What Is Logic?

Definition: Philosophical Logic

Definition: Mathematical Logic
Propositional Logic

Propositional Logic is part of Mathematical Logic. Versions include:

- **First Order Logic** (FOL, a.k.a. *First Order Predicate Calculus* (FOPC)) includes simple term variables and quantifications.
- **Second Order Logic** allows its variables to represent more complex structures (in particular, predicates).
- **Modal Logic** adds support for modalities; that is, concepts such as possibility and necessity.

Well-Formed Formulae

Definition: Well-Formed Formula (wff)

Example(s):
Why Are We Studying Logic?

A few of the many reasons:

- Logic is the foundation for computer operation.
- Logical conditions are common in programs:
 - Selection:
    ```java
    if (score <= max) { ... }
    ```
 - Iteration:
    ```java
    while (i<limit && list[i]!=sentinel) ...
    ```
- All manner of structures in computing have properties that need to be proven (and proofs that need to be understood).
 - Examples: Trees, Graphs, Recursive Algorithms, ...
- Programs can be proven correct.
- Computational linguistics must represent and reason about human language, and language represents thought (and thus also logic).

Simple Propositions (1 / 2)

Definition: Proposition

```
... ...
```

Definition: Simple Proposition

```
... ...
```
Proposition Labels

To save writing, it is traditional to label propositions with lower-case letters called *proposition labels* or *statement letters*.

Example(s):
Compound Propositions

Definition: Compound Proposition

And with what do we combine them?

Conjunctions (1 / 2)

Remember ABC’s “Schoolhouse Rock” education series?

“Conjunction Junction” (1973)
(Music/Lyrics by Bob Dorough; Performed by Jack Sheldon)
Conjunctions (2 / 2)

Conjunctions are:

- compound propositions formed in English with the word “and”,
- formed in logic with the caret symbol (\(\wedge \)), and
- true only when both participating propositions are true.

Example(s):

Disjunctions (1 / 3)

Consider this compound proposition:

Under which circumstances is that claim true? Possibilities:

1. The first proposition is true.
2. The second proposition is true.
3. Both of the propositions are true.

If all three are acceptable, the disjunction is

_________________ ().
Consider the same example and possibilities:

3 is the number of sides of a triangle or the number of times this class meets per week.

Possibilities:

1. The first proposition is true.
2. The second proposition is true.
3. Both of the propositions are true.

If the third possibility is not acceptable, the disjunction is ______________ ().
Negation

Negating a proposition simply flips its value.

Symbols representing negation include:

\[\neg x \quad \bar{x} \quad \sim x \quad x' \]

Example(s):

Truth Tables (1 / 2)

Truth tables aid in the evaluation of compound propositions.

Structure of a Truth Table:

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
<th>p \land q</th>
<th>(p \land q) \lor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables (2 / 2)

Truth Tables of \land, \lor, \oplus, and \neg:

NOT (\neg)

<table>
<thead>
<tr>
<th>p</th>
<th>$\neg p$</th>
</tr>
</thead>
</table>

AND (\land)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
</tr>
</thead>
</table>

OR (\lor)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
</table>

XOR (\oplus)

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \oplus q$</th>
</tr>
</thead>
</table>

Precedence of Logical Operators

Total agreement is hard to come by:

Rosen 7/e	Gersting 5/e	Hein 2/e	Epp 1/e
Precedence | p. 11 | p. 6 | p. 351 | p. 24

Highest

\neg, \sim

\land, \land, \lor

\lor

\rightarrow, \leftrightarrow

Lowest

\leftrightarrow

(Note: We’ll cover \rightarrow and \leftrightarrow soon.)

In this class:
Operator Associativity

Consider evaluating: \(a = b = -2 \times 3 \times 7; \) in Java

Example(s):

Equivalence of Propositions

Definition: Logically Equivalent

Example(s):
Review: Is There isn’t a cloud in the sky a proposition?

Question: Is the following sentence a proposition?

Step 1: Identify the simple propositions.

Either Walter deposits his mortgage payment or else he will lose his house and move in with Donna.

Step 2: Assign easy-to-remember statement labels.
Step 3: Identify the logical operators.

Either Walter deposits his mortgage payment or else he will lose his house and move in with Donna.

Step 4: Construct the matching logical expression.

So . . . what’s the point? Three examples:

- Expressing Program Conditions
- Natural Language Understanding
- Proof Setup
Three Categories of Propositions (1 / 2)

Definition: Tautology

Definition: Contradiction

Definition: Contingency

Example(s):

\[d \oplus (\neg k \land m) \]

Three Categories of Propositions (2 / 2)

Example(s):
Digression: Logical Bit Operations in Java

<table>
<thead>
<tr>
<th>Operator</th>
<th>Name</th>
<th>Example (Dec.)</th>
<th>Example (Bin.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>∼</td>
<td>Complement</td>
<td>∼ 12 = −13</td>
<td>∼ 00001100 = 11110011</td>
</tr>
<tr>
<td>&</td>
<td>AND</td>
<td>12 & 10 = 8</td>
<td>& 1010 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>10 = 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR</td>
</tr>
<tr>
<td>∧</td>
<td>XOR</td>
<td>12 ∧ 10 = 6</td>
<td>∧ 1010 0110</td>
</tr>
<tr>
<td>>></td>
<td>Shift Right</td>
<td>33 >> 1 = 16</td>
<td>>> 1 = 00010000</td>
</tr>
<tr>
<td><<</td>
<td>Shift Left</td>
<td>33 << 2 = 132</td>
<td><< 2 = 10000100</td>
</tr>
</tbody>
</table>

