
current directory
– ‘..’ means “move up one level”

– ‘.’ means current directory

– lists the directories along the
path separated by “/”

Referring to files: Relative Paths

41

ddccbb

/

ffee

gg
Example:
cc relative to ee is: ../../cc

• A relative path specifies how to
get to a file starting from the
current directory
– ‘..’ means “move up one level”

– ‘.’ means current directory

– lists the directories along the
path separated by “/”

Home directories

• Each user has a “home directory”
– specified when the account is created

– given in the file /etc/passwd

• When you log in, your current directory is your home directory

• Notational shorthand:
– absolute path to one’s own home directory: ~
– absolute path to some other user joe’s home directory: ~joe

42

Absolute versus relative?

• Absolute paths start with “/” or shorthand symbols like “~”.

• Relative paths are anything else.

43

Unix commands for dealing with files and directories

• Moving (changing current directory) to another directory
– cd targetdir

Examples:

44

cd / move to the root of the file
system

cd ~
(also: just “cd” by itself)

move to one’s home directory

cd /usr/local/src move to /usr/local/src

cd ../.. move up two levels

• Command: ls — lists the contents of a directory
– Examples:

45

ls list the files in the current directory
won’t show files whose names start with ‘.’

ls /usr/bin list the files in the directory /usr/bin

ls -l give a “long format” listing (provides additional
info about files)

ls -a list all files in the current directory, including
those that start with ‘.’

ls -al /usr/local give a “long format” listing of all the files (incl.
those starting with ‘.’) in /usr/local

Seeing What Files are in a Directory

• -t Sort by modification time instead of alphabetically.

• -h Show sizes with human-readable units like K, M, and G.

• -r Reverse the order of the sort.

• -S Sort by file size

• -d By default, when an argument is a directory, ls operates on
the entries contained in that directory. -d says to operate on the
directory itself. Try "ls -l . " and "ls -ld .".

• -R Recursively list all the subdirectories.

• There are many more and you might want to look at the man page
and play with them

Handy options for ls

More commands for dealing with files

• cp file
1
 file

2
• copy file

1
 to file

2

• mv file
1
 file

2
• move file

1
 to file

2

• rm file
• removes the file
• for directories use the option “-r”

• mkdir dir
• make a (sub) directory in the current directory

• vi [file]
• the vi editor

• vimtutor
• a tutorial for using vi

47

•-R Recursively copy an entire directory tree

•-p Preserve file permissions, ownerships, and timestamps

•-i Inquire before overwriting destination file.

Three handy options for cp:

(For many unix commands either “-R” or “-r” will mean do it
recursively down whatever is below the directory)

Some other useful commands

• wc [file]
• word count: counts characters, words, and lines in the input

• (already used as an example)

• cat [file
1
] [file

2
]…

• concatenates files and writes them to standard output

• head –n [file]
• show the first n lines of the input

• tail –n [file]
• show the last n lines of the input

• touch [file
1
] [file

2
]…

• updates the timestamp on files, creating them as needed

49

Getting more information about files

• ls –l : provides additional info about files

50

Getting more information about files…
(1)

51

file namelast-modified timesizegroupowner

no. of hard links

access permissions

file type

– normal file

d directory

l (ell) symbolic link

File access permissions

52

access permissions for owner (u)

access permissions for group (g)

access permissions for others (o) r read

w write

x execute (executable file)
enter (directory)

– no permission

How does this relate to Windows and File Explorer

Directories are organized as trees and the GUI lets you navigate those
trees:

53

How does this relate to Windows and File Explorer

One difference in organization is that Windows has a tree per “drive”
instead of one root.

Notice it kind of looks like “Computer” is the root of the tree, but it
doesn’t show up in the command line.

54

How does this relate to Windows and File Explorer

You can’t change directories above the C: root. You can get to another
drive by using cd <drive letter>:

55

This is in the Windows Powershell

This works in the Powershell by NOT
the Command Prompt.

So What About Cygwin?

