
While Loop:

1

• Python

while expression:

statements

• Java

while (expression)

statement or block

• Example

while i < 10:

f = f * i

i += 1

• Example

while (i < 10) {

f = f * i;

++i;

}

• Common Problem:

• Putting a semi-colon after the boolean expression:

while (number != -1); {

• This will cause the compiler to loop over an empty statement (do nothing each time
through the loop).

2

Do/While Loop:

• The condition for the do/while loop is evaluated at the end of the loop.

• The do/while loop executes the loop body at least once.

• Compare to the while loop which might not execute the loop body at all.

• Syntax for do/while loop:

3

// initialize variables

do {

// body of the loop goes here

// as many lines of code as needed

} while (boolean expression);

// process the results

Unlike the while loop, the

{ }’s are always required.

The loop body can be empty.

(But, the { }’s are still

required.)

do/while Example:

• Consider a guessing program that generates a random integer then accepts guesses

until the user gets it right.

import java.util.*;

public class GuessingInts {
public static void main(String[] args) {

Random guess = new Random();
Scanner inputScan = new Scanner(System.in);
int userNumber, numGuesses = 0;
int findIt = guess.nextInt(20) + 1;

do {
System.out.print("Guess a value between 1 and 20: ");
userNumber = inputScan.nextInt();
numGuesses++;
if (userNumber > findIt)

System.out.println("Too large\n");
if (userNumber < findIt)

System.out.println("Too small\n");
} while (userNumber != findIt);

System.out.println("Got it!");
System.out.println("Took you " + numGuesses + " attempts.");

} // end of method main
} // end of class GuessingInts

4

for Loop Syntax:
• Syntax of the for loop:

for (initialization; loop condition; loop update) {

// loop body

// goes here

}

• Semi-colons separate terms in the loop header.

• There is not a semi-colon after the loop headers.

• The { }’s are required only if more than one statement is in the loop body.

• The for loop flow of control:

• The initialization statement is executed exactly once.

• Repeat: The loop condition is evaluated. If the condition is true:

• The loop body is executed.

• The loop update is executed.

• When the loop condition is evaluated as false:

• Continue with code after the for loop.

5

Example:

• Consider a for loop that prints the even numbers from 0 to 20:

int i;

for (i = 0; i <= 20; i = i + 2) {

System.out.print(i + " ");

}

System.out.println();

• Can this be written as a while loop?

int i = 0;
while (i <= 20) {

System.out.print(i + " ");
i = i + 2;

}
System.out.println();

• A for loop may always be written as a while loop.

6

for Loop Syntax:

• Remember:

for (initialization; loop condition; loop update) {

// loop body

// goes here

}

• Note the initialization and the loop update can have more than one statement.

• Multiple initialization or loop update statements are separated by commas.

• Example:

for (i = 1, j = 2; i <= 10 && j <= 30; i += 1, j += i) {

• It is not good programming style to include statements that are not part of the loop
control.

7

for Loop Syntax:

• It is not good programming style to include statements that are not part of the loop
control. For example:

int i;
System.out.println("The even integers are:");
for (i = 0; i <= 20; i += 2)

System.out.print(i + " ");

• Can be, but should NOT be written as:

for (System.out.println("The even integers are:"), int i = 0;
i <= 20; System.out.print(i + " "), i +=2) ;

8

for Loop Syntax:

• Also, the statements can be blank, for example:

for (; i < 10 ;) { //not good style

• Is the same as

while (i < 10) {

• Also

for (; ;) { //but I would never write this

• Is the same as

while (true) {

9

break

• Just like in Python, break will cause you to exit from the innermost loop.

while (expr) {

// loop body

break; // causes you to exit from loop body

}

• This works for all loop types (while, for, do/while).

10

continue

• Just like in Python, continue will cause you to go immediately to the end of the loop

body, performing the .

while (expr) {

// loop body

continue; // causes you to immediately go to the top

// and re-evaluate exp

}

• This also works for all loop types (while, for, do/while).

• Note when used with for loops, when a continue statement is executed, the loop update

statements are executed next, and then the expression evaluated. For example the

following (poor) code prints out the even numbers between 0 and 10.

for (i = 0; i <= 20; ++i) {

if (i % 2 == 1) continue;

System.out.println(i + " ");

}

11

break and continue:

• Note that break and continue are never needed. Any code that uses them can be
rewritten without them.

• Some programmers consider their use to be bad style. They can be used, but use
them only when it makes the code clearer.

• Generally I use break for special cases (like receiving bad data).

