CSc 227 — Program Design and Development
Spring 2014 (McCann)

http://www.cs.arizona.edu/classes/cs227 /spring14/
Program #5: Demons of Cyclic Space

Due Date: Tuesday, March 4, 2014, at 9:00 p.m. MST

Overview (Part I): The magazine Scientific American used to run a monthly column called “Computer
Recreations,” written for several years by A. K. Dewdney, now Professor Emeritus of Computer Science at
the University of Waterloo. The August 1989 column discusses and provides a rough algorithm for a two-
dimensional cellular automaton (2D CA) Dewdney named “cyclic space.” As older back-issues of Scientific
American aren’t available on-line, I've acquired scans of the article’s four pages and have compiled them into
a PDF document named dewdney0889.pdf available from the class web page in a password-protected area.
See Piazza for the username and password. Because the bulk of the implementation detail is on the article’s
third page (p. 104), I've attached it to this handout. You are encouraged to read the complete article to better
understand the ideas.

Overview (Part II): The textbook “Introduction to Programming in Java” by Robert Sedgewick and Kevin
Wayne uses a library of classes called stdlib to support their example programs. Part of the library is
a Picture class that was designed for doing simple image manipulation. We’ll be using it to display a
visualization of cyclic space. See the “Want to Learn More?” section, below, for the link to the stdlib
documentation.

Assignment: You will create two Java classes, each in its own .java file. Progh is the application; its job
is to create the automaton (2D CA) object, make it advance through time, and display the result of each
advance to the screen. This is the class that will deal with the graphics. The second class, Demon, manages
the automaton and its functionality, implementing the logic described in Dewdney’s column.

Before you can implement Demon, you’ll need to know how it works. Start by reading at least the attached
page, preferably the entire column. As you read, keep in mind that this was published in 1989, the year
the Intel 486 CPU was introduced and three years before Microsoft released Windows 3.1, the first successful
version of Windows. Technology advances rapidly in this business.

Dewdney’s audience consisted mainly of amateur computer programmers who were using the language BASIC,
so he doesn’t put his description in object-oriented terms. We expect that you will, and here’s how we want
you to do it.

Demon has just one constructor:

e public Demon (int, int, int) — The first two parameters are the height and width of the universe,
in cells, respectively. The third specifies the number of states; that is, each cell of the universe will hold
a value drawn from the domain [0...states — 1]. With this information, the constructor builds two 2D
arrays of bytes, one representing the current version of the universe, and the other the next version.
Also, the constructor sees to it that the initial current version is populated with randomly generated
byte values from the domain of possible state values (see populate (), below).

For our needs, this small set of Demon methods is sufficient:

e private void populate () — Called by the constructor to fill the current version of the universe with
the random state values. The stdlib class StdRandom has a static method uniform that can be used to
generate (pseudo-)random numbers, or you can use the generator provided in Java’s Math class.

e public byte[][] getUniverse () — The getter; it returns a copy of the current universe to the caller.

e public void setUniverse (byte[][]) — The setter; it replaces the current universe’s content.



e public void advance () — This uses the content of the current universe to determine the content of
the next universe. The details are spelled out in Dewdney’s column, mostly on page 104. Note that
Dewdney left out a key detail, probably on purpose: If a cell isn’t “eaten,” its value remains unchanged.

To help you with your debugging, here’s a sample 3x3 universe consisting of just 8 states (that is, each
cell has a value from 0 through 7). If you’re applying Dewdney’s rules correctly, you should get the
following sequence of universes:

0o 1 2 1 2 3 2 3 4

7 4 3 0 5 4 1 6 5

7 5 6 0 6 7 1 7 0
Initial Content After 1st Pass After 2nd Pass

Note that this is a contrived example; in general, not every cell will change from one version of the
universe to the next.

Also note that we're treating the universe as if it were wrapped around a torus (think ‘donut’ ... mmmmm,
donuts ...). For example, in the first universe above, 2’s right neighbor is 0 and its top neighbor is 6.
As Dewdney explains, this can be achieved by using modular arithmetic (that is, Java’s % operator).

Now, what about the Progb class? Start by carefully examining the Pattern. java example, thinking about
the representation of the board. It’s a 15x15 board, but we’re not using just 225 pixels to display it. Each
square is represented by a large rectangle. You are to follow this same idea: Here, each cell of the universe is
to be displayed using a 3x3 rectangle. You’ll have to do some calculations to determine where to place each
cell’s rectangle. With Pattern. java as your guide, it shouldn’t be hard to figure out.

To keep things manageable, you are to use a 100x100 universe. Limit your program so that it asks the Demon
object to generate only 250 new versions of the universe. As for the number of available states, use 13. Why
13?7 That matches the pre-defined color names in Java’s Color class. You can assign the colors to states in
any order you wish. In fact, if you’d like to, you can even define your own colors, but you’d have to dig into
Java a bit to find out how to do this. We recommend that you stick to the pre-defined colors, at least until
you get everything working correctly.

