Algorithms

Definition: Algorithm

...

Example(s):

...
The Framework

1. [] — means that the solution can be described by an algorithm
 (a) [] — the algorithm is efficient
 (b) [] — no efficient solution algorithm is known

2. [] — no algorithm will ever describe the solution

Algorithm Characteristics (1 / 2)

Six Desirable algorithm characteristics:

1. Input —

2. Output —

3. Generality —
Algorithm Characteristics (2 / 2)

4. **Definiteness** —

5. **Correctness** —

6. **Finiteness** —

Example: Tooth-brushing Algorithm

1. Grab the toothpaste
2. Uncap the toothpaste
3. Grab your toothbrush
4. Squeeze toothpaste onto your toothbrush
5. Brush your teeth
Example: Decimal to Base X Conversion

INPUT:
- \(n \): Base 10 value to be converted
- \(\text{base} \): Destination number system

OUTPUT:
- \(\text{digit()} \): \(\text{digit}(0) \) holds LSD of result

```
quotient <-- n
i <-- 0
while quotient does not equal 0:
    digit(i) <-- quotient modulo base
    quotient <-- the floor of quotient/base
    increment i by 1
end while
```

Some Sample Iterative Algorithms (2 / 3)

What is the cost to evaluate \(f(x) = 2x^3 - 4x^2 + 3x + 6 \)?
Example: Horner’s Algorithm for Polynomial Evaluation

INPUT:
- \(x \) Value used to evaluate the polynomial
- \(n \) Largest exponent
- \(a(0) .. a(n) \) Coefficients of \(x^0 .. x^n \)

OUTPUT:
- \(\text{result} \) Evaluation of the polynomial

\[
\begin{align*}
\text{result} & \leftarrow a(n) \\
\text{index} & \leftarrow n - 1 \\
\text{while } \text{index} \geq 0: & \\
 & \text{result} \leftarrow x \times \text{result} + a(\text{index}) \\
 & \text{decrement index by 1} \\
\text{end while} & \\
\text{output result} & \\
\end{align*}
\]

Recursive Definitions (1 / 2)

Definition: Recursive Definition

A complete recursive definition has three parts:

(a) The \(\underline{\text{ }} \) determines how trivial cases are to be handled.

(b) The \(\underline{\text{ }} \) describes complex problem instances in terms of simpler instances

(c) The \(\underline{\text{ }} \) provides bounds on the definition
Recursive Definitions (2 / 2)

Example(s):

Recursive Algorithms

Definition: Recursive Algorithm

Control Structures in Programming Languages
Definition: Factorial

The factorial of \(n \in \mathbb{Z}^* \), denoted \(n! \), is the product of all integers 1 through \(n \), where \(0! = 1 \).

An iterative factorial algorithm is easy to create:

```plaintext
product <-- 1
while n is larger than 1:
    product <-- product * n
    n <-- n - 1
end while
output product
```

Example: Factorials (2 / 3)

Factorials can be easily computed recursively:

\[
4! = 4 \cdot 3 \cdot 2 \cdot 1 \\
4! = 4 \cdot 3!
\]

But what are the Basis, Inductive, and Extremal clauses?
Example: Factorials (3 / 3)

Recursive pseudocode algorithm:

```
subprogram factorial ( given: n ) returns: n!
    if n is 0
        return 1
    else
        answer <-- n * factorial(n-1)
        return answer
    endif
end subprogram
```

Can We Prove Our Algorithm? (1 / 2)

Conjecture: `factorial(n)` returns `n!`.
Another Structural Induction Proof (1 / 4)

Conjecture: In a binary tree, the number of null references equals one more than the number of nodes in the tree, for all non-empty binary trees.
Example: Fibonacci Sequence (1 / 2)

Definition: Fibonacci Sequence

The \(n \)th term of the Fibonacci Sequence is the sum of terms \(n - 1 \) and \(n - 2 \), where \(F(0) = 0 \) and \(F(1) = 1 \).

Recursively generating terms of the sequence is easy . . .

```plaintext
subprogram fibonacci ( given: n ) returns: n-th term
    if n is 0 or 1
        return n
    else
        return fibonacci(n-1) + fibonacci(n-2)
    end if
end subprogram
```
Example: Fibonacci Sequence (2 / 2)

... but inefficient!

Consider this tree of invocations resulting from $\text{fibonacci}(5)$:

$$
\begin{aligned}
\text{fibonacci}(5) &= f(5) \\
&= f(4) + f(3) \\
&= f(3) + f(2) + f(1) \\
&= f(2) + f(1) + f(0) \\
&= f(1) + f(0)
\end{aligned}
$$

Extra Slides

The remaining slides in this topic are some that I no longer cover in class. I won’t ask about them on a quiz or an exam, but they could be referenced on a homework or in section.
Example: Euclidean Algorithm for GCDs

Theorem: \(\text{GCD}(a,b) = \text{GCD}(b,a \mod b) \)

Recursive pseudocode algorithm:

```plaintext
subprogram GCD (given: a, b) returns: gcd(a,b)
    if a is 0, return b endif
    if b is 0, return a endif
    answer <-- GCD(b, a % b)
    return answer
end subprogram
```

Example: Sums Of Odd Positive Integers (1 / 2)

\(\mathbb{Z}^+ : 1 \ 2 \ 3 \ 4 \ \ldots \ \ n \ \ \frac{(m+1)}{2} \)

\(o : 1 \ 3 \ 5 \ 7 \ \ldots \ \ 2n - 1 \ \ m \)

Let \(\text{oddsum}(\text{term}) \) represent the sum of \(o(1) \) through \(o(\text{term}) \).

Base: \(\text{oddsum}(1) = 1 \)

General: \(\text{oddsum}(\text{term}) = \text{oddsum}(\text{term}-1) + 2 \times \text{term} - 1 \)
Example: Sums Of Odd Positive Integers (2 / 2)

Recursive implementation, using pseudocode:

subprogram oddsum (given: term)
 returns: sum from 1 through term of (2i-1)

 if term is 1, return 1
 otherwise
 answer <-- oddsum(term-1) + 2*term - 1
 return answer
 end if

end subprogram

Proving oddsum () (1 / 2)

Conjecture: oddsum(t) produces \(\sum_{i=1}^{t} (2i - 1) \), \(\forall t \geq 1 \)

Proof (by structural induction):

Basis: At \(t = 1 \), the algorithm returns 1, and \(\sum_{i=1}^{1} (2i - 1) = 1 \). OK!

Inductive: If oddsum(t) returns \(\sum_{i=1}^{t} (2i - 1) \),

then oddsum(t + 1) returns \(\sum_{i=1}^{t+1} (2i - 1) \).

(Continues …)
When given \(t + 1 \), \(\text{oddsum}() \) returns
\[
\text{oddsum}(t) + [2(t + 1) - 1] = \text{oddsum}(t) + (2t + 1).
\]

By the Inductive Hypothesis, \(\text{oddsum}(t) = \sum_{i=1}^{t}(2i - 1) \).

Substituting, \(\text{oddsum}(t + 1) \) returns \(\sum_{i=1}^{t}(2i - 1) + (2t + 1) \).

\(2t + 1 \) is the \((t + 1)^{st}\) term of the sequence; thus
\[
\sum_{i=1}^{t}(2i - 1) + (2t + 1) = \sum_{i=1}^{t+1}(2i - 1).
\]

Therefore, \(\text{oddsum}(t) \) produces \(\sum_{i=1}^{t}(2i - 1) \), \(\forall t \geq 1 \).