
Java Basics

What's going on underneath

Computers are digital, which means everything inside them is

stored as 1's or 0's. These bits are organized in groups of 8

which are called bytes. These bytes are further grouped into

words (the number of bytes per word depends on the

hardware).

What's going on underneath

At the "heart" of the computer is the CPU (Central Processing

Unit). Each CPU has a language it understands. This language

is all in 1's and 0's and is not at all like Python or Java or C,

but, if we want to write a program that runs, we have to have a

way to create these "machine programs" or executables.

• Some programs are written in what is called "Assembly" language, which is

ALMOST machine code.

• For instance there is a command in 6502 called LDA (Load Accumulator). The

machine sees this as 1010 0101.

• An 6502 assembly language programmer would type in LDA for this command into

a text file. In that file, the bit pattern is 0100 1100 0100 0100 0100 0001 (The

ASCII codes for L, D, and A)

• The computer would not know how to run this! (or at least it would not run as LDA)

What our keyboards would look

like if we only programmed in

machine code.

• An Assembler (a machine language program) reads the programmers file

and writes a new file in which it changes the

0100 1100 0100 0100 0100 0001 (LDA as a human readable ASCII)

to

1010 0101 (the machine code for the LDA instruction)

• You will learn much more and write lots of assembly language code in

CSc 252!

• So how does python work?

• When you write a python program like myCat.py, you are creating a text file of

human readable python commands.

• This is not an executable and can not be run by your computer directly

Interpreted Languages

• When you write a python program like myCat.py, you are creating a text file of

human readable python commands.

• This is not an executable and can not be run by your computer directly

• Instead you run the python interpreter (executable program) which reads your

human readable text file, interprets the instructions, and carries them out

Interpreted Languages

myProg.py
python

interpreter
machine

• When you write a C program like revSum.c, you are also creating a text file of

human readable C statements.

• Just like the python example, the computer cannot run your C program directly.

Compiled Languages

• When you write a C program like revSum.c, you are also creating a text file of

human readable C statements.

• Just like the python example, the computer cannot run your C program directly.

• In this case we run a C compiler (executable program) which reads the program file

(source code) and creates a machine executable file.

Compiled Languages

revSum.c
C

compiler
revSum

(executable)

This executable can be run directly by the computer.

Advantages of Interpreted Languages:

1. Often easier to write

a. Can test on the fly

b. Don't need to wait for compiling.

2. Easy to incorporate other peoples code

3. Portable

a. The python interpreter needs to be ported, but the python program needs no

changes.

Advantages of Compiled Languages
1. They are almost always faster when running.

Q. So is Java Interpreted or Compiled?

A. Kind of both.

• A java program is written in human readable form in a java file

(myProg.java).

• The java compiler (executable) reads that file and creates another file in

java byte code (myProg.class).

• This program is not executable directly by your computer, instead it is run

by the Java Virtual Machine (and executable program)

Here's what running a java program looks like:

Java

myProg.class

java

virtual

machine

machine

myProg.java
javac

(java compiler)
myProg.class

• Caveat: All this said, compiled vs interpreted is really a

function of language implementation and not the

language itself.

• It is possible to write a compiler for an "interpreted

language" or a interpreter for a "compiled language".

• Still, the language is usually implemented and I think

(arguably) designed to work one way of the other.

Why Learn Java?

For a one it is widely used.

What languages are most popular today?
The TIOBE index currently has this top eight: [Aug 2017]

1. Java
2. C
3. C++
4. C#
5. Python
6. Visual Basic .NET
7. PHP
8. JavaScript

There are many such lists and they all use different criteria, but everyone I looked at
showed Java in the top 3.

Why Learn Java?

Another reason to learn Java is that it is very different than Python.

It is strictly typed (we'll talk about what this means later)

It is much more commonly used (some would say suited) for large

projects.

It is a good representative language. Fairly close to C#.

There are 100s (maybe 1000s) of programming languages. Many more

will be written before you stop working with computers. A computer

scientist must be able to learn to use new languages.

Java was released in 1996 and it's designers said it was designed to be:

1. Simple

2. Object-Oriented

3. Distributed

4. Robust

5. Secure

6. Architecture-Neutral

7. Portable

8. Interpreted

9. High-Performance

10.Multi-threaded

11.Dynamic

Hello World

The simplest possible "Hello, World!" in Python:

print("Hello, World!")