Cygwin sets up a root directory at the location where cygwin was
installed. But it mounts the drive root directories under:

/cygdrive

This means if I want to access a file under say
f:\”My Big Docs”\comics\ASM\Spider-Man_CD1
I could find them in cygwin at:

/cydrive/f/”My Big Docs”/comics/ASM/Spider-Man_CD1

56

So What About Cygwin?

Screenshot from previous slide. Using spaces in a directory or file name is
a Windows thing, but should be avoided in UNIX (it is a pain).

57

And What About Linux Subsystem for Windows?

• The location of the root directory is hidden in the Windows File System
– This is because files created by linux programs/commands in this area are not

compatible with Windows programs

• The computer drives are in the directory /mnt
– Files created in directories /mnt/<drive letter> will be compatible (can be

opened by) windows programs.

• A good solution is to make a symbolic link to a directory you want to
work with.

58

Symbolic Links

Motivation:
Often you will want to reach a “distant” directory from your home directory. For example,
in the Linux Subsystem for Windows the files that can be modified by windows programs
are in the directory /mnt/<drive letter>. On my system I want to work with files here:

/mnt/c/Users/Eric/Documents/UofA/cs210/WorkArea

My home directory is /home/eanson

Using the following command will set up a symbolic link to my desired directory
% ln -s /mnt/c/Users/Eric/Documents/cs210/WorkArea/ cs210

59

Symbolic Links

Doing an ls after creating the link I see:
% ls
cs210

This can be treated like a directory. I can usd cd to enter it. However, if I do a
% ls -l
lrwxrwxrwx 1 eanson eanson 48 Aug 22 10:49 cs210 ->
/mnt/c/Users/Eric/Documents/cs210/WorkArea/

That lowercase "L" at the start of the line indicates that cs210 is a symbolic link, often
shortened to "symlink".

The cs210 -> /mnt/c/Users/Eric/Documents/cs210/WorkArea/ indicates that
cs352 references (or "points to") that entry.

60

Symbolic Links

% ls cs210
simple.py

The cs210 symlink creates the illusion that my home directory has an cs210
subdirectory

~/352/a2 % ls /mnt/c/Users/Eric/Documents/cs210/WorkArea
simple.py

61

Symbolic Links

Key point:
Symbolic links are handled by the operating system.

Benefit:
A program doesn't have to do anything special to follow a symlink to its destination.

62

• A symlink is kind of like a "Windows shortcut done right.”

• Ditto for Mac “aliases”

• Macs are UNIX underneath and also have symbolic links

• Unix also has quite a different kind of link (hard) which we won’t say
anything more about (just be aware that you usually want symbolic).

Symbolic Links

• C:>type longFileName.txt
• Tue, Sep 01, 2015 5:50:25 PM

• C:>type lf.txt.lnk
• L▒F▒ ▒[▒▒�$_▒▒▒▒[▒▒]P▒O▒ ▒:i▒+00▒/C:\:1▒Bcygwin$▒▒<A"G▒cygwin41▒<L home
▒▒<▒"G▒home<1! ...

• If a Windows program wants to handle shortcuts, it's got to have special code to do it!

Sidebar: Windows shortcuts

I've made a Windows shortcut named lf.txt
that references longFileName.txt.

I can open either with Explorer but watch what
type, the Windows analog of cat(1), does:

Symbolic Links

• File-related utility programs often have special handling for symbolic
links.

• One example is ls, whose -L option says to "follow" the link.

