Topic 3: Logic Gates and Adders

- Logic Gates
- Sum of Products
- Half Adder
- Full Adder
- Ripple-Carry Adder
Logic Gates

• How are boolean values represented in hardware?
 – Electrical signals on wires
 – Low voltage = 0 = false
 – High voltage = 1 = true

• How is logic implemented in hardware?
 – Logic gates
 – Input wires, output wires

• All logic is running, all the time!
Logic Gates

• This is an OR gate. Two inputs, one output.

A

B

A or B

• The value of the output is always equal to the OR of the two inputs
 - Never turns off!
 - Detail: propagation delay
Logic Gates

- We can build more complex expressions by connecting inputs to outputs:

\[(A \lor B) \land (C \lor D)\]
Logic Gates

- Solid dots represent connected wires (sometimes omitted)

\[(A \lor B) \land (B \lor C)\]
The Basic Elements

OR

AND

NOT

NOT (alternate)

It's OK to label the gates with text if you need.
Shorthand for NOT

- The dot (NOT) can be applied on inputs or outputs

NOR

NAND

(A | B)

(\sim A | B)
XOR

- XOR is occasionally useful

\[
\begin{array}{c}
\text{A xor B} \\
\hline
\text{A} \\
\hline
\text{B} \\
\end{array}
\]

Group Exercise:

Devise a network of AND, OR, NOT gates which implements XOR.

Two inputs: A, B
XOR

Solution 1 of 2:

\[A \text{ xor } B = (A \lor B) \land \neg (A \land B) \]
XOR

Solution 2 of 2:

\[A \text{ xor } B = (A \& \sim B) \mid (\sim A \& B) \]
Principles of Logic Design

• Composition
 - Implement large components from smaller pieces
 - Like programming!

• Logic = Boolean Algebra
 - One-to-one map between gates, operators
More Inputs

- How to implement gates with multiple inputs?

Group Exercise:

Devise a way to build a 3-input AND gate from 2-input gates.

Then devise **2 different** ways to build an 8-input AND!
More Inputs

Questions:

How many 2-input gates were required?
(This affects the **cost** of the chip)

What is the longest path from an input to the output?
(This affects the **speed** of the chip)
More Inputs

Questions:

How many gates?
What is the path length?
Questions:
How many gates?
What is the path length?
Shorthand Symbols

- For simplicity, we often use \(\bullet \) to represent AND, + to represent OR, and bar to represent NOT.
 - Sometimes, we skip the \(\bullet \)

\[
\left(A \land B \land C \right) \lor \left(\neg A \land \neg B \land \neg C \right) \\
\left(A \ast B \ast C \right) + \left(\overline{A} \ast \overline{B} \ast \overline{C} \right) \\
\left(ABC \right) + \left(\overline{A} \overline{B} \overline{C} \right)
\]
Truth Tables

• Any logical expression (no matter how complex) can be modeled as a truth table.

Group Exercise:

Write a truth table with three inputs (A,B,C), and three outputs:

X is true if all of the inputs are true
Y is true if any of the inputs are true
Z is true if exactly two of the inputs are true
X is true if **all** of the inputs are true
Y is true if **any** of the inputs are true
Z is true if **exactly two** of the inputs are true

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Sum of Products

- Any truth table can be modeled as a “sum of products”
 - Each product represents one true row.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A xor B</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Questions:
Which rows are true?
How to encode each as a product?
Any truth table can be modeled as a “sum of products”
- Each product represents one true row.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(A \text{ xor } B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[A \text{ xor } B = (\overline{AB}) + (\overline{AB})\]
Group Exercise:

Write a truth table with three inputs (A,B,C), and three outputs:

- X is true if all of the inputs are true
- Y is true if any of the inputs are true
- Z is true if exactly two of the inputs are true

Convert X,Y,Z to sum-of-products.

Convert each sum-of-products to a gate network.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$X = ABC$
\[Y = \overline{ABC} + \overline{AB} \overline{C} + \overline{A} \overline{BC} + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{BC} + \overline{ABC} \]

Optimization is possible.