The simplest possible "Hello, World!" in Java:

public class Hello {

public static void main(String args[]) {

System.out.println("Hello, World!");

}

}

Note the java program must be saved in a file named Hello.java.

We can run the Python version like this:
% python3 hello.py

Hello, World!

The Java version requires two steps:
% javac Hello.java ("compiles" Hello.java,

creating Hello.class)

% java Hello (runs Hello.class)

Hello, World!

If Hello.java is changed, the two steps must be repeated.

If we just want to run the Java version again, we only need to do

"java Hello".

Hello World

The Python program is much shorter because the python interpreter starts

interpreting the commands at the top of the file.

What would happen if defined a main function in the python program instead

def main():

print("Hello, World!")

What would this program output if run?

Hello World

The Python program is much shorter because the python interpreter starts

interpreting the commands at the top of the file.

What would happen if defined a main function in the python program instead

def main():

print("Hello, World!")

What would this program output if run?

Nothing since main is defined, but not called. Need to add:

def main():

print("Hello, World!")

main()

• In Java all code (aside from “imports”) must appear in a class

definition

• The file name for a java application must be the name of the class

with the extension .java.

Thus we start with the line:

public class Hello {

• In python execution begins at the top of the file

• In Java, execution begins in the method named main defined

for the indicated class

Therefore we have to have:

public static void main(String args) {

• The main method must always be public static void

• We’ll talk about the public and static labels later, the void label means

main does not return a value.

Python requires that source code be indented to reflect various structural relationships.

• Java has no indentation rules whatsoever. It uses curly brackets to define structure.

• The full contents of Hello.java could be squashed onto one line.

• This is valid, too:

public
class Hello {

public static void main(
String args[]

) { System.out.
println("Hello, World!"
);}
}

But HORRIBLE style, don’t ever do this.

Indentation doesn't matter in Java

Hello World (recap)

public class Hello {

public static void main(String args[]) {

System.out.println("Hello, World!");

}

}

1. All code wrapped in a class

2. Execution starts in the method named main

3. Boundaries of the class and method are determined by { }

4. The file this lives in should be named Hello.java

Identifiers:

• Symbolic names.

• Used to name classes, variables, methods.

• From the example on the previous slide: Hello and main are identifiers.

• Identifier Rules:

• Must start with: a letter, dollar sign, or underscore

• Followed by more letters, _, $, and/or numbers.
baseball Football Stalag17

• No spaces, no hyphens, no other punctuation.

• Can be arbitrarily long.
sillyLongTakesForeverToTypeIdentifierForThisExample

• Case sensitive!

• The identifiers theRailRoad and therailroad are different.

• Can not be keywords or reserved words.

25

Statement:

• Performs one action. Examples:

• Prints a message:

• System.out.println("Hello out there!");

• Computes a sum:

• result = x + y;

• Terminates with a semicolon.

• Can span multiple lines.

• result = xray + yoke + 17 +

• zebra - 42 +

• 63 + alpha;

• Style point: Use indentation to indicate the lines go together.

26

Block:
• Contains 0, 1, 2, or more statements.

• Begins and ends with curly braces: { }

• Can be used anywhere a statement is allowed.

• Example:

System.out.println("What's up Doc?");

{

System.out.println("This print statement");

System.out.println("and this one");

System.out.println("plus this one are in a Block.");

}

27

Block:

• The main method contains a block of code between its { and }:

public static void main(String args[])

{

System.out.println("This is inside main's block of code");

} // main method ends

28

White Space:

• Space, tab, newline are white space characters.

• At least one white space character is required between a keyword and an identifier.

• Example:

int myNumber; // correct, white space between int and myNumber

intmyNumber; // error.

int myNumber, myOtherNumber, myLastNumber; // correct

• Any amount of white space characters are permitted between identifiers, keywords,

operators, and literals.

29

White Space:

Style point: Readability:

• White space makes code easier to read.

• Put white space around operators and operands and identifiers.

result = lima + juliet + oscar; // this one is easier to read!

result=lima+juliet+oscar; // harder to read

• Put blank lines between logical sections of the program.