After you have the Picture object created, you can instantiate the Demon object and start generating new
versions of the universe to be displayed. After each new version has been displayed, use Java’s
TimeUnit.MILLISECONDS.sleep() method to wait a fifth of a second (200 milliseconds) before moving on to
the next version. This will keep the program moving slowly enough that the user can watch the show.

Keep this in mind: Demon objects don’t care about graphics. To debug Demon, you can just print the cells’
state values to the text output window, similar to the small example above. Using a smaller universe than 100
x 100 for initial testing is a good idea, too.

Data: You will be “hard-coding” (defining constants for) all of the necessary information (universe size,
number of states, etc.). The user isn’t expected to provide any information to the program.

Output: The major product of your program is the display of the sequence of versions of the automaton’s
universe. In addition, we want you to display to the text window (using System.out.println()) the version
number of the universe that was just displayed. When you finish displaying a universe, print the line “Just
displayed Universe Version #”, where # = 0 for the initial random universe.

Turn In: Use the ‘turnin’ page to electronically submit your Prog5. java and Demon. java files to the cs227p05
directory any time before the stated due date and time.

Want to Learn More?

e The Wikipedia page on cellular automata is a good starting point:
http://en.wikipedia.org/wiki/Cellular_automata



e The stdlib page has links to the documentation, plus much more:
http://introcs.cs.princeton.edu/java/stdlib/

e Working at home but connecting remotely to lectura? To see the graphics, try using one of the Remote
Access machines:
http://faq.cs.arizona.edu/index.php?action=artikel&cat=4&id=15

Hints, Reminders, and Other Requirements:

e To use TimeUnit, import java.util.concurrent.TimeUnit.
e Your program needs just one Picture object. Update its content with each new version of the universe.

e START EARLY! This assignment asks you to deal with 2D arrays, wrap-around neighborhoods, and
graphics, all for the first time this semester and all in the same assignment. You should expect to
encounter several problems that will require time to think through. Remember, section leaders don’t
have lab hours between Thursday night and Monday morning.

e As usual, we’ll be looking for good documentation, indentation, variable names, etc. Please allocate
enough time to do a good job with these. We’ll be looking for all the usual stuff: block comments,
appropriate naming, consistent indentation, etc.

e Even a tiny error in your implementation of the cyclic space algorithm can cause your visualization to
be incorrect. Pay close attention to detail. If it doesn’t behave like the demo I showed in class, it’s not
correct.

e Having trouble installing stdlib.jar at home? Remember that you can still write and test Demon
without it. You can then come to the lab to work on the graphics.

Using the stdlib.jar file: Collections of related Java classes are often packaged into .jar (Java ARchive)
files for easy distribution and inclusion into programs. So that you don’t need to do a lot of messing around
with this if you are using lab workstations, we’ve installed the file stdlib. jar for you. What you need to do
is tell javac and java where to find it.

Option 1: Compiling from the Command Line: Java makes use of an environment variable called CLASSPATH
to find Java packages. Your CLASSPATH lists names of directories to be searched for packages, but it doesn’t
include the path to stdlib.jar. You could monkey around with your environment to add the correct path,
or you can do it the easy way, by providing the path when you compile and run. Here’s how to do that with
the Pattern. java example:

$ javac -cp .:/home/cs227/springl4/stdlib.jar Pattern.java
$ java -cp .:/home/cs227/springl4/stdlib.jar Pattern

The ‘dot colon’ is important! Note that opening a Picture object won’t work if you simply SSHing into
lectura from home, unless you’re running X11 at home and using X11 forwarding on your SSH login, which
you probably aren’t. Instead, you can use one of the Remote Access servers, if you have a fast internet
connection.

Option 2: Compiling in Eclipse: If you know about the Eclipse IDE, you may be planning to use it on this
assignment. If so, here’s how to get Eclipse to associate the stdlib. jar file with your project.

1. If you're not in the lab, get the stdlib. jar file from the stdlib page. Remember where you stored it!
(If you're in the lab, you can use the copy already installed in /home/cs227/springl4.)

2. Create an Eclipse project for this assignment.

3. Right-click on the project in the Package or Project Explorer, move the cursor over the Build Path entry
until another pop-up menu appears, then click “Add External Archives ...”. You should see a “JAR
Selection” window. Use it to find the stdlib. jar file you downloaded, and click “Open.”

