
CSc 210: Software Development 
Section Sol 1: Welcome back (to programming)! 

August 28th, 2017 
 
 
Name: _____________________                      Netid:  _____________________ 
 
 
The purpose of these problems is to refresh your memory on key concepts you should 
remember from CS 110/120 as well as to get you working on the command line. 
 
Problem 1 
 
A palindrome is a word that is the same forward and backward. Example:  “racecar” is spelled 
the same both forward and backward. 
 
Write a recursive function called is_pal(str, pos1, pos2) to discover if a given string is a 
palindrome. The program should take the word it is performing the operation on from the 
command line.  Given the following commands, your program should produce the shown output: 
 

% python3 is_pal.py racecar 
True 
% python3 is_pal.py not_a_palindrome 
False 

 
def main(): 
    s1 = sys.argv[1] 
    print(pal(s1, 0, len(s1)- 1)) 
 

 

def pal(s, pos1, pos2): 
  

    if pos1 > pos2: 
        return True 
    elif s[pos1] == s[pos2]: 
        return pal(s, pos1 + 1, pos2 - 1) 
    else: 
        return False 
 

main() 
 



Problem 2 
 
Implement a python program called isort.py that reads in a stream of integers from standard 
input.  It should sort this integers using insertion sort, and print them out. It should behave as 
shown below. 
 

% python3 isort.py  
3 
1 
2 
^D (CTRL-D, end of input) 
1 2 3 

 
import sys 
 

def main(): 
 

    nums = []  
    for line in sys.stdin: 
        for num in line.split(): 
            nums.append(num) 
  

    nums = isort(nums) 
    print(nums) 
 

def isort(arr): 
    for i in range(1,len(arr)):  

        j = i  

        while j > 0 and arr[j] < arr[j-1]:  
            arr[j], arr[j-1] = arr[j-1], arr[j] 
            j=j-1  
    return arr 
 

main() 

 
 
 
 
 
 
 
 
 



Problem 3 
 
Recall the concept of a binary tree.  Essentially, we have nodes that hold data inside of them 
and each node has two children associated with it which also hold data. Recall that a binary 
search tree is defined as the data in the left child of a parent node to be considered respectively 
less than the data in the parent and the data in the right child should be considered respectively 
greater than that of the parent.  In order for a binary tree to be a BST, this invariant must hold at 
all nodes. Also recall we can perform different traversals on our tree such as inorder, preorder, 
or postorder traversals.  
 
Imagine we have the following binary tree node class: 

 
class Node: 
    def __init__(self, data): 
        self.left = None 
        self.right = None 
        self.data = data 
    def set_left(self, node): 
        self.left = node 
    def set_right(self, node): 
        self.right = node 
 

 
For this problem, write a recursive function called is_bst(node) that determines if a binary tree 
maintains the BST invariant by doing one of the mentioned traversals on it.  
 
def is_bst(node): 
 

    if (node.left != None): 
        if not is_bst(node.left): 
            return False 
        if (node.left.data > node.data): 
            return False 
 

 

    if (node.right != None): 
        if not is_bst(node.right): 
            return False 
        if node.right.data < node.data: 
            return False 
 

    return True 
 