30

Comments:

Two types of comments.

• Block comment: The comment can span multiple lines.

• Begins with /*

• Ends with */

System.out.println("message here"); /* This is a comment

that continues here

and finally ends here */

• Line comment: The comment is no longer than one line.

• Begins with //

• Ends at the end of the line.

System.out.println("message here"); // A line comment

31

Comments (continued):

• Style point: Include a block comment at the beginning of each Java source file.

• Identify yourself as the author of the program and your section letter and Section

Leader’s name.

• Briefly describe what the program does.

/* Your first and last name here

* Your section leader's name here

* Section: Your section letter here

*

* Short description of what your program does.

* Description can occupy more than one line, as needed.

*/

32

Python is a dynamically typed language.

A fundamental characteristic of a dynamically typed language is that the type of the

value held by a variable can differ over time.

A simple example:
x = 7

x = "seven"

x = 7.0

In the code below, what types of values does elem hold over time?
for elem in ["one", 2, [3.0, 4]]:

print(type(elem))

Python is dynamically typed

Java is a statically typed language. Two rules:

• Every variable must have a declaration that specifies its type.

• A variable can only hold values of its declared type.

Imagine the following Java code inside a main method:

int i; // Declares a variable i that can hold only ints.

// We can also view it as a request for help:

// "Stop me if I try to put something else in i!"

i = 5; // ok

i = "x"; // error

String s; // s is to hold only Strings. If I foul up, stop me!

s = "x"; // ok

s = i; // error

Java is statically typed

Two costs of static typing:

• Can make functions less flexible

• Often involves complex rules

Code written in a statically typed language has an important characteristic:

• The type of the value produced by every expression can be determined without

executing any code.

That characteristic provides some valuable benefits:

• Potential for far higher performance

• Detection of certain types of errors before code is executed

• Can make code easier to read and modify

• Increases ability of IDEs to help when editing code

Costs and benefits

One performance cost with a dynamically typed language is execution-time type

checking.

Evaluating the expression x + y can involve decision-making like this:

if both x and y are integers

add them

else if both x and y are floats

add them

else if one is a float and the other an integer

convert the integer to a float and add them

else if both x and y are strings

concatenate them

...

If that x + y is in a loop, that decision making is done every time around.

Note: The above "implementation" can be improved upon in many ways.

Java has eight primitive types:

• Five are integral types: byte, short, int, long, and

char

• Two are floating-point types: float and double

• There is a type for boolean values: boolean

Primitive types

Data Types

Integer Types:

38

Type Size in Bytes Minimum Value Maximum Value

byte 1 -128 127

short 2 -32,768 32,767

int 4 -2,147,483,648 2,147,483,647

long 8 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

• Examples:

int testGrade;

int numPlayers, highScore, diceRoll;

short xCoordinate, yCoordinate;

byte ageInYears;

long worldPopulation;

Data Types (continued):

Floating-Point Data Types:

39

• Use double when you need:

• Larger range of values than provided by float.

• Greater precision than provided by float.

• Examples:

float courseAverage;

float battingAverage, sluggingPercentage;

double distanceToAndromeda;

Type Size in Bytes
Minimum Positive

Nonzero Value
Maximum Value

float 4 1.4E-45 3.4028235E+38

double 8 4.9E-324 1.7976931348623157E+308

“Minimum Positive Nonzero Value”

How close can the float or double

come to zero without changing to zero.

3.40 x 10+38

Data Types (continued):

Character Data Type:

40

• Contains standard Latin alphabet, digits, punctuation.

• Supports many character sets (i.e., Greek, Cyrillic, Hebrew).

• Known as Unicode.

• Examples:

char myInitial;

char firstLetter, nextLetter, lastLetter;

char newline, tab, quoteMark;

Type Size in Bytes Minimum Value Maximum Value

char 2 character encoded as 0 character encoded as 65535

Data Types (continued):

Boolean Data Type:

• Only two values possible:

• true

• false

• Used for decision making or as “flag” variables.

• Examples:

boolean done;

boolean programStarted, programFinished;

boolean reachedLastLevel;

boolean hasWizardPowers;

41

Variables

Declaring Variables:

• Variables hold one value at a time.

