
CSc 227 — Program Design and Development
(McCann)

Expression Tree Creation Algorithm

Notes:

• You don’t need to memorize this for the final, but you should understand how it works.

• Reaching the end of the input is considered to be the lowest-precedence operator by this algorithm

• This algorithm employs two stacks, one for operators and one for references to expression subtrees (which
are really just operands that have yet to be evaluated).

• This algorithm doesn’t know how to handle parentheses or unary operators. It’s not difficult to add
those features, but I figure this algorithm is complex enough as it is.

initialize next_symbol to any legal operator or operand

while next_symbol is not end-of-the-input

read the next_symbol

if next_symbol is an operand

create an operand node

place next_symbol in the node

push a reference to the node on the operand stack

else if the operator stack is empty,

or top(operator stack) has lower precedence than next_symbol

push next_symbol onto the operator stack

else

while the operator stack is not empty AND top(operator stack) has

precedence higher than or equal to next_symbol

pop the top operator from the operator stack

create a new operator node

place the popped operator into the node

pop the top reference from the operand stack

store that reference into the node’s right child reference field

pop the top reference from the operand stack

store that reference into the node’s left child reference field

push a reference to the node on the operand stack

end while

push next_symbol onto the operator stack

end if

end while