Example: Linux File Permissions

```bash
-rw-rw-r-- 1 mccann mccann 3561 Oct 28 1929 stocktosell
```
Conditional Propositions (1 / 3)

Example:

Definition: Conditional Proposition

Conditional Propositions (2 / 3)

In “if \(p \), then \(q \)”, \(p \) and \(q \) are known by various names:

Common forms of “if \(p \), then \(q \)” (Rosen 7/e, p. 6):

- if \(p \), then \(q \)
- if \(p \), \(q \)
- \(p \) implies \(q \)
- \(p \) only if \(q \)
- \(p \) is sufficient for \(q \)
- a necessary condition for \(p \) is \(q \)
- \(q \) unless \(\neg p \)
- \(q \) if \(p \)
- \(q \) when \(p \)
- \(q \) whenever \(p \)
- \(q \) follows from \(p \)
- \(q \) is necessary for \(p \)
- a sufficient condition for \(q \) is \(p \)
- and I’m sure you could find more!
Truth of Conditional Propositions (1 / 2)

When should this be considered ‘true’?

If you make it through voir dire, you will serve on the jury.

The possibilities:

1. Antecedent true, Consequent true; statement is: ____.

2. Antecedent true, Consequent false; statement is: ____.

3. Antecedent false, Consequent true; statement is: ____.

4. Antecedent false, Consequent false; statement is: ____.
Truth of Conditional Propositions (2 / 2)

Not satisfied? Maybe this will help:

```java
if (y < x) {
    temp = x;  x = y;  y = temp;
}
```

Inverse, Converse, and Contrapositive

Definition: Inverse

Definition: Converse

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Contraposition

Definition: Contrapositive

<table>
<thead>
<tr>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Examples: English Translation (1/2)
Example: English → Logic
Another Example: English → Logic

Political Example: “Push” Polling

“Would you be more likely or less likely to vote for John McCain for president if you knew he had fathered an illegitimate black child?”

— Used in 2000 U.S. Presidential Campaign
What is the meaning of:

A triangle is equilateral if and only if all three angles are equal.

Definition: Biconditional Proposition

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Biconditionals and Logical Equivalence

Definition: Logically Equivalent (2)

Example(s):

De Morgan’s Laws

Example(s):
Example: De Morgan’s Laws and Programming

Checking to see if a score is not a ‘B’:

Common Logical Equivalences (1 / 3)

Table I: Some Equivalences using AND (\(\land\)) and OR (\(\lor\)):

(a) \(p \land p \equiv p\), \(p \lor p \equiv p\)	Idempotent Laws
(b) \(p \lor T \equiv T\), \(p \land F \equiv F\)	Domination Laws
(c) \(p \land T \equiv p\), \(p \lor F \equiv p\)	Identity Laws
(d) \(p \land q \equiv q \land p\), \(p \lor q \equiv q \lor p\)	Commutative Laws
(e) \((p \land q) \lor r \equiv (p \land q) \land (p \land r)\)	Associative Laws
\((p \lor q) \land r \equiv (p \lor q) \lor (p \lor r)\)	Distributive Laws
(f) \(p \land (q \lor r) \equiv (p \land q) \lor (p \land r)\)	Absorption Laws
\(p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)\)	
\(p \land (p \lor q) \equiv p\), \(p \lor (p \land q) \equiv p\)	

Table II: Some More Equivalences (adding \(\neg\)):

(a) \(\neg(\neg p) \equiv p\)	Double Negation
(b) \(p \lor \neg p \equiv T\), \(p \land \neg p \equiv F\)	Negation Laws
(c) \(\neg(p \land q) \equiv \neg p \lor \neg q\)	De Morgan's Laws
\(\neg(p \lor q) \equiv \neg p \land \neg q\)	
Table III: Still More Equivalences (adding →):

(a) \(p \rightarrow q \equiv \neg p \lor q \) Law of Implication
(b) \(p \rightarrow q \equiv \neg q \rightarrow \neg p \) Law of the Contrapositive
(c) \(T \rightarrow p \equiv p \) "Law of the True Antecedent"
(d) \(p \rightarrow F \equiv \neg p \) "Law of the False Consequent"
(e) \(p \rightarrow p \equiv T \) Self-implication (a.k.a. Reflexivity)
(f) \(p \rightarrow q \equiv (p \land \neg q) \rightarrow F \) Reductio Ad Absurdum

Remember:

You do not need to memorize these tables . . .

... But you do need to know how to use them!
Applications of Logical Equivalences (1 / 5)

Question: Is \((p \land q) \rightarrow p\) a tautology? (1)

By use of a Truth Table; we’ve seen this before:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \land q)</th>
<th>((p \land q) \rightarrow p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Because the expression evaluates to true for all possible arrangements of truth values, the expression is a tautology.

Applications of Logical Equivalences (2 / 5)

Question: Is \((p \land q) \rightarrow p\) a tautology? (2)
Question: Is \((p \land q) \rightarrow p\) a tautology? (3)

Example(s):

```plaintext
if ((games <= 10 || ties > 2) && games >= 11) ...
```
Question: Are \((p \land q) \lor (p \land r)\) and \(p \land (\overline{q} \land \overline{r})\) logically equivalent?