• That one value can change during execution.

• Syntax:

dataType identifier;

• Or

dataType identifier, anotherIdentifier, andAnother, …;

42

Variables

• Style point: Naming convention for variable names:

• First letter is lowercase.

• Embedded words begin with uppercase letter; called “camel casing”.

• Examples:

int xray, limeJuice, oneMonth;

float myBankBalance, profitAndLoss;

43

• A convention is not required by the language (the Java

compiler will not complain).

• Conventions generally exist to make code more readable and

understandable.

• You are expected to follow these conventions in the code you

develop in this (and other) courses.

Variables (continued):

Declaring Variables:

• Variable names should be meaningful:

• The name should tell us how the program will use the value.

• Makes the logic of the program clearer.

• How long should names be?

• Abbreviations can be confusing.

• Long names can also make the code hard to read.

• Avoid names similar to Java keywords.

• Even though you CAN use '$' in variable names, you should not use it as it

is intended for names that are generated by the compiler or tools

44

Initializing Variables

• A declaration can include initialization:

int a = 10, b, c = 20;

• An initializing expression can use previously initialized variables:

int d = a + c * 5;

• Note: Initializations are not considered to be assignments.

• It is an error to use an uninitialized variable.

Variables

Declare a Variable exactly Once per Block:

double myTwoCents;

double myTwoCents = 0.02;

• Generates this compile error:

myTwoCents is already defined in main(java.lang.String[])

Once a variable is declared, its data type cannot be changed:

double cashInMyPocket = 5.0;

int cashInMyPocket;

• Generates this compile error:

cashInMyPocket is already defined in main(java.lang.String[])

46

Literals

• Literals for integer types.

• int, short, byte.

• Optional initial sign (+ or -) followed by digits 0-9 in any combination.

• long.

• Optional initial sign (+ or -) followed by digits 0-9 in any combination,

terminated with L or l.

• Style point: Use the capital L, not the lowercase l. The lowercase l (ell) can

be confused with 1 (one).

• Note: there are no commas or periods in an integer literal.

• However, you can use underscores.

1_000_000 is legal

47

Literals

• Examples:

short myAge = 62;

int numSongs = +4406, nitrogenLiquid = -210;

//The next one will give a compile time error

long ageOfUniverse = 15000000000; //literal is treated as an int

// The following is the fix

long ageOfUniverse = 15000000000L;

// This next one will generate a compile error:

short smallValue = 103467; // value too big to go into a short

48

Literals

• Literals for floating-point types.

• float.

• Optional initial sign (+ or -) followed by a floating-point number in fixed or

scientific format, terminated by an F or f.

• double.

• Optional initial sign (+ or -) followed by a floating-point number in fixed or

scientific format.

49

Literals

• Examples:

float pi = 3.1415926536F; // fixed format

float small = 0.00000000456f; // fixed format

double lightSpeed = 2.99792E+8; // scientific format

float tinyValue = 1.837E-12F; // value close to zero

double negValue = -1.837E-12; // negative value close to zero

50

Literals

• Literals for char type.

• char.

• Any printable character enclosed in single quotes: 'Q'

• A decimal value in the range 0 - 65535.

• Certain escape sequences:

• '\t' represents a tab, '\n' represents a newline.

• Examples:

char myInitial = 'P';

char aTab = '\t', percent = '%';

char alsoPercent = 37;

51

Literals

• Literals for boolean type.

• boolean.

• Use the value true or false.

• Examples:

boolean afternoon = true;

boolean doneYet = false

52

Assigning Values of Other Variables:

• Syntax:

variable2 = variable1;

• Rules:

• variable1 needs to be defined earlier in the code.

• variable1 and variable2 need to be compatible data types.

• Compatible data types: the precision of variable1 must be lower than or equal

to that of variable2.

53

Assigning Values of Other Variables

• Any type in the right column can be assigned to the type in the left column:

54

Data Type Compatible Data Types

byte byte

short byte, short

int byte, short, int, char

long byte, short, int, long, char

float float, byte, short, int, long, char

double float, double, byte, short, int, long, char

boolean boolean

char char

• Hints:

• Small items fit into larger items.

• Integers fit into floats or doubles.

