
Git

We will be using GitHub in this class for assignments.
Everyone needs to create a GitHub account if you don’t
already have one. Do this at:

https://github.com/

After you set up your Github account you will need to inform
us what your GitHub username is. Their will be instructions for
how to do that in the near future.

Preliminaries

https://github.com/

● We will be using the command line version of git.
○ If you are using Cygwin you may need to install it. (Run

the installer again and search for the git program.)
○ To see if you have git installed, type the command

which git
If it gives you a location of git, then you have it.

Preliminaries

● There is a man page for the top-level git command but there are
man pages for each Git operation, too. For example, these all
work:
 % man git
 % man git-clone
 % man git-checkout

● Ry's Git Tutorial by Ryan Hodson is available in several forms.

● A free online copy of the book Pro Git by Scott Chacon and Ben
Straub is available at

● PeepCode Git Internals by Scott Chacon reveals some of Git's
innards.

Resources

https://git-scm.com/book
https://github.com/pluralsight/git-internals-pdf/releases

Git is a version control system

● The essential job of a version control system is to maintain
a history of changes to a collection of files.

What is Git?

Git is a version control system

● The essential job of a version control system is to maintain a
history of changes to a collection of files.

● This is more than just a text list of what has changed in a
project, but a sort of “time machine” that can recreate exactly
what the files in your project looked like at particular points in
time

What is Git?

Git is a version control system

● The essential job of a version control system is to maintain a
history of changes to a collection of files.

● This is more than just a text list of what has changed in a
project, but a sort of “time machine” that can recreate exactly
what the files in your project looked like at particular points in
time

● In association with github git can also add in coordinating a
project between programmers and in working on a project on
several machines.

What is Git?

Suppose you were working on a project in a directory called
myGreatProj that contained many source files, you have
no tool like git, but you want to maintain some sort of
version control. What could you do?

Motivation

Suppose you were working on a project in a directory called
myGreatProj that contained many source files, you have
no tool like git, but you want to maintain some sort of
version control. What could you do?

You might make multiple copies of the directory manually:
 % cp -R myGreatProj myGreatProjv1
and after you do more work you do it again to a new name:
 % cp -R myGreatProj myGreatProjv2

What are some disadvantages of this system?

Motivation

What are some disadvantages of this system?

1. It’s clunky
2. It takes up a lot of space.

a. You are saving copies of files that haven’t changed
b. You are saving complete files even if only a small

change was made.
c. You may be saving files you don’t care about (e.g.

test files, object files, compiled code)
3. It’s slow. (You’re copying all that extra stuff mention in

2.)
4. It’s hard to navigate. (Which version had what change?)

Motivation

● A Version Control System VCS automates the process.

● It saves the changes (say in a database) and the user “checks out” a
version of the project.

● The user only has one version of the project she has to deal with.

● This process took place on a programmer’s local computer. There was
no good way to share code amongst several developers.

Local Version Control Systems

In a Centralized VCS instead of storing things locally, the project was
saved on a server and multiple users could check out files to work on.
CVS was an example of such a VCS.

Centralized VCS

Git is a distributed version control system. Every developer on a project
will have on their machine a copy of a repository for that project.

Distributed VCS

Git provides ways to transfer groups of changes between repositories.

Git is typically used with a web-hosted service that maintains the "official"
repository for a project. We'll be using GitHub.

GitHub

● git is a distributed VCS

● developed in 2005 for use by the Linux community

● Being used to manage the Linux kernel forced
several requirements on git including:
○ Reliability
○ Efficient management of large projects
○ Support for distributed development
○ Support for non-linear development

git

Before you start using git you might want to do some
configuration. First set your name and email address:

% git config --global user.name "Eric Anson"
% git config --global user.email eanson@email.arizona.edu

Obviously you should use your own name and email. The global
flag tells git to save these values in your home directory and thus
you use them for every git project you work on.

When you save something to the repository (commit a change) and you
don’t give a description of the change, git will invoke an editor for you to
enter a description. By default that editor is vim (if it’s installed). You can
set which editor is used via:

 % git config --global core.editor <your editor choice>

git config

Lastly, when you interact with github is will ask you for
your user id and email. To have it cache your credentials
for a day you can set:

% git config --global credential.helper "cache --timeout 86400"

git config

Your files for any project will be organized inside a directory.
Usually in this class that directory will be created from a
repository on github. If you are working on a private project, you
can use git locally:

% mkdir myProject
% cd myProject
% git init

The commands above create a directory called myProject,
move into it, and then and then the git init command will
change that directory into a repository.

using git

Creating a git repository creates a hidden directory called .git
which contains all the tracking information.

