CSc 210: Software Development

Section 9: Inheritance with Raffle Tickets
October 30th, 2017

You've probably bought a raffle ticket at least once — one of those paper tickets with a
several digit number on it. This week, you and a partner will be writing classes that
support the creation of such tickets. Because there are many similar kinds of tickets with
common behaviors, an interface the specifies the common operations is a good place to

start.

Part I: Creating a Ticket Interface

1. We will be starting from scratch. Open your editor of choice to begin working.

2. Remember back to in class when we talked about interfaces. You now need to
create an interface named TicketGeneratable. java containing the following
methods:

a.
b
c.
d. public int lastIssued()

public String issueTicket()

. public int quantityIssued()

public int firstIssued()

3. Save your interface in a file named TicketGeneratable. java.

Part Il: Creating a TicketGenerator Class

1. We will now create a basic ticket generator that only supports the methods in our
interface. Open a new file called TicketGenerator.java and create a new public
class named TicketGenerator that implements the TicketGeneratable
interface.

2. A TicketGenerator object is going to a need a few variables:
a. A public integer constant NON_ISSUED representing the value -1
b. A boolean anyIssued initialized to false
c. An integer variable named nextNumber

3. Next, we will need a no argument constructer that sets NextNumber to zero.



4. Because our class implements TicketGeneratable, we must implement that
interfaces four methods. Create all four of them and have them do the following:
a. issueTicket(): Use String’s format(,) method with a format string of

"%06d" to create a six-digit string from nextNumber’s current value. Then
increment the nextNumber counter, change anyIssued to true (because
we’re issuing a ticket), and return nextNumber’s six character string
representation.

b. qtyIssued(): Return the number of tickets this object has issued. (Hint: It's
closely related to the number of the next ticket.)

c. firstIssued(): This method returns the number of the first ticket this
object issued. For TicketGenerator, that's always zero . . . unless no
tickets have been issued, in which case the method returns the value of
NONE ISSUED.

d. lastIssued(): This method returns the number of the last (most
recently-generated) ticket the object issued. Again, if no tickets have been
issued, the method returns the value of NONE ISSUED.

5. Visit the class web page, find the Section9.java program, bring it into the
directory you are working in, and open it in your editor. This program does
testing of the class you are writing.

6. Compile and run Section9.java. If all of your methods are coded correctly, the
output should end with the message: ==> Congratulations! All tests passed!.

Part Ill: Creating a RaffleTicketGenerator from TicketGenerator

1. With TicketGenerator done, we can turn our attention to raffle tickets. These
need a little more functionality than do basic tickets, while retaining the same
basic behaviors. Specifically, we need to be able to generate ticket numbers in
new ranges, so that people with numbers from previous raffles don’t try to re-use
their numbers. And, of course, we need to draw a winner of the raffle. Extra
functionality means extra methods, but to retain the functionality that
TicketGenerator provides, we need . . . inheritance

2. In Section9.java, there are two comment lines with lots of equal signs and the
text “Remove this line at the start of Part III!” Do it; delete both of those lines, but
only those two lines.



3. On the class web page is the file RaffleTicketGenerator.java Download it,
move it to your working directory, and open it in your editor. The first line of the
RaffleTicketGenerator class is missing. Create it, keeping in mind that this class
inherits from TicketGenerator and also inherits from TicketGeneratable.

4. RaffleTicketGenerator needs two constructors. The no-argument constructor is
very nearly the same as the no-argument constructor for TicketGenerator; we've
supplied it for you. The second constructor accepts the starting number for the
sequence of raffle numbers, and uses it to initialize nextNumber and startNumber
(the new instance variable in RaffleTicketGenerator). Using the no-argument
constructor as a guide, write this second constructor.

5. Thanks to inheritance, we don’t need to re-write any of the methods from
TicketGenerator that don’t change. Specifically, issueTicket() and
lastIssued() can be reused. We do need to ‘replace’ quantityIssued() and
firstIssued(), because they depend on the sequence starting number, which in
this class doesn’t need to be zero. Question: Is this ‘replacement’ of these two
methods an example of overriding or overloading?

6. Using the TicketGenerator version as a starting point, write the new version of
firstIssued(); we’ve given you the new version of qtyIssued().

7. RaffleTicketGenerator needs two new methods. Create both of them, such that
they each do what we need them to do:

a. reset() is a void method that accepts a new starting number for a raffle
ticket sequence and resets the state of the current object so that it
appears to be a brand-new RaffleTicketGenerator object, ready to issue
the given starting number as the first number of the sequence. Thus,
reset() is almost the same as the second constructor; the difference is
that reset() does not create a new object; instead, it changes the state of
the current object.

b. drawWinner() randomly selects and returns one number from the range of
ticket numbers that have been issued by this object. If no numbers have
yet been issued, this method returns the value of NON_ISSUED.

8. Time to test the RaffleTicketGenerator methods! In Section9. java, we've
provided a start on the testing of RaffleTicketGenerator, but you need to
complete it. Near the bottom is a comment that says:

/* Part III: Your job is to add the assertion-based testing
* for the second constructor. Fortunately, you have the



* above tests as guides. Suggestion: Copy-n-paste the
* code that tests Constructor 1 of RaffleTicketGenerator,
* and adjust it to test Constructor 2. */

Do it!

9. Compile and run Section9.java. When you no longer have syntax and logic
errors — that is, when you see the congratulations message — you’re done.