Assigning Values of Other Variables

• Example assignments:

short smallValue = 42;

int largerItem = smallValue;

long biggerStill = largerItem;

biggerStill = 2787L;

biggerStill = smallValue;

float myBankBalance = 273.42f;

double largeBalance = myBankBalance;

myBankBalance = 2738.2F;

largBalance = biggerStill;

55

Assigning Values of Other Variables

• Beware! What is wrong with the following?

int numBooks = 173;

short howMany = numBooks;

short againBooks = 173;

double milesToGo = 435.7F;

float howFar = milesToGo;

56

Constants:

• A constant is a "variable" whose value cannot change during program execution.

• In Java, we use the keyword final to denote a constant

• Example:

final double CM_PER_INCH = 2.54;

• The keyword final means you can only assign a value to a variable once.

• Style Point: The convention is to use CAPITAL LETTERS for constants and

separate words with an underscore.

• Declare constants at the beginning of the method so their values can easily be

seen.

• Declare as a constant any data that should not change during execution.

57

Constants (example):

/* Constants Class */

public class Constants {

public static void main(String[] args) {

final double KM_TO_MILE = 1.609;

double speedLimit = 65;

System.out.println(speedLimit + " in mph is " +

speedLimit * KM_TO_MILE +

" in km/hr");

} // main

} // class Constants

58

String Literals:

• String is actually a class, not a basic data type (and, not a reserved word).

• String variables are objects.

• More on classes and objects a bit later.

• String literal: text contained within double quotes.

• Note you may use single quotes for strings in Python, NOT in Java

• Examples of String literals:

"The answer is "

"Four-score and seven years ago"

"Gallia est omnis divisa in partes tres"

"To boldly go where no man has gone before."

"Please Sir, can I have some more?"

59

String Concatenation:

• Can combine two String literals together.

• Can combine one String literal with another data type for printing.

String howdy = "Howdy";

String buddy = "Pardner!";

String greeting = howdy + ' ' + buddy;

System.out.println(greeting);

String greeting2 = howdy + buddy;

System.out.println(greeting2);

String greeting3 = howdy + " " + buddy;

System.out.println(greeting3);

Prints:
Howdy Pardner!
HowdyPardner!
Howdy Pardner!

60

String (continued):

• Common error (!!!):

System.out.println("Four-score and seven years ago,

Our Fathers brought forth on this continent");

• Generates these errors:

unclosed string literal

')' expected

• String literals must start and end on the same line.

61

The Fix

• Break long strings into shorter strings and use the concatenation operator:

System.out.println("Four-score and seven years ago,\n" +

"Our Fathers brought forth on this continent");

• Or, use two separate print statements:

System.out.println("Four-score and seven years ago,");

System.out.println("Our Fathers brought forth on this continent");

62

Escape Sequences in String literals:

63

Character Escape Sequence

Newline \n

Tab \t

Double quotes \"

Single quote \'

Backslash \\

Backspace \b

Carriage return \r

Form feed \f

Use \n when you need a

newline or a blank line.

We will not use \r or \f.

Escape Sequences in String literals (continued):

/* Literals Class */

public class Literals {

public static void main(String[] args) {

System.out.println("How to get multiple\nlines from one statement\n");

System.out.println("When you want to indent a line");

System.out.println("\tUse a tab");

System.out.println("\tFor each indented line");

System.out.println("It started: \"Four-score and seven years ago\"");

System.out.println("He said \"NO!\" and meant it!");

} // end of method main

} // end of class Literals

64

Expressions and Arithmetic Operators:

• The Assignment Operator.

• Arithmetic Operators.

• Operator Precedence.

• Integer Division and Modulus.

• Division by Zero.

• Mixed-Type Arithmetic and Type Casting.

• Shortcut Operators.

65

Assignment Operator:

• In Java, = is an assignment operator that has a side effect of assigning a value.

• Syntax:

target = expression;

• The operator returns the value of the expression BUT

• It also assigns the value of the expression to the target (called a side effect).

• Note: The value of an expression must be compatible with the target’s data type.