But it's outside the scope of this class!
\[
A \quad B \quad C \quad X \quad Y \quad Z
\]
\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
\end{array}
\]

\[
Z = (\overline{ABC}) + (\overline{A}\overline{B}\overline{C}) + (\overline{A}\overline{B}\overline{C})
\]
Z = (\overline{ABC}) + (\overline{A}\overline{BC}) + (ABC\overline{C})
Half Adder

- A half adder is a logic component which does addition – but which has no carryIn.
Group Exercise:
Write the truth table for a half adder.

Convert to sum of products, then to a logic network.

Optional:
Optimize the 'sum' output to be a single gate. It will be something more complex than AND/OR/NOT.
Half Adder

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>sum</th>
<th>carryOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\text{sum} = (\overline{A}B) + (A\overline{B}) = A \text{ xor } B \\
\text{CarryOut} = AB
\]
Half Adder
Full Adder

- This is the symbol for a full adder
Full Adder

• To build a **full adder**, add twice:
 \[(a+b)+\text{carryin}\]
 – (This is why we call the simpler piece a half adder.)

• We have a carry if there was a carry in **either** of the two add operations!
Full Adder

\[\text{carryIn} \rightarrow 1/2 \rightarrow \text{sum} \]

\[a \rightarrow 1/2 \rightarrow \text{carryOut} \]

\[b \rightarrow 1/2 \rightarrow \text{carryOut} \]
Full Adder, a 2^{nd} View

carryIn

A
B

carryOut

sum
Full Adder

- We just gave 2 different versions of the Full Adder
 - They are equivalent
 - Two different levels of abstraction
 * 2 half adders
 * Lots of gates

- Wait … XOR isn't a low-level gate, either!
Full Adder, a 3rd View

Sorry that not all of the lines are connected...the diagram's getting too complex!

(But that's the point. \textit{Abstraction is good}.)
Two Gate Networks, in parallel

Group Exercise:

Redraw the circuit as two gate networks. In each network, only include the gates necessary for that output.

(I'll go back to the XOR version of the Full Adder so that you can see what it was.)
Full Adder: \textit{sum}
Full Adder: \textit{carryOut}
Group Exercise:

Work backwards from a gate network to a truth table!

Using the diagrams from the previous slides (I'll go back in a moment), write a logical expression for the outputs `sum`, `carryOut`.

HINT: They will not be a sum-of-products.

Then build a truth table, and see what those expressions resolve to in each case.

Finally, **check** to see if the outputs are correct, based on what you know about how addition should work.
Full Adder, a 3rd View

Question:
What is the propagation delay for the sum output, if we build the circuit like this?
Can we improve it?
Group Exercise:

Using your truth table for \textit{sum}, \textit{carryOut}, build sum-of-products expressions for both outputs.

Purpose:
Every circuit has multiple implementations. Abstraction is good for designers; but often, the real circuit will need to be optimized.

In this class, we see that optimization is possible, but don't study it in depth.
Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>carryIn</th>
<th>sum</th>
<th>carryOut</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Equations

\[
\text{sum} = (\overline{ABC}) + (\overline{AB} \overline{C}) + (A \overline{BC}) + (ABC)
\]

\[
\text{cOut} = (\overline{A} BC) + (A \overline{B} C) + (AB \overline{C}) + (ABC)
\]

\[
\text{cOut} = (BC) + (AC) + (AB)
\]
Buses

• We use the following symbol to represent a multi-bit bus:

• A bus is a bunch of wires going together to the same destination.
Adder

- We want to build an adder that adds **multiple** bits:
Multi-Bit Adder

- We can chain the adders together to build a multi-bit adder.

- The LSB only needs a half adder (for now).
Multi-Bit Adder

- This is called a **ripple carry adder**.
 - Each bit cannot calculate its sum or carryOut until carryIn is ready.

- Ripple carry adders are easy to understand but **very slow**.
 - (Better version coming later)