
Object-Oriented Programming: Using Classes

• Class basics and benefits.

• Creating objects using constructors.

• Calling Methods.

• Using predefined Java classes.

1

Class Basics and Benefits:

• A class combines:

• Data — identifiers that hold values. Can be any type (int, float, String, etc.)

• Methods — code that manipulates the data.

• Classes are a template (or blueprint) used to create specific objects.

• All Java programs consist of at least one class.

• Example:

• BankAccount class:

• Data: name of account holder, account number, balance, mailing address, ...

• Methods: set or get the value of each piece of data, compute new balance after a deposit or
withdrawal

• A specific instance of BankAccount might be an object called myDreamAccount.

• Data: Eric; 024874898; $21,698,278.42; ...

2

Class Basics and Benefits (continued):

Terminology:

• A class is declared exactly once in a program.

• The declaration of a class can also be done in a library. The Scanner and String

classes are examples.

• Instances of the class can be created. There can be many of these (analogous to
having many int’s).

• Object reference: the identifier of the object. e.g.

String myName, yourName;

BankAccount yours, mine, ours, ourKids;

• The identifiers myName, yourName, yours, mine, ours, ourKids above are

object references. They can refer (point) to a instance of an object.

3

Reference Variables:

• A variable which has a primitive type contains a value of that type.

int i = 10; // i contains the value 10

• A variable that is declared to have a class type is a reference (pointer) to an object.

String s; // s contains a reference to a String object

• Just declaring a variable does not create an object. Reference values are initialized

with the value null, indicating they don't refer to anything yet.

4

i 10

s null

Instantiating an object: creating an object of a class.

• You can instantiate an object by using the keyword new:

int i = 10;

String s;

s = new String("Happy Days");

5

i 10

s

String Object

"Happy Days"

More Terminology:

• Instance of the class: an object.

• Methods: the code to manipulate the object data.

int xray = scanInput.nextInt();

// nextInt is a method of the Scanner class

• Constructor: special method that creates an object and assigns initial values to the

data.

Scanner myInput;

myInput = new Scanner(System.in);

// uses the constructor to create a Scanner object

6

More Terminology (continued):

• Calling a method: invoking the code to perform a service for an object.

String nextWord, anotherWord;

anotherWord = new String("Bibble");

shortWord = anotherWord.substring(0, 3);

// an invocation of the substring method

nextWord = myInput.next(); // an invocation of the next method.

7

Naming Conventions:

• Class names: start with an upper-case letter.

• Capitalize internal words.

• Examples:

Scanner

String

BankAccount

HomeAddress

8

Strings:

• Strings are objects, not a primitive type (the class is String).

• In one way strings are unique as objects since they have a literal representation.

• Therefore you can write:

String s = "Hello";

• As well as:

String s = new String("Hello");

9

s
String Object

"Hello"

Strings - Concatenation:

• We've already seen that the + operator concatenates strings.

• If one of the operands of the + operator is a string, the other will be converted to a

string if necessary.

3 + "Hello" // produces the string "3Hello"

1 + 2 + "Hello" // produces "3Hello"

"Hello" + 1 + 2 // produces "Hello12"

10

Strings:

• Strings are immutable objects which means their value cannot change.

• Does this mean you can't reassign a string variable?

• No, the reference changes but the object does not.

String s = "Hello";

11

s
String Object

"Hello"

Strings:

• Strings are immutable objects which means their value cannot change.

• Does this mean you can't reassign a string variable?

• No, the reference changes but the object does not.

String s = "Hello";

s = "There";

• What happens to the first

string object?

12

s
String Object

"Hello"

String Object

"There"

Comparing Strings:

• Suppose we have.

String s1 = "The Beatles";

String s2 = s1;

• Does s1 == s2 evaluate to true or false?

• true

13

s1

s2

String Object

"The Beatles"

Comparing Strings:

• But what about?

String s1 = "The Beatles";

String s2 = "The Beatles";

• Does s1 == s2 evaluate to true or false?