66

Assignment Operator:

• Because assignment is an operator, the following is an expression that returns the

value of 10

i = 10

• This is what allows multiple assignments in a statement.

i = j = 0; // j = 0 returns 0 which is then assigned to i

• It is also legal to write something like:

if ((i = j) == 10) {

Although it can make the code cofusing to read

67

Arithmetic Operators:

68

Operator Operation

* multiplication

/ division

% modulus
(remainder after division)

+ addition

- subtraction

Java has five binary (two-operand) arithmetic operators:

+ - * / %

and two unary (one-operand) arithmetic operators:

- +

The operators behave as they do in Python 3, except for / and %.

Like Python, mixing integers and floating-point values produces a floating-point result:

double ans = 2 + 3.4; //produces a double

int badExp = 2 + 3.4; //gives an error

Arithmetic operators

Operator Precedence:

70

Operator Order of
evaluation Operation

() left to right parenthesis for
explicit grouping

* / % left to right multiplication,
division, modulus

+ - left to right addition, subtraction

= right to left assignment

Operator Precedence (continued):

• Operator precedence follows normal arithmetic rules. Makes the following work

correctly:

int singles = 43, doubles = 17, triples = 2, homeRuns = 28;

int hits, totalBases;

hits = singles + doubles + triples + homeRuns;

totalBases = singles + 2 * doubles + 3 * triples + 4 * homeRuns;

71

Operator Precedence (continued):

72

• Batting average in baseball is computed as

• The following does not work (why?):

float hits = 153f, appearances = 482f, walks = 27f;

float average = hits / appearances - walks;

• Where are parentheses needed?

Operator Precedence (continued):

73

• Batting average in baseball is computed as

• The following does not work (why?):

float hits = 153f, appearances = 482f, walks = 27f;

float average = hits / appearances - walks;

• Where are parentheses needed?

float average = hits / (appearances – walks);

Python 3 has two division operators: / and // (floor division)

Java has one division operator (/).

IMPORTANT: If both operands of / are integers, the quotient is an integer, rounded

towards 0.

int i = 3 / 2; //i has value 1

i = -10 / 3; //i has value -3

Integer division by zero is an error:
i = 1 / 0; //throws an error

Division

Inadvertent integer division is a

common source of bugs, especially

for Python programmers!

Integer Division

• What value does the following code store in percentAttended?

int classSize = 175;
int attendance = 137;
int percentAttended = attendance / classSize;

• The value stored in percentAttended is 0

• What happens if we change the type of percentAttended?

double percentAttended = attendance / classSize;

• The value stored is STILL 0, since

• attendance / classSize produces the integer 0

• The integer 0 is then converted to a double, also with value 0

•Modulus example: (Furlong.java)

public class Furlong {
public static void main(String[] args) {
int numFeet = 23487;
System.out.println("length in feet = " + numFeet);

// Calculate number of miles and feet left over
final int FEET_PER_MILE = 5280;
int miles = numFeet / FEET_PER_MILE;
int leftOver = numFeet % FEET_PER_MILE;

System.out.print("miles = " + miles + '\t');
System.out.println("leftOver = " + leftOver);

// Calculate number of furlongs and feet left over
final int FEET_PER_FURLONG = 660;
int furlongs = numFeet / FEET_PER_FURLONG;
leftOver = numFeet % FEET_PER_FURLONG;

System.out.print("furlongs = " + furlongs + '\t');
System.out.println("leftOver = " + leftOver);

} // end of main method
} // end of class Furlong

76

Division by Zero:

• Integer division by 0:

• Example:

int answer = 173 / 0;

• No error from the compiler.

• At runtime, generates an ArithmeticException and program stops executing.

77

Floating-point division by 0:

• Two possibilities:

• Dividend is not zero; Divisor is zero.

double resultAlpha = 173.628 / 0;

System.out.println("resultAlpha = " + resultAlpha);

• Prints:

resultAlpha = Infinity

• Both dividend and divisor are zero.

double resultBeta = 0.0 / 0.0;
System.out.println("resultBeta = " + resultBeta);

• Prints:

resultBeta = NaN

78

public class DivideZero {
public static void main(String[] args)
{

double resultAlpha = 173.628 / 0;
System.out.println("resultAlpha = " + resultAlpha);

double resultBeta = 0.0 / 0.0;
System.out.println("resultBeta = " + resultBeta);

double tinyNumber = 1.0E-310;
System.out.println("tinyNumber = " + tinyNumber);

resultAlpha = 173.628 / tinyNumber;
System.out.println("resultAlpha = " + resultAlpha);

} // end of main method

} // end of class DivideZero

79

Mixed-Type Arithmetic:

• Calculations can be performed with operands of different data types.

int sample = 17;

float price = 37.95F;

double cost = sample * price;

• There are rules:

• Lower-precision operands are promoted to higher-precision data types before the

operation is performed.

