Why Are We Studying Matrices?

Matrices have plenty of uses in Computer Science. E.g.:

- Representation . . .
 - . . . of the graph data structure (see CSc 345)
 - . . . of functions and relations (see Topics 8 and 9)

- Affine transformations in Computer Graphics
Matrix Fundamentals (1 / 3)

Definition: Matrix

Notation:

Matrix Fundamentals (2 / 3)

Definition: Square Matrices

Definition: Matrix Equality
Matrix Fundamentals (3 / 3)

Definition: Transposition

Definition: Matrix Symmetry

Example(s):

Matrix Operations (1 / 5)

1. Matrix Addition

Definition: Matrix Addition

Example(s):
Matrix Operations (2 / 5)

2. Scalar Product

Definition: Scalar

Definition: Scalar Product

Example(s):

Matrix Operations (3 / 5)

3. Matrix Product

Definition: Matrix Product (a.k.a. Matrix Multiplication)

...
The Identity Matrix

Remember the concept of Multiplicative Identity?

Definition: **Identity Matrix**

```
[ 1 0 0 ]
[ 0 1 0 ]
[ 0 0 1 ]
```

Matrix Powers

Definition: n^{th} **Matrix Power**

```
[ 1 0 0 ]
[ 0 1 0 ]
[ 0 0 1 ]
```

Example(s):
Example: Affine Transformations (1 / 3)

Used to ‘move’ objects in computer graphics.

Background:

Example: Affine Transformations (2 / 3)

Task:
Zero-One Matrices (1 / 3)

Three Operations:

1. ‘Join’:

2. ‘Meet’:

Example(s):
3. ‘Boolean Product’:

Example(s):

Definition: r^{th} Boolean Power