• Unknown, could be false

14

s1

s2

String Object

"The Beatles"

String Object

"The Beatles"

Comparing Strings:

• When comparing strings, usually want to use the equals method.

String s1 = "The Beatles";

String s2 = "The Beatles";

• Does s1.equals(s2) evaluate to true or false?

• true even if:

15

s1

s2

String Object

"The Beatles"

String Object

"The Beatles"

String Methods:

• Strings have many methods including length and substring.

String s1 = "The Beatles";

int len = s1.length(); //stores 11 into len

String s2 = s1.substring(1,3); // creates a new String object

// with value "he" and points s2 to it

16

s1

s2

String Object

"The Beatles"

String Object

"her"

String Methods

• Getting a character from the String:
char aLetter;

String myName = "Charlie Brown";

aLetter = myName.charAt(4);

• The charAt method returns a char; thus, aLetter is of type char

• Srings are 0 indexed, so the above stores 'l' in aLetter

17

String Methods:

• The indexOf method here returns an int that is the index of the first occurrence
of a character:

public class IndexOfExampleOne {
public static void main(String[] args) {

String myName = "Charlie Brown";
String restOfName;
int location;
char aLetter = 'e';

location = myName.indexOf(aLetter);

System.out.println(aLetter + " first appears at position " +
location);

restOfName = myName.substring(location + 1, myName.length());

System.out.println("The rest of the name is '" + restOfName + "'");

} // end of main method

} // end of class IndexOfExampleOne

18

String Methods

•There are two versions of indexOf. The second version finds the first occurrence
of a String.

public class IndexOfExampleTwo {
public static void main(String[] args) {

String myName = "Charlie Brown";
String restOfName;
int location;
String lookFor = "lie";

location = myName.indexOf(lookFor);

System.out.println(lookFor + " starts at position " + location);

restOfName = myName.substring(location, myName.length());

System.out.println("The rest of the name is '" + restOfName + "'");

} // end of main method
} // end of class IndexOfExampleTwo

19

String Methods:

• The toLowerCase method returns a new String containing the original

characters, but with all letters in lower case.

• The toUpperCase method is similar to toLowerCase, but returns the original

string with all letters in upper case.

String s1 = "The Beatles";

String s2 = s1.toLowerCase();

20

s1

s2

String Object

"The Beatles"

String Object

"the beatles"

String Methods:

• Summary: String methods covered

length()

charAt(int)

indexOf(char)

indexOf(String)

substring(int, int)

toLowerCase()

toUpperCase()

• See the Java API for all the String methods.

21

Class Scanner:

• How do we (“us humans”) tell a program something?

• Example: A program that will print my name:

String myName = "Eric";

System.out.println("The human's name is " + myName);

• But, someone not named Eric might want to use the program; hmmm…?

22

Class Scanner:

• The Scanner class allows a program to read input from the keyboard.

• Three steps:

1. Tell Java that the Scanner class will be used:

import java.util.Scanner;

2. Declare an instance of the Scanner class and connect it to the keyboard:

Scanner scanInput;

scanInput = new Scanner(System.in);

3. Read a value from the keyboard:

String myName = scanInput.next();

23

Class Scanner (continued):

• The first step tells Java that the program will use the Scanner class.

• The Scanner class is part of a package of classes known as java.util

• Put the import line before the declaration of your class:

import java.util.Scanner;

public class ScannerSample

{ ...

24

Two ways to do this:

To get just the one class:

import java.util.Scanner;

To get to all classes in the java.util package:

import java.util.*;

Class Scanner (continued):

• The second step declares an instance of the Scanner class inside main:

public static void main(String [] args)

{

Scanner scanInput;

scanInput = new Scanner(System.in);

• To give scanInput a value, we must create an instance of Scanner. The reserved

word new is used for this.

• To have this instance of Scanner be connected to the keyboard, we use System.in.

• Instances of Scanner can be connected to other “things”, such as files.

• For now, we will be using only System.in.

25

Class Scanner (continued):

• What we have so far:

import java.util.Scanner;

public class ScannerSample

{

public static void main(String[] args)

{

Scanner scanInput;

scanInput = new Scanner(System.in);

26

Class Scanner (continued):

• The third step is to get the user’s input from the keyboard.