• Promotion is only done while evaluating the expression. It is not a permanent change.

• Called “Implicit type casting”.

80

Mixed-Type Arithmetic (continued):

• Rules of Promotion, apply the first rule that fits:

1. If either operand is a double, the other operand is converted to a double.

2. If either operand is a float, the other operand is converted to a float.

3. If either operand is a long, the other operand is converted to a long.

4. If either operand is an int, the other operand is promoted to an int.

5. If neither operand is a double, float, long, or an int, both operands are promoted to an int.

double cost = 730 * 4.95; // 730 converted to double, rule 1
float height = 16.75F;

float stories = height * 7; // 7 converted to float, rule 2
byte months = 7;

short days = 31;

long hours = days * 24L; // days converted to long, rule 3

int seconds = days * 3600 * 24; //days converted to int, rule 4

81

Explicit Type Casting:

• Want to change the type of an expression.

• Syntax:

(datatype) expression

• This can be used to force to get decimals or higher precision.
int classSize = 175;

int attendance = 137;

float percentAttended = (float) attendance / classSize;

• Would the following work?
float percentAttended = attendance / (float) classSize;

What about?
float percentAttended = (float) (attendance / classSize);

Run the example on the next page.

82

public class Weeks {
public static void main(String[] args) {
final int DAYS_IN_WEEK = 7;
int days = 2873;
float weeks;

weeks = days / DAYS_IN_WEEK;
System.out.println("weeks = " + weeks);

weeks = days / (float) DAYS_IN_WEEK;
System.out.println("weeks = " + weeks);

weeks = (float) days / (float) DAYS_IN_WEEK;
System.out.println("weeks = " + weeks);

weeks = (float) days / DAYS_IN_WEEK;
System.out.println("weeks = " + weeks);

weeks = (float) (days / DAYS_IN_WEEK);
System.out.println("weeks = " + weeks);

} // end of main method
} // end of class Weeks

83

• You can also use explicit casts to "downgrade" a value.

• Decimal numbers cast as integral numbers truncate their value

double x = 6.87;
int i = x; // will give you a compile time error

int j = (int) x; // is legal and will store 6 in j

• You may also cast from integral to integral or decimal to decimal

int i = 5;
byte j = i; // will give a compile time error

byte k = (byte) i; // is legal and will store 5 in k

double x = 456.98;
float g = x; // will give compile time error

float f = (float) x; // is legal

• Warning:

• If the value is too large for the type being cast, the result will be a truncated number

int i = 300;

byte b = (byte) i; // legal but stores the value 44 in b

• Why?

300 = 00000000 00000000 00000001 00101100

Last byte is:

00101100

Which evaluates to 44

Shortcut Operators:

• Often want to add 1 or subtract 1.

• ++ lets us add 1 -- lets us subtract 1.

• Examples:

• Can be used in a postfix form, where the operator appears after the variable:

int xray = 17, sample = 24;

xray++; // xray now contains 18, same as: xray = xray + 1;

sample--; // sample now contains 23

sample--; // sample now contains 22

• Can be used in a prefix form, where the operator appears before the variable:

System.out.println("xray becomes " + --xray);

// xray now contains 17

86

Shortcut Operators:

• ++ and -- are operators which return a value and have a side effect of incrementing

or decrementing the value of the variable they're applied to.

• For both postfix and prefix forms they increment or decrement, but the value they

return depends on which form is used.

• In a postfix form, the value returned is the value before the increment or decrement:

int xray = 17;

System.out.println("xray becomes " + xray++);

• Stores 18 in xray, but prints the following:

xray becomes 17

87

Shortcut Operators:

• In a prefix form, the value returned is the value after the increment or decrement:

int xray = 17;

System.out.println("xray becomes " + ++xray);

• Stores 18 in xray (just like in the prior slide), but prints the following:

xray becomes 18

• This can be confusing to programmers and many (especially Java programmers)

choose to only use the increment or decrement as a statement by itself:

++xray;

System.out.println("xray becomes " + xray);

88

Shortcut Operators (continued):

• There are additional operators that combine assignment with one operation.

