
Flow of Control:

• Programs can control the order in which their instructions are executed.

• Four types of flow:

1. Sequential:

• Execute instructions in the order listed in the code.

2. Method calls:

• Transfer flow control to the code inside the method;

• Control returns back to the point of the call. Some calls also return a value.

3. Selection:

• Which set of instructions are executed depends on the data.

4. Looping:

• Repeat a set of instructions, changing some of the data each time through the set of

instructions.

1

Comparison Operators:

• Equality operators are the same as in Python

• == compares two values and returns true if one is equal to the other.

• != compares two values and returns true if one is not equal to the other.

• But what does it mean for things to be equal in Java?

• It means the value stored at that location is equal.

• For primitive types it means they have the same value
int i = 5;

int j = 9 - 4;

i == j // evaluates to true

• For reference variables (objects) it means they refer to the same object
String a = "one";

String b = a;

String c = "on" + 'e';

a == b // evaluates to true

a == c // evaluates to false if though both have "one"

2

Equality Operators (continued):

• Do not confuse these two:

• == equality operator.

• = assignment operator.

• Examples:

int aNum = 42, bNum = 96;

boolean answer;

answer = (aNum = bNum);

boolean ans1 = true, ans2 = false;

Boolean answer;

answer = (ans2 = ans1);

System.out.println("answer is " + answer);

3

Gives the error:
“Incompatible types”.
Why?

Compiles without error.
Runs without error.
What is printed?

Relational Operators:

• Result is boolean

• true or false

4

Relational
Operators Type Meaning

<
binary

two operands is less than

<=
binary

two operands
is less than or equal

to

>
binary

two operands is greater than

>=
binary

two operands
is greater than or

equal to

Logical Operators:

• The ! operator:

• Performs a NOT operation. (same as Python not)

• Has only one operand.

• Returns false if the operand is true. Returns true if the operand is false.

• Example:
float income;

income = inputScan.nextFloat();

boolean rich, poor;

rich = (income > 1e5);

poor = !(income > 1e5);

poor = !rich;

5

Both of these give the
same result.

Logical Operators (continued):

• The && operator:

• Performs an AND operation (same as Python and).

• Has two operands.

• Returns true if both operands are true; otherwise, false is returned.

• Example:

int age;
age = inputScan.nextInt();

boolean teenAge;

teenAge = (age >= 13) && (age <= 19);

System.out.println("teenAge is " + teenAge);

• The assignment could have also been written as:

teenAge = (age > 12) && (age < 20);

6

Logical Operators (continued):

• The || operator:

• Performs an OR operation (same as Python or)

• Has two operands.

• Returns true if either or both operands are true; otherwise, false is returned.

• Returns false if both operands are false; otherwise, true is returned.

• Example:

int myAge;
myAge = inputScan.nextInt();

int sisterAge = 34, brotherAge = 39;

boolean notYoungest;

notYoungest = (myAge > brotherAge) || (myAge > sisterAge);

System.out.println("notYoungest is " + notYoungest);

7

Two ways to think about
what OR does.

• Summary in the form of a truth table:

8

a b !a a && b a || b

true true false true true

true false false false true

false true true false true

false false true false false

• Suppose we want to know if a value falls within a range.

• In Python we can write the following:

isLiquid = 0 <= waterTemp <= 100

• This does not work in Java

• The following Java program is incorrect:

float waterTemp;

waterTemp = inputScan.nextFloat();

boolean isLiquid;

isLiquid = 0.0F <= waterTemp <= 100.0F;

• The last line produces the error:
“ operator <= cannot be applied to boolean,float”

• Why?

9

• What is the right way to make this range comparison?

liquidWater = (0.0F <= waterTemp) && (waterTemp <= 100.0F);

Boolean and Boolean

10

Comparing Floats and Doubles:

• Can compare floats and doubles using <, <=, >, >=, ==, and !=.

• But, equality is a problem. Consider

double zap, wobble;

wobble = 1.1;

zap = 0.1;

zap = zap + 0.1; // repeat this line 10 times

• The two should now both be 1.1, but zap is not!

wobble = 1.1

zap = 1.0999999999999999

• An equality, or inequality, test will yield an unexpected result!

