
GUI Output

Adapted from slides by Michelle Strout with some slides
from Rick Mercer

CSc 210

2

GUI (Graphical User Interface)

• We all use GUI’s every day

• Text interfaces great for testing and debugging

• Infants know how to use GUIs on phones

• What GUI features ...

• Do you like most?

• Have Opportunities For Improvement (OFI)?

3

AWT then Swing

• Java's first GUI support (1995) was called the
Abstract Window Toolkit (AWT)

• AWT had some limitations, and some particular

problems with how it was implemented on
some platforms

• AWT was replaced by a new library called

Swing

• more versatile, more robust, and more flexible

• Swing was designed primarily for use in

desktop applications

• Could do some web-based things with it though
Applets

4

GUI I/O Implemented with Libraries

• Some popular GUI Libraries and App
Frameworks

• Python has tKinter

• Java has Swing

• C++ has QT

• Unity

• .NET on Microsoft Windows Platforms

• Java FX

• Improving on Swing

• Will be used in 335

5

Today’s Goals

• Draw some shapes with JavaFX

• Basics for making a window

• Coordinate system used in JavaFX

• Interface for drawing basic shapes

6

Today we will learn to draw

7

JavaFX Layout

A JavaFX Application
has 3 major
components:

1. Stage
2. Scene
3. Nodes

8

Stage

• A stage (window) contains the JavaFX
objects

• The primary stage is created by the
platform

• There are five types of stages available

• You must call the show() method to
display the contents of the stage.

9

Scene

• A scene represents the physical
contents of the application.

• Like a play, you can use different
scenes to show different displays

• When you create a scene you can opt
for the display size and give it's root
node.

10

Scene Graph

• A Scene Graph (tree) represents the
objects in a scene. It consists of nodes
(Node class)

• There are three types of nodes:

1. Root Node - the root of the tree

2. Parent Node

3. Leaf Node

11

Parent Node

• The root node as well as all parent
nodes must be a child of the abstract
class Parent. It's children are:

• Group - a collective node that

contains a list of children nodes

• Region - the base class of all JavaFX

Node based UI controls

• WebView - manages the web engine

12

Basics for making a window (slide 1)

• Classes you will need to import

• Inherit from Application class and call launch()

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.layout.BorderPane;

public class Drawing extends Application {

public static void main(String[] args) {

launch(args);

}

...

}

13

Basics for making a window (slide 2)

• launch() (or something in its call tree) calls
start() and passes in a Stage

• Stage will contain Scene will contain RootPane
public class Drawing extends Application {

public static void main(String[] args) {

launch(args);

}

@Override public void start(Stage stage) {

// create the root pane and then the scene

BorderPane root_pane = new BorderPane();

Scene scene = new Scene(root_pane, 400, 300);

//===== Drawing stuff goes here =====

//===================================

// Set the scene on the stage and show the stage.

stage.setScene(scene);

stage.show();

}

}

14

Drawing on a Canvas

• Stage will contain Scene will contain RootPane

• Will contain a Canvas

import javafx.scene.canvas.Canvas;

import javafx.scene.canvas.GraphicsContext;

...

//===== Drawing stuff goes here =====

// Construct a Canvas object and put it in

// the root pane.

Canvas canvas = new Canvas(300, 200);

root_pane.getChildren().add(canvas);

// Drawing on the canvas, getting a graphics context

// and calling drawing methods on it.

GraphicsContext gc = canvas.getGraphicsContext2D();

gc.fillText("Text in a Canvas at 30,40", 30, 40);

gc.fillText("Text in a Canvas at 30,50", 30, 50);

//===================================

15

JavaFX Coordinate System

• A simple two-dimensional coordinate system
exists for each graphics context, or drawing
surface

• Each point on the coordinate system represents a
pixel

• Top left corner of the area is coordinate <0, 0>
// This string will be drawn 20 pixels right,

// 40 pixels down as the lower left corner.

// All other shapes point is the upper left

gc.fillText("I'm in a Canvas", 20, 40);

• A drawing surface has a width and height

• Anything drawn outside of that area is not visible

16

The Coordinate System

<0, 0>

<x, y>

<width-1, height-1>

x

y

X

Y

17

Draw Common Shapes

• What does this do?

gc.strokeOval(20, 20, 40, 40);

A couple method headings

• Lines are drawn with stroke (lines) and fill (solid)

• Oracle has an API online for JavaFX just like for
Java: https://docs.oracle.com/javase/8/javafx/api/toc.htm

public void fillOval(double x, double y, double w, double h)

Fills an oval using the current fill paint.

Parameters:
x - the X coordinate of the upper left bound of the oval.

y - the Y coordinate of the upper left bound of the oval.

w - the width at the center of the oval.

h - the height at the center of the oval.

https://docs.oracle.com/javase/8/javafx/api/toc.htm

Color

• The Color class is used to define and
manage the color in which shapes are
drawn

• Can set the color for stroke and fill with
setFill(Color) and setStroke(Color)

• javafx.scene.paint.Color; has many, many
colors from Color.ALICEBLUE to
Color.YELLOWGREEN

Color

• Colors can also be defined with an RGB
value, to set the relative contribution of
the primary colors red, green, blue

Color color = Color.rgb(80, 210, 110);

gc.setFill(color);

gc.setStroke(color);

gc.setLineWidth(4); // width now 4 pixels

gc.strokeOval(20, 20, 40, 40);

gc.fillOval(70, 20, 40, 40);

Clearing GraphicsContext

public void clearRect(double x, double y, double w, double h)

Clears a portion of the canvas with a transparent color value.

Parameters:

• x - X position of the upper left corner of the rectangle.

• y - Y position of the upper left corner of the rectangle.

• w - width of the rectangle.

• h - height of the rectangle.

Clearing GraphicsContext

Example Code:

Canvas canvas = new Canvas(300, 300);

GraphicsContext gc = canvas.getGraphicsContext2D();

gc.clearRect(0,0,canvas.getWidth(), canvas.getHeight())

Interacting with Command Line

• Suppose we want to type our drawing
commands through the keyboard.

• Can we just add input commands to our
start method?

• No. JavaFX will not display the stage until
the start method returns. 

• To actually take commands we need
something running while JavaFX displays
the stage.

23

Threads

• A program is a set of instructions.

• A process is a running program, it has
instructions, but also data values, and
control location (what in the program is
currently being executed)

• Multi-processing is when more than
one process is being executed at once.

24

Threads

• Multi-threading is when more than one
control location is being executed in the
same process.

• A thread is a sequential flow of control
through a program

25

Threads

• One way to launch a thread in Java is to
create a class that extends Thread.

• This class should include a public void
method run(). This is the method that will
run when the thread is started.

26

public class Worker extends Thread {

@Override public void run() {

Threads

• You can then instantiate an object of the
created class.

• Calling the start() method (a method of the
Thread class) will create a new thread and
start it executing in the classes run() method.

27

Worker w1 = new Worker(gc);

w1.start(); //starts thread