• First, we ask the user:

System.out.print("Enter your name: ");

• Note: use of print, not println. (What is the difference?)

• Then, we get the answer:

String myName = scanInput.next();

• Classes provide methods that are used to extract data values from the class.

• The next() method of the Scanner class will read the next string the user types.

• Declare a string, myName, to hold the answer returned by the next() method.

27

• A complete program.

import java.util.Scanner;

public class ScannerSample {

public static void main(String[] args) {

Scanner scanInput;

scanInput = new Scanner(System.in);

System.out.print("Enter your name: ");

String myName = scanInput.next();

System.out.println("myName is " + myName);

} // end of main method

} // end of class ScannerSample

28

• Questions about program on previous slide:

• What happens if the user types just one character?

• What happens if the user types a really long name?

• What happens if the user types characters other than letters?

• What happens if the user types two (or more) names?

29

Class Scanner (continued):

• How does Scanner’s next() method “know” where the String ends?

• When the user presses return or enter.

• When a blank space is found.

• When a tab is found.

• Collectively, these (blank space, tab, newline) are known as whitespace characters.

30

Class Scanner (continued):

•One Scanner, many uses.
import java.util.Scanner;

public class ScannerSampleAgain {
public static void main(String[] args)
{

Scanner scanInput;
scanInput = new Scanner(System.in);

System.out.print("Enter your name: ");
String myName = scanInput.next();

System.out.println("myName is " + myName);

System.out.print("Enter another name: ");
myName = scanInput.next();

System.out.println("myName is " + myName);

} // end of main method
} // end of class ScannerSampleAgain

31

Declare Scanner once.

Create the Scanner once.

Use the (same) Scanner
over and over.

Class Scanner (continued):

• In general, methods within a class are used to:

• Get the value of a data item contained in the class.

• Set the value of a data item in the class.

• Perform a calculation that, in part, involves data item(s) in the class.

• Methods that get the value of a data item have a return type.

• The next() method of Scanner that was used on the previous slide, returns a String.

• Other useful Scanner examples include:

• String nextLine()

• Returns a String that contains all the characters typed up to the next newline.

• Provides a way to get blank spaces and tab characters included in the returned String.

32

Class Scanner (continued):

• int nextInt()

• Returns an int that contains the next integer typed on the keyboard.

• Whitespace before the integer will be skipped.

• What happens if:

• The user types a number that contains a decimal point? a comma?

• The user types several numbers on the same line?

33

Class Scanner (continued):

• Example on how to scan an integer.

import java.util.Scanner;

public class ScannerInt {
public static void main(String[] args) {

Scanner scanInput;
scanInput = new Scanner(System.in);

System.out.print("Enter an integer: ");
int myNumber = scanInput.nextInt();

System.out.println("myNumber is " + myNumber);
} // end of main method

} // end of class ScannerInt

34

Class Scanner (continued):

• double nextDouble()

• Returns a double that contains the next double typed on the keyboard.

• Whitespace before the number will be skipped.

• What happens if:

• The user types a number that contains a decimal point? a comma?

• The user types several numbers on the same line?

35

• Example on how to scan an double.

import java.util.Scanner;

public class ScannerDouble {

public static void main(String[] args) {

Scanner scanInput;

scanInput = new Scanner(System.in);

System.out.print("Enter a double: ");

double myNumber = scanInput.nextDouble();

System.out.println("myNumber is " + myNumber);

} // end of main method

} // end of class ScannerDouble

36

• See also the Java API for java.util.Scanner

37

Return value Method name Description

byte nextByte() returns the next input as a byte

short nextShort() returns the next input as a short

int nextInt() returns the next input as an int

long nextLong() returns the next input as a long

float nextFloat() returns the next input as a float

double nextDouble() returns the next input as a double

boolean nextBoolean() returns the next input as a boolean

String next() returns the next token in the input line as a String

String nextLine() returns the input line as a String

