
Maps:

• We know an array allows us to use and index to access a value in constant time.

• However, arrays don’t do us any good if we don’t have index.

• A map lets us take a key and access a value.

• The key doesn't have to be an index. It could be a string as in the happiness program.

• How long does it take to look up a value given a key?

• It depends on how we implement the map.

• Suppose we implement the map with a linked list.

• Can we do this?

• Yes

• How long does it take to get the value given a key?

• It is an O(n) operation where n is the number of items stored

1

Maps:

• Now suppose we implement the map with a Binary Search Tree.

• How long does it take to look up a value?

• It is O(log n) if the tree is what?

• balanced

• Binary Search Tress are actually quite fast but

• It requires some work to keep them balanced

• O(log n) is fast, but not as fast as O(1) (constant time)

2

Hash Tables:

• A hash table or hash map uses the keys to sort the values into buckets.

• For example, we might sort your test papers into separate piles based on the first letter
of your last name.

• Then to get your test paper I could pick up the correct pile (constant time) and search
through only a subset of the class.

• How much time do you expect it to take? (169 students)

• 169/26 = 6.5 (expect ½ piles to have 6 and ½ to have 7)

• Actually, the time would vary depending on the letter

3

A 5
B 8
C 7
D 8
E 1
F 5
G 12
H 8
I 1
J 2
K 5

L 19
M 11
N 5
O 2
P 10
Q 1
R 12
S 11
T 5
U 1
V 6

W 11
X 2
Y 4
Z 7 These are the actual numbers of students

whose names start with these letters.

Notice that they are not evenly

distributed. The E pile only contains 1, but

the L pile has 19.

Hash Tables:

• A hash function is a function that takes a key and returns the index of a bucket.

• In the previous example the function takes the first letter of the name and returns a

value between 0 and 25.

• Ideally we would like the hash function to spread the keys out evenly over the

buckets.

4

Hash Tables:

• Let's suppose our keys are strings, what are some possible hash functions?

• Length of string.

• This will have a lot of clustering. All strings of the same length map to the same index.

• First letter of string. - we've already looked at this

• Sum of Unicode values of the characters.

• This is better than the other two. Sill, all anagrams map to the same index.

• Note also that this function can give us very large numbers. To convert this number to a

valid index, we can mod it by the number of buckets.

• We could multiplying the char value times it's position.

• In general a good hash function tries to use all the information in the key.

5

Hash Tables:

• A hash map has an array of buckets.

• Each bucket is a simple structure usually a linked list.

• Even the best hash map could sometimes map different keys to the same index, so you

need to represent the bucket with something like a linked list that can support multiple

entries.

• A hash map also has a hash function which maps a key to an index.

6

Hash Tables:

• The functions of a Hash Map work like:

hashPut (key, value)

i = hashMap(key)

add node(key,value) to linked list to bucket i

hashGet (key)

i = hashMap(key)

for each node n in linked list of bucket i

if n.key = key

return value

return value not found

7

Hash Tables:

• How many buckets should you have?

• Ideally we would like a Hash Map to work in constant time, so we'd like one bucket

per item stored.

• Notice that if each buck has only one item in it, then the search time will be constant.

• Some implementations of hash maps resize the structure automatically when too

many items are stored.

• How could we implement that?

8