•% ls -l cs210
•lrwxrwxrwx 1 eanson eanson 48 Aug 22 10:49 cs210
-> /mnt/c/Users/Eric/Documents/cs210/WorkArea/

•~/inClass % ls -lL cs210
•-rwxrwxrwx 1 root root 62 Aug 22 1111 simple.py

65

Input and output

• Data are read from and written to i/o streams

• There are three predefined streams:
stdin : “standard input” – usually, keyboard input

stdout : “standard output” – usually, the screen

stderr : “standard error” – for error messages (usually, the screen)

• Other streams can be created using system calls (e.g., to read or write a
specific file)

66

I/O Redirection

• Default input/output behavior for commands:
– stdin: keyboard; stdout: screen; stderr: screen

• We can change this using I/O redirection:

67

cmd < file redirect cmd’s stdin to read from file

cmd > file redirect cmd’s stdout to file

cmd >> file append cmd’s stdout to file

cmd &> file redirect cmd’s stdout and stderr to file

cmd
1
 | cmd

2
redirect cmd

1
’s stdout to cmd

2
’s stdin

Combining commands

• The output of one command can be fed to another command as input.
– Syntax: command

1
 | command

2

Example:

68

“pipe”

ls lists the files in a directory

more foo shows the file foo one screenful at a time

ls | more lists the files in a directory one screenful at a time

How this works:
• ls writes its output to its stdout
• more’s input stream defaults to its stdin
• the pipe connects ls’s stdout to more’s stdin
• the piped commands run “in parallel”

•A key element of the UNIX philosophy is to use pipelines to combine
programs to solve a problem, rather than writing a new program.

•Problem: How many unique users are on lectura?

v1: Get login names
% who| cut -f1 -d " "
ken
dmr
ken
francis
rob
walt24
dmr
rob
wnj
dmr
ken

v2: Sort login names
% who|cut -f1 -d" "|sort
dmr
dmr
dmr
francis
ken
ken
ken
rob
rob
walt24
wnj

v3: Get unique login names
% who|cut -f1 -d" "|sort|uniq
dmr
francis
ken
rob
walt24
wnj

v4: Get the count
% who|cut -f1 -d" "|sort|uniq|
wc -l
6

stdin and stdout and Python

Side note: You will want to be able to run Python from your command
line. MAC users should already be set.

If you're using Cygwin, you might want to install python3, and likewise if
you're using WSL (Windows Subsystem for Linux). Here is a link that
talks about installing Python (and other things) on WSL

https://blogs.windows.com/buildingapps/2016/07/22/fun-with-the-windo
ws-subsystem-for-linux/

70

https://blogs.windows.com/buildingapps/2016/07/22/fun-with-the-windows-subsystem-for-linux/
https://blogs.windows.com/buildingapps/2016/07/22/fun-with-the-windows-subsystem-for-linux/

stdin and stdout and Python

You have already read from stdin and written to stdout many times. Look
at the very simple program in a file called s1.py

line = input()
print(line)

When run from the command line this program waits for a line to be typed
in, and then prints it out to the terminal. By default input() reads from
stdin and print() outputs to stdout.

71

stdin and stdout and Python

The sys module allows you to be more explicit about the fact you’re
writing to stdin or stdout. This program does the same as the last:

 import sys
line = sys.stdin.readline()
sys.stdout.write(line)

72

stdin and stdout and Python

Putting this in a loop, we can read and write as long as there is input:
% cat partCat.py
import sys
line = sys.stdin.readline()
while line:
 sys.stdout.write(line)
 line = sys.stdin.readline()

This program may seem silly and useless, but it can be somewhat useful
with file redirection:

73

stdin and stdout and Python

We can use it to show the contents of an ascii file:
 $ python3 partCat.py <s1.py
line = input()
print(line)

We see s1.py contains the two lines of our earlier simple program.

74

stdin and stdout and Python

We can also use it as a very simple way to create a text file:

 $ python3 partCat.py >README
I typed this in

$ cat README
I typed this in

We tell Bash that we are finished with input from stdin by typing Ctrl-d

75

python and command line arguments

Our partCat.py program is almost like the UNIX cat command.
If cat is invoked with no arguments it also reads from stdin and

writes to stdout. However, if you can invoke cat with the names of
files it will read from those instead of stdin.

$ cat file1 file2 file3

will print the contents of file1 followed by file2 followed by file3 to stdout

76

python and command line arguments

You can use the sys module to read command line arguments in a python
program. sys contains the list argv which is a list of the arguments. The
first element is the name of the program itself.