89

Operator Example Equivalent

+= alpha += 3; alpha = alpha + 3;

-= bravo -= 17; bravo = bravo - 17;

*= charlie *= 8; charlie = charlie * 8;

/= delta /= 9; delta = delta / 9;

%= echo %= 60; echo = echo % 60;

Shortcut Operators (continued):

• No spaces are allowed between the arithmetic operator and the equals sign.

xray + = 12;

• Causes a compiler error.

• The order of the arithmetic operator and the equals sign is important:

int foxtrot = 30;

foxtrot =+ 42;

• The compiler does not find fault with this.

• The statement will also execute correctly.

• What will be the value of foxtrot after the statement executes?

90

Operator Precedence (updated):

91

Operator Order of
evaluation Operation

() left to right parenthesis for explicit grouping

++ -- right to left preincrement, predecrment

++ -- right to left postincrement, postdecrement

* / % left to right multiplication, division, modulus

+ - left to right addition or String concatenation, subtraction

= += -=
*= /=
%=

right to left assignment

Formatted Printing:

• When you print numbers:

double foxtrot = 30.7 / 7.3;

System.out.println("The answer is " + foxtrot);

The answer is 4.205479452054795

• We don't usually need so many decimal places!!

92

Formatted Printing:

• Use the printf method instead:

System.out.printf("The answer is %4.2f\n", foxtrot);

The answer is 4.21

• printf uses C-style formatting. The % marks the start of a formatting instruction.

• In the example above, f means “floating-point”, and is used with float or double

types.

• The 4.2 part means:

• Use 2 decimal places; value will be rounded.

• Use a total of 4 characters.

• 2 for the decimal places

• 1 for the decimal point

• 1 for the value in front

93

Formatted Printing:

foxtrot = 1020.29876;

System.out.printf("The answer is 6.3f\n", foxtrot);

The answer is 6.3f

String first = "Charlie";

String last = "Brown";

System.out.printf("The name is %10s", last);

System.out.println();

System.out.printf("%6s, %9s\n", last, first);

The name is Brown

Brown, Charlie

94

Formatted Printing (continued):

• Most commonly used format codes:

95

Code Formats Example Use
Corresponding

Output

d Integers (Base 10) ("%5d", 29) 29

x Integers (Base 16) ("%x %x", 29, 32) 1D 20

o Integers (Base 8) ("%o", 29) 35

f Floating-point
("%8.2f",

874.9163)
874.92

e
Exponential Floating-

point

("%.2e",

874.9163)
8.749163E+02

c Character ("%c", 'Y') Y

s Strings ("%10s", "Hi") Hi

• There are more. See the Java API: http://docs.oracle.com/javase/8/docs/api/

• System is part of java.lang

• System.out returns a PrintStream.

• PrintStream is part of java.io

• look at the printfmethod.

96

• See also (on lectura and the lab machines):

• man -s 3 printf

• under the heading "Format of the format string"

http://docs.oracle.com/javase/8/docs/api/

Formatted Printing (continued):

• To help you in understanding how these work, try the following (and then explain
why it turns out that way):

public class Printing {
public static void main(String [] args) {

double foxtrot = 30.7 / 7.3;
System.out.printf("The answer is %4.2f\n", foxtrot);
System.out.println("The answer is " + foxtrot);

int value = 1782;
System.out.printf("value =%2d\n", value);
System.out.printf("value =%4d\n", value);
System.out.printf("value =%7d\n", value);
System.out.printf("value =%d\n", value);

float small = 0.00000029872F;
System.out.printf("small =%f\n", small);
System.out.printf("small =%4.2f\n", small);
System.out.printf("small =%.5f\n", small);
System.out.printf("small =%.8f\n", small);
System.out.printf("small =%10.8f\n", small);
System.out.printf("small =%11.8f\n", small);
System.out.printf("small =%15.8f\n", small);

} // main
} // Printing

97