12

example

• This code uses a break. Some would say it makes the reason you exit the loop not as
clear as it should be.

while(years <= 100) {

balance += payment;

double interest = balance * interestRate/100;

balance += interest;

if (balance >= goal) break;

years++;

}

• This is really about calculating how long it takes to which your goal. It will
normally exit before years reaches 100, but just looking at the while it looks like the
loop should go until years is 101.

13

example (continued)

• The code on the previous slide could have been written:

while(years <= 100 && balance < goal) {

balance += payment;

double interest = balance * interestRate/100;

balance += interest;

if (balance < goal)

years++;

}

• This makes is clear from reading the while what the data will look like when the
loop exits. However, balance < goal is checked twice per iteration. It is debatable
which code is better. I would probably write something like this, but change how
years is calculated.

14

Block Scope:

• The scope of a variable is the region of code within a program where the variable

can be referenced (or used).

• In Java scope is determined by the block of code containing the variable declaration.

• Code blocks:

• The main method is a code block.

• Code in the true clause of an if statement is a block.

• Code in the false clause of an if statement is a block.

• The statements inside a while loop is a block.

• Code inside { }’s is a block.

15

Scope:

• Example:

{ int i = 3;

System.out.println(i); //this works

}

i = 7; //this causes a compile time error, i is not in scope

• The above code is strange and one doesn't usually add code blocks that are not

associated with some structure, but you can.

16

Block Scope (continued):

public static void main(String[] args)
{

Scanner inputScan = new Scanner(System.in);

int waterTemp;

System.out.print("Enter the water temperature: ");
waterTemp = inputScan.nextInt();

if (waterTemp <= 0)
System.out.println("Ice skating time!");

else {
System.out.println("Go for a swim!");
System.out.println("Might need a wet suit...");

}

System.out.println("Have a good time!");
} // end of method main

17

m
ai

n
’s

 b
lo

ck

tr
u
e

cl
au

se
fa

ls
e

cl
au

se

Block Scope (continued):

public static void main(String[] args)
{

Scanner inputScan = new Scanner(System.in);

int waterTemp;

System.out.print("Enter the water temperature: ");
waterTemp = inputScan.nextInt();

if (waterTemp <= 0)
System.out.println("Ice skating time!");

else {
System.out.println("Go for a swim!");
System.out.println("Might need a wet suit...");

}

System.out.println("Have a good time!");
} // end of method main

18

i
n
p
u
t
S
c
a
n
’s

 S
co

p
e

w
a
t
e
r
T
e
m
p
’s

S
co

p
e

• This code works. There are two distinct variables, both named area. Each exists in a
different scope.

import java.util.Scanner;
public class Area
{

public static void main(String[] args)
{

Scanner inputScan = new Scanner(System.in);
int width, height;

System.out.print("Enter the width and height: ");
width = inputScan.nextInt();
height = inputScan.nextInt();

if (width == height) {
int area = width * width;
System.out.println("Area of square = " + area);

}
else {

int area = width * height;
System.out.println("Area of rectangle = " + area);

}

} // end of method main
} // end of class Area

19

a
r
e
a

a
r
e
a

• This code does not work.

• There are (still) two distinct variables, both named area. Each exists in a different scope.

• The reference to area after the if is invalid, since it lies outside the scope of both area
variables.

Scanner inputScan = new Scanner(System.in);

int width, height;

System.out.print("Enter the width and height: ");

width = inputScan.nextInt();

height = inputScan.nextInt();

if (width == height) {

int area = width * width;

System.out.println("Area of square = " + area);

} else {

int area = width * height;

System.out.println("Area of rectangle = " + area);

}

int inchesArea;

inchesArea = area * 144; // 144 sq inches in 1 sq foot

System.out.println("Area in square inches = " + inchesArea);

} // end of method main

20

a
r
e
a

a
r
e
a

Compiler Error:
cannot find symbol

Variable Scope and for Loops:

• Many Java programmers like to declare the loop index in the for statement:

for (int i = 0; i < 10; ++i) {

num = in.nextInt();

sum += num;

}

double ave = sum / 10.0;

• If you do this, you can declare i again in the same method:

for (int i = 0; i < k; i += 2) {

21

Variable Scope and for Loops:

• However , what if you wanted to protect against input errors:

for (int i = 0; i < 10; ++i) {

if (!in.hasNextInt()) break;

num = in.nextInt();

sum += num;

}

double ave = (double) sum / i; // calculate average even if less

// than 10 numbers entered

• If you do this, you get a compiler error because you're trying to access i out of scope

22