% mkdir myProject
% cd myProject
% git init
% ls -a
. .. .git

The only difference between a normal folder and a Git
repository is the .git directory. You do not want to manually
change anything in it.

using git

You can add files, edit files, and delete files from this directory
and these changes will not be saved by git until you tell it to. As
an example, suppose you add the files README and prog1.py
to your directory. Now invoke the command:

% git status

You will get a result like something shown on the following slide:

using git

% git status
On branch master

No commits yet

Untracked files:
 (use "git add <file>..." to include in what
will be committed)

 README
 prog1.py

nothing added to commit but untracked files
present (use "git add" to track)

using git

This indicates that the files are not under version control
(untracked). You need to tell git to add these files to the
repository if you want to track them. To do this you must first
stage a snapshot. The command:

% git add README

Tells git that the next time you take a snapshot, you want to include
the file README. To also include prog1.py you can follow with:

% git add prog1.py

Git add will also take multiple arguments so we could have just
typed:

% git add README prog1.py

git add

Note staging a snapshot does not save the state of your files, it
just indicates what will be saved. To actually do the saves you
use the command:

% git commit

The git commit command saves the staged changes along with a
description of what those changes are. With no options, git commit
opens a default editor for you to write a description of this snapshot.
To avoid this step you can use the -m option to include the
description with the command:

% git commit -m “Files README & proj1 added”

git commit

So we’ve seen three stages of working on our project:

1. Edit the files in your directory
2. Stage the changes to save in next commit
3. Commit the changes

% git status

Will tell you which files are changed and what is staged.

git so far

To see a history of your commits you can use the command:

% git log

This will list out all the commits made, who made them, and the
description written for each one. It is pretty wordy. Most often you
will want to use the option --oneline to condense the output:

% git log --oneline
a893df6 (HEAD -> master) Text added to README
214ff25 Files README and prog1.py created

This shows only a hash identifier for the commit and the description
of the change. In this case there were two commits to this repository.

git log

This diagram indicates how to think of git. Use add
to stage changes, use commit to save snapshots.
status tells you about the working directory and the
stage. log tells you about the committed snapshots.

So far

You can see more information on some committed snapshot using
the git show command

% git log --oneline
a893df6 (HEAD -> master) Text added to README
214ff25 The files README and prog1.py are
created
% git show a893df6

Notice you use the hash number to identify the snapshot you want
information on.

git show

You can use the git show checkout command to view what the
project looked like at a particular snapshot

% git log --oneline
f2e80fc (HEAD -> master) added code to prog1
a893df6 Text added to README
214ff25 The files README and prog1.py are
created
% git checkout a893df6

This command changes all the tracked files in your directory to be
as they were at the time of the snapshot. Even the log will look as it
did at the time.

git checkout

So have we lost all the changes since that snapshot? No, we have
just changed our view. Look at the following diagram:

git checkout

This represents our snapshot history. The red circle is the
current view, and the faded circle is the latest version.

We can always restore back to the latest version.

You can return to the latest snapshot by using the command:

% git checkout master

master is the name of the main branch of your repository. We
won’t talk much about branches, but you can read about them
if you’re interested.

git checkout

You can undo a committed changed using the revert command:

% git log --oneline
9d4df69 Add an experiment
c40879b add some stuff
8a9e200 Added two file stubs
bae3928 First draft
% git revert 9d4df69

This command will bring you in an editor to record a comment and
then undo the changes done in the commit identified. It doesn’t
delete the history, but adds a new snapshot that has the changes
undone.

undoing a committed change

Here is what the log looks like after the commands of the last
slide:

% git log --oneline
2e136b2 Revert "Add an experiment"
9d4df69 Add an experiment
c40879b add some stuff
8a9e200 Added two file stubs
bae3928 First draft

A graph of the snapshots:

undoing a committed change

The command:

% git reset --hard

Changes all tracked files to match the most recent commit. This
change cannot be undone, so use it with care. Without the --hard
option the reset command clears the staged snapshot.

The command:

% git clean -f

deletes all untracked files from the directory. This is another change
that cannot be undone. The clean command does have options that
check what will be deleted that you might want to use.

undoing uncommitted changes

Most of the time in this class you will not create a repository with
the git init command, but instead copy a repository from the web.
GitHub lets you create a repository using a web browser, and then
copy it to your local machine using:

% git clone <url given by GitHub>

For example

% git clone https://github.com/csc210dev/sample
Cloning into 'sample'...
...
Unpacking objects: 100% (10/10), done.
Checking connectivity... done.

working with GitHub

Aside from clone, there are only two more commands
you have to learn for working with GitHub. The
command:

% git push

Will push your repository up to the one stored on GitHub.
This is a method of backing up your work to the cloud and
also turning in your assignments. You must push your
work to GitHub by the due date.

working with GitHub

The command:

% git pull

Pulls changes from the repository on GitHub to your local
machine. This can be useful if you want to work on different
machines. If you do this, just be careful to always start your
sessions with a pull and end them with a push to make sure
you’re working with the latest copy.

If you are not working on different machines, you probably
won’t use this command unless we use it as a way to give you
feedback.

working with GitHub

Note that unless you pay for it, the repositories you

create for on GitHub are public, meaning anyone can

clone them. This is not true for our assignments. When

you accept an assignment for this class, GitHub will

create a private repository for you on its server and

give you it’s url. You then use that url in a clone

command on your own machine.

working with GitHub

An invitation link will be posted on Piazza and the class web page.
Example:

https://classroom.github.com/a/b8c-a4gI

Hitting the link will take you to a page where you can "Accept this
assignment". Accepting it creates a repository with a URL like

https://github.com/csc210f17/aNUMBER-GITHUB_ID

Do a git clone:
git clone https://github.com/csc210f17/a2-jsmith a2

Use git add and git commit commands to commit your work to the
assignment-specific repo on your machine and then git push to copy
those commits into your assignment-specific repo on GitHub.

Assignments with GitHub Classroom

These slides only scratch the surface of all you can

do with git. I encourage you to read some of the

documentation, look at man pages to see different

options, talk to peers about git, and most importantly

EXPERIMENT.

Conclusion