4. Compile and run your project as usual. You should only need to perform steps 1-3 once each.



and old ro hold the current and previ-
ous states of the cells in cyclic space.

repeat until key is pressed
for i« 1 to 100
for f«1 to 100
for each neighbor (k1) of (1, j)
if old(k,!) = old(i, )+ 1
then newd(i, j) « old(k,l)
for i< 1 to 100
for j«1 to 100
display new(i, j)
old(i, j) « new(i, j)

The outer loop, which ends when
the user of DEMON presses a certain
key, controls repetition of the main
checking and displaying cycles. (Of
course, there are other ways to con-
struct such a loop.) Readers who have
computers with small memories are
advised to limit themselves to a small-
er array of cells, say one that is 50 by
50. The two inner loops used here
presuppose a 100-by-100 cellular ar-
ray. The cell (i, j) sits at the intersec-
tion of the ith row and jth column.

The innermost loop of DEMON sim-
ply checks the state of each of the four
cells adjacent to cell (i,j). (Readers
must therefore include instructions
in their versions of the algorithm that
assign the values i— 1 and i+ 1 to the
index k while | equals j. Similarly, the
values j— 1 and j+ 1 must be assigned
to | while k equals i) If the state num-
ber of a neighboring cell happens
to be 1 more than the state number
of the cell at (i, j), then the cell at
(i, J) is eaten: it has its state number
changed to that of the neighboring cell.

104

The cyclic space in its final, demon phase

pEMON must perform modular arith-
metic when it calculates the value of
old(i, j) + 1. In other words, if old(i, j)
happens to be n— 1, the highest state
number, then old(i, j) + 1 is equal to 0.
Hence, if one has specified, say, 10
states in the cellular space, the state
numbers will be 0, 1, 2..., 9 and
941 =0.If the value of a cell changes,
the new value is assigned to new(i, j).

The double loop that follows the
checking loop displays all the cells
in new and then updates the old ar-
ray by replacing all its values by the
corresponding values in new. Readers
can consult previous columns, includ-
ing last month’s, to figure out how to
display the cells on the computer
screen.

Modular arithmetic must be applied
not only with cell-state numbers but
also with the indexes i and j them-
selves. The simplest way to achieve
the illusion of an infinite space is to
endow one’s screen with the “wrapa-
round” property. Cells on the extreme
right-hand margin are considered to
be adjacent to those on the left, and
cells at the bottom of the display are
effectively adjacent to those at the
top. The effect is created by using
index values from 0 to 99 instead of 1
to 100. The cell to the immediate right
of (23,99) is in fact (23,0), Hence, the
numbers i-1, i+1, j—1 and j+1,
which are index values of the neigh-
bors of cell (i, j ), must all be expressed
in modular form. Most programming
languages have instructions that do
that automatically.

Naturally, DEMON must allow a user

SCIENTIFIC AMERICAN August 1989

to “initialize” the cellular space under
its control. This step can be done by
including a provision in the algorithm
for eliciting the desired number of
states from the user, as well as a loop
that gives every cell in the space an
initial, randomly chosen state within
the allowed range of numbers.

What number of states works best?
it all depends on how long the reader
is willing to wait for the four phases to
succeed one another. When the num-
ber of states is very large, say more
than 25, a 100-by-100 random cellular
array is likely to remain fixed forever.
On the other hand, when the number
of states is small, the stages succeed
each other too quickly to be appreciat-
ed. Griffeath recommends between 12
and 16 states.

Some months ago 1 mentioned that
I would visit the University of Wiscon-
sin to report on the activities of the
so-called particle mafia, of which Grif-
feath is a member. (The name comes
from an early association of the gen-
eral field of particle systems with
Frank Spitzer, a mathematician at Cor-
nell University in upstate New York,
where—according to Hollywood leg-
end—the Mafia used to hang out.) Spit-
zer’s articles and talks on particle sys-
tems first popularized the subject in
North America, just as the work of his
colleague R. L. Dobrushin did in the
Soviet Union. Several of Spitzer's stu-
dents at Cornell as well as his follow-
ers elsewhere took up the work of
controlling the particle-systems num-
bers game. They include not only Grif-
feath but also Maury Bramson (also at
Madison), Richard Durrett of Cornell
and Thomas Liggett of the University
of California at Los Angeles.

What exactly is a particle system?
It is usually a cellular automaton in
which only one cell changes at a time,
often in a random fashion. The dif-
fusion-limited aggregation algorithm
described in last December’s column
is an example of a particle system.
There, a single particle wanders ran-
domly across a grid of cells until it
encounters a growing aggregate. Its
position is then frozen as another par-
ticle begins to wander. In time, the
aggregate invariably develops a tree-
like shape.

A number of important but difficult
problems are raised by particle sys-
tems, not the least of which are ques-
tions concerning the long-term stabili-
ty of certain phases that arise when
the systems are set running. Although
cyclic space is not a traditional parti-
cle system, Griffeath thinks it none-
theless provides a model for locally pe-
riodic wave formations that, because