• A less-than test or a greater-than test will also lead to an incorrect result.

11

Comparing Floats and Doubles (continued):

• Establish a “close enough” criteria.

• How close together do the values need to be to be considered “equal”?

• Example: choose 0.001 as being “close enough”.

• Find the difference between zap and wobble. Is this difference less than 0.001?

double zap, wobble;

wobble = 1.1;

zap = 0.1;

zap = zap + 0.1; // repeat this line 10 times

if (Math.abs(zap - wobble) < 0.001)

System.out.println("zap and wobble are equal (close enough)");

else

System.out.println("zap and wobble are not equal");

12

if Statements:

Simple if:

• Python:

if <condition-goes-here>:

indented code

indented code

code executed after the if statement

• Java:

if (condition-goes-here) {

// true block

// code to execute when condition is true

}

// code here that executes after the if statement

• Note the parenthesis around the condition are required!

13

if Statements:

Simple if (cont):

• The following is written in Python. How would you write it in Java?

if x == 10:

done = True

• Java:

if (x == 10) {

done = true;

}

14

if (x == 10) {

done = true;

}

• Note the {} are optional if there is only a single statement. The following also works:

if (x == 10)

done = true;

• Since line breaks don't matter, we can put all on one line

if (x == 10) done = true;

15

Warning:

• Leaving out the {} can be dangerous.

if (x == 10)

done = True;

System.out.println("I'm done with this!");

• The code above will print out

I'm done with this!

• even if x == 10 is true. Java does not care about the indentation. Because the

statements are not wrapped in a block ({ }), only the first statement is under the if.

16

if/else:

• Python

if <condition>:
code
code

elif <condition>:
code
code

elif <condition>:
code
code

else
code
code

code out of if block

17

• Java

if (<condition>) {
code
code

} else if (<condition>) {
code
code

} else if (<condition>) {
code
code

} else {
code
code

}
code out of if block

example

• Python

if score >= 90:

grade = 'A'

elif score >= 80:

grade = 'B'

elif score >= 70:

grade = 'C'

elif score >= 60:

grade = 'D'

else

grade = 'E'

print(grade)

18

• Java

if (score >= 90) {

grade = 'A';

} else if (score >= 80) {

grade = 'B';

} else if (score >= 70) {

grade = 'C';

} else if (score >= 60) {

grade = 'D';

} else {

grade = 'E';

}

System.out.println(grade);

• Warning, this code does not work.

if (waterTemp <= 0)

if (waterTemp <= -10)

System.out.println("Ice skating time!");

else if (waterTemp <= 18) {

System.out.println("Go for a swim!");

System.out.println("Bring a wet suit!");

} else if (waterTemp <= 37) {

System.out.println("Go for a swim!");

} else {

System.out.println("Hot tub time!");

System.out.println("Don't stay in too long!");

}

System.out.println("Have a good time!");

19

• When looking at an else, how does the compiler know what if it belongs to?

• Recall: The compiler ignores indentation!

• Each else is associated with the most recent if that does not already have an else.

if (waterTemp <= 0)

if (waterTemp <= -10)

System.out.println("Ice skating time!");

else if (waterTemp <= 18) {

System.out.println("Go for a swim!");

System.out.println("Bring a wet suit!");

} else if (waterTemp <= 37) {

System.out.println("Go for a swim!");

} else {

System.out.println("Hot tub time!");

System.out.println("Don't stay in too long!");

}

System.out.println("Have a good time!");

20

• Use { }’s to surround the if statement that does not have an else.

if (waterTemp <= 0) {

if (waterTemp <= -10)

System.out.println("Ice skating time!");

} else if (waterTemp <= 18) {

System.out.println("Go for a swim!");

System.out.println("Bring a wet suit!");

} else if (waterTemp <= 37) {

System.out.println("Go for a swim!");

} else {

System.out.println("Hot tub time!");

System.out.println("Don't stay in too long!");

}

System.out.println("Have a good time!");

21

switch:

• An if/else if statement can (sometimes) be replaced by a switch statement.