77

python and command line arguments

 $ cat argReader.py
import sys
for arg in sys.argv:
 print(arg)

$ python3 argReader.py John Paul George
argReader.py
John
Paul
George

78

A Simple Python Program acting like cat

 $ cat myCat.py
import sys
if len(sys.argv) == 1:
 line = sys.stdin.readline()
 while line:
 sys.stdout.write(line)
 line = sys.stdin.readline()
else:
 for i in range(1, len(sys.argv)):
 f = open(sys.argv[i])
 line = f.readline()
 while line:
 sys.stdout.write(line)
 line = f.readline()
 f.close()

79

Text Editors

•You will want to find a good text editor to create programs and test
files.

–You have done and will do much of this work using an IDE (Integrated
Development Environment) that usually combines a text editor, compiler or
interpreter, I/O display, and some kind of file management.

–But it is often useful or necessary to load up a program file in a text editor.

•You do NOT want to use a word processor for this work (like Word)
–A word processor includes information in the file about formatting

–A text editor just creates the ASCII text you write.

80

Text Editors

•You will probably want to learn a little bit about using a nongraphical
editor that runs on a terminal. Three common ones in UNIX are:

•emacs

•vim (vi iMproved)

•nano (pico clone)

•None are installed by default in Cygwin. ☹ But all are available ☺
81

Text Editors

•You may also want to learn and use an editor that uses windows and a
mouse.

–Notepad comes installed on Windows, but it is not good.

–UNIX and Windows (and MACs?) use different ASCII characters to mark the end
of a line. A good editor for programmers will let you convert these.

–Some editors do auto indent (can be a useful or a pain), color coding, and/or
bracket matching, etc.

•A FEW of the commonly used text editors are listed on the next slide

82

Text Editors

•Notepad++ WindowsFree

•Sublime Text All $70 (but unlimited free trial)

•BBEdit MAC Free limited version
(TextWrangler)

•Brackets All Free

•jEdit All Free

•Atom All Free

There are MANY more. Find one you like and learn to use it.

You may want to visit
https://en.wikipedia.org/wiki/Comparison_of_text_editors

83

https://en.wikipedia.org/wiki/Comparison_of_text_editors

The diff command

• The diff command looks for differences between files

• You will probably want to know this command since it will be used in
grading.

• It also can be helpful when you have two version of a program and want
to see how they differ.

84

Back to the shell – command line editing and shortcuts

85

bash supports simple command line recall and editing with the "arrow keys" but many control-key and
escape sequences have meaning too. Here are a few:

^A/^E Go to start/end of line.
^W Erase the last "word".
^U Erase whole line. (^C works, too.)
^R Do incremental search through previous commands.
ESC-f/b Go forwards/backwards a word. (Two keystrokes: ESC, then f)
ESC-. Insert last word on from last command line. (Very handy!)

bash also does command and filename completion with TAB:
Hit TAB to complete to longest unique string.
If a "beep", hit TAB a second time to see alternatives.

example 1: Try typing “xc” followed by a TAB (or two)
example 2: Try typing “ls “ followed by a TAB (or two) (in a directory with some files!)

Shell metacharacters

• Many non-alphanumeric characters have special meaning to shells.

• Characters that have special meaning are often called metacharacters. Here are the
bash metacharacters:

• ~ ` ! # $ & * () \ | { } [] ; ' " < > ?

86

Shell metacharacters

• Many non-alphanumeric characters have special meaning to shells.

• Characters that have special meaning are often called metacharacters. Here are the
bash metacharacters:

• ~ ` ! # $ & * () \ | { } [] ; ' " < > ?

• If an argument has metacharacters or white space we suppress their special meaning
by enclosing the argument in single quotes.
– Double quotes suppresses most of the special meanings, but not all

87

Shell metacharacters

• Many non-alphanumeric characters have special meaning to shells.