• Requirements:

• Must be comparing the value of a char, byte, short, or int.

• Note: cannot be a long, float, double, String, or anything else!

switch (/* char, byte, short, or int expression goes here */) {

case constant1:

// statement(s);

break; // optional

case constant2:

// statement(s);

break; // optional

...

default: // optional (but generally a very good idea!)

statements(s);

} // switch ends here

22

The switch block

switch (continued):

• The expression is evaluated, then its value is compared to the case constants in order.

• When a match is found, the statements under that case constant are executed in

sequence until:

• a break statement is reached, OR

• the end of the switch block is reached.

• Example:

• A program that reads a year from the keyboard.

• Determines if the year is:

• A Presidential election year.

• A House of Representatives year.

• A year with no federal election.

23

Scanner inputScan = new Scanner(System.in);

short year;

System.out.print("Enter the year: ");

year = inputScan.nextShort();

switch (year % 4) {

case 0: // if (year % 4 == 0)

System.out.println("Elect a President");

System.out.println("Elect members of the US House");

break;

case 2:

System.out.println("Elect members of the US House");

break;

default:

System.out.println("No federal election");

break;

}

24

switch (continued):

• A simplistic class standing example:

• Students “advance” from freshman to sophomore, etc. every 30 credit hours.

• Freshmen can only take freshman classes.

• Sophomores can take sophomore and freshman classes.

• Etc.

• Once they reach 120 credit hours, they “advance” to graduate status.

• From 120 to 134 credit hours, they can take 500-level courses.

• From 135 to 150 credit hours, they can take 500- and 600-level courses.

• Number of credit hours beyond 150 (and below 0) are not allowed.

25

switch (continued) — ClassStanding example continued.

• Can use the “fall through” feature of switch.

• This bit of code handles undergrads. What gets printed if the creditHours is 91?

switch (creditHours / 30) {

case 3:

System.out.println("Can take Senior courses");

case 2:

System.out.println("Can take Junior courses");

case 1:

System.out.println("Can take Sophomore courses");

case 0:

System.out.println("Can take Freshman courses");

break;

}

26

switch (continued) — ClassStanding example continued.

• Graduate students are in the range 120 to 149.

• This group can be found by integer division by 30.

• There are two sub-categories, note, graduate students may not take undergraduate courses.

switch (creditHours / 30) {
case 4:

if (creditHours >= 135) {
System.out.println("Can take 600-level courses");

}
System.out.println("Can take 500-level courses");
break;

case 3:
System.out.println("Can take Senior courses");

case 2:
System.out.println("Can take Junior courses");

case 1:
System.out.println("Can take Sophomore courses");

case 0:
System.out.println("Can take Freshman courses");
break;

}

27

switch (continued) — ClassStanding example continued.

• How to handle creditHours that are negative or too large?

switch (creditHours / 30) {
case 4:

if (creditHours >= 135) {
System.out.println("Can take 600-level courses");

}
System.out.println("Can take 500-level courses");
break;

case 3:
System.out.println("Can take Senior courses");

case 2:
System.out.println("Can take Junior courses");

case 1:
System.out.println("Can take Sophomore courses");

case 0:
System.out.println("Can take Freshman courses");
break;

default:
System.out.println("The credit hours must be 0 to 149");

}

28

Conditional Operator:

• The conditional operator contributes one of two values to an expression based on the

value of the condition.

• Syntax:

condition ? trueExp : falseExp

kilo = (hotel < golf) ? 42 : -378;

• Has the same meaning as:
if (hotel < golf)

kilo = 42;

else

kilo = -378;

• The conditional operator ?: is a ternary operator in that it requires 3 operands:

condition, trueExp, falseExp.

• It is the only ternary operator in Java.

29

Conditional Operator (continued):

• Want to print a message that uses the correct singular or plural form:

• Without the conditional operator, we can write:
if (numBoxes == 1)

System.out.println("We need 1 box.");

else

System.out.println("We need " + numBoxes + " boxes.");

• With the conditional operator, we can write:

System.out.println("We need " + numBoxes +

((numBoxes == 1) ? " box." : " boxes."));

30