• Characters that have special meaning are often called metacharacters. Here are the
bash metacharacters:

• ~ ` ! # $ & * () \ | { } [] ; ' " < > ?

• If an argument has metacharacters or white space we suppress their special meaning
by enclosing the argument in quotes.
– Double quotes suppresses most of the special meanings, but not all

• An alternative is to use a backslash to "escape" each metacharacter.

88

Examples of escaping

89

Examples of escaping

90

This is a fun example,
but filenames with
spaces in them should
be AVOIDED if possible.

One has to know how
to deal with them, but
using them in unix
leads to grief.

•Some metacharacters act as Wildcards allow the user to specify
files and directories using text patterns in bash commands.

•The simplest wildcard metacharacter is ?, a question mark. A
question mark matches any one character.

Wildcards

Observe:
% ls
a out x xy z

% ls ?
a x z

% ls ???
out

Wildcards

•echo is also good for exploring wildcards, and uses less vertical space
on slides:
% ls
a out x xy z

% echo ?
a x z

% echo ??? ??
out xy

Wildcards, continued

% ls
a out x xy z

•Predict the output:

% echo ? ? ?
a x z a x z a x z

% echo x? ?y
xy xy

% echo ? ?? x ??? ????
a x z xy x out ????

Wildcards, continued

If there's no match, like with ????, the
argument is passed through as-is.

•A more powerful wildcard is * (asterisk). It matches any sequence
of characters, including an empty sequence.

– * Matches every name

– *.java Matches every name that ends with .java

– *x* Matches every name that contains an x
• Examples: x, ax, axe, xxe, xoxox

The * wildcard

•What would be matched by the following?
*x*y

–Names that contain an x and end with y.

.
–Names that contain at least one dot.

..*
–Names that contain at least two dots.

a*e*i*o*u
–Names that start with an a, end with a u, and have e, i, o, in
sequence in the middle.

The * wildcard

•Wildcards can be combined. Examples:

??* Matches names that are two or more characters long

 *.? Matches names whose next to last character is a dot

What would be matched by the following?

?x?*
Names that are at least three characters long and have an x as their
second character.

-?-
Names that contain two dashes separated by a single character.

Combining wildcards

•The character set wildcard specifies that a single character must match one of a set.
•% ls
•a b e n out x xy z

•% echo [m-z] # one-character names in the range m-z
•n x z

•Another:
•% ls
•Makefile fmt.c utils.c utils.h

•% echo *.[chy]
•fmt.c utils.c utils.h

The character set wildcard

•More:
•[A-Z]*.[0-9]

•Matches names that start with a capital letter and end with a dot and a digit.

•*.[!0-9] (Leading ! complements the set.)

•Matches names that end with a dot and a non-digit character.
•Equivalent: *.[^0-9]

•[Tt]ext
•Matches Text and text.

The character set wildcard

•The bash man page uses the term "pathname expansion" for what I've called
wildcard expansion.

•Another term that's used is "globbing". Try searching for "glob" on the bash
man page.

•Wildcards don't match hidden files unless the pattern starts with a dot, like
.*rc.

•There are other wildcard specifiers but ?, *, and [...] are the most commonly
used.

Lots more with wildcards

Pattern matching: grep

101

Pattern matching: grep…
(1)

102

print the current directory

show the contents of this file

print out the lines that match
“nation”

Pattern matching: grep…
(2)

103

“print all lines in the input
that match the string er”

Pattern matching: grep…
(3)

104

“print all lines in the input that
match the string er or re

print all lines in the input that
begin with the string er or re

Setting defaults for your commands

•Create an “alias” for your command
–syntax different for different shells

–bash: alias aliasName=“cmdName”

e.g.: alias rm=“rm –i”

However the alias will only last during this session of your shell

105

•Good news:
•The behavior of bash can be customized by putting commands in the initialization files that

bash reads.

•Bad news:
•Several files and rules are involved.

•The initialization files present and their contents vary from system to system and user to user.

•We'll first talk about the mechanics of bash's initialization files and then look at types of
things we might add to initialization files.

•Anything that's valid at the bash prompt can appear in an initialization file and vice-versa. In
other words, initialization files simply contain a sequence of bash commands.

Good news and bad news

•If bash is specified as your shell in /etc/passwd and you
login, the instance of bash that's started is said to be a login
shell.

•When bash is started as a login shell it first reads
/etc/profile. It then looks for three files in turn:
~/.bash_profile, ~/.bash_login, and
~/.profile. Upon finding one, it executes the commands in
that file and doesn't look any further.

The rules (simplified)

•Sometimes you'll want to start another instance of bash from the bash prompt:

•% bash
•%

•Such an instance of bash is an "interactive non-login shell". It reads
/etc/bash.bashrc and ~/.bashrc.

•Common practice:

•(1) ~/.profile loads ~/.bashrc.

•(2) All customizations are in ~/.bashrc.

The rules (simplified)

• bash supports variables that hold values of various types, including integers and arrays but we'll focus on
string-valued variables, which are the default.

• bash variables have four common uses:
• Specification of various bash behaviors
• Access to information maintained by bash
• Command line convenience variables
• Use as a conventional variable for programming

• The variable PS1 falls in the first category. Its value specifies the primary bash prompt. You may have
noticed that the prompt looks different in the various shells I've shown, that's because this variable is set
different.

• If we assign a value to PS1, the next prompt reflects it:
• ~ % PS1="What now, master? "
• What now, master? PS1="C:>"
• C:>

Shell variables

•bash makes a variety of current shell-centric information available as
variables. Two simple ones are PWD and OLDPWD.

•Variables are accessed by prefixing their name with a dollar sign:
•% echo $PWD
•/home/whm/352

•Practical example with OLDPWD:
•% pwd
•~/src/ruby/examples
•% cd ~/work
•% cp $OLDPWD/fbscores.rb .

Variables that make information available

•You can also create your own vaiables.

% net="/cs/www/classes"

% echo $net

/cs/www/classes

% ls $net/cs210

fall17

Command Line Variables

•Your PATH variable specifies the directories that are to be searched
when you run a command.

% echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/b
in:/sbin:/bin:/usr/games:/usr/local/rvm/bin:/ho
me/stdntwm/bin

% echo $PATH | tr : " " | wc -w
9

The search path for commands (PATH)

•When you type in a command each directory in the PATH is searched
to see if an executable file of that name is there.

•The directories are searched in order from the
first to the last.

•The command which will tell you where the
command was first found (if it was)

The search path for commands (PATH)

•Here's a possible line from ~/.bashrc. What's it doing?

PATH=$PATH:~/bin
–It's appendeing":~/bin" to whatever PATH already is.

•When bash starts up, PATH gets set to a system-specific value.

•The net effect of PATH=$PATH:~/bin is "If you don't find a
command in the standard directories on this system, look in my bin."

Setting the path in ~/.bashrc.

• Some programmers have "dot" in their search path (PATH=...:.) so that a script x in the current directory
can be run with "x" instead of "./x".

• "Dot in the path" can be convenient but imagine...

• Instead of typing ls you accidentally typed sl.

• You happened to be in a "world-writable" directory like /tmp.

• A malicious student has put this in /tmp/sl:

• chmod o+rwx ~
• ...or maybe this:

• rm -rf ~/ & # "&" runs a command "in the background"

• In the first case, they've gained access to your home directory!

• In the second case, deletion of all your CS account files is in progress!

Dot danger?

•Should you include dot in your path?

•Like with any risk, you need to weigh risk vs. convenience.

•Pro: When developing scripts and programs, not having to type ./x is
convenient.

–Your account on lectura has dot in the path by default
–I have always have had dot in my path and never had a problem
–On your own machine, the danger seems nearly nonexistent

•Con: People with a lot of experience think the danger is real and many
recommend not including it.

Dot danger, continued

