PHP

CSC 337, Fall 2013
The University of Arizona

William H. Mitchell
whm@cs

CSC 337 Fall 2013, PHP Slide 1

Big picture

HTML — Hypertext Markup Language
Specifies structure and meaning

CSS — Cascading Style Sheets
Specifies presentation

PHP — PHP: Hypertext Preprocessor

One of many back-end languages popular for
generating HTML and CSS.

JavaScript

Lets us write code that runs on the front-end (i.e, in
the browser.)

CSC 337 Fall 2013, PHP Slide 2

Background

CSC 337 Fall 2013, PHP Slide 3

What is PHP?

"PHP is a popular general-purpose scripting language that is
especially suited to web development."—php.net

Recursive acronym: "PHP: PHP Hypertext Preprocessor"
w3techs.com reports that PHP is used on 81.2% of all websites
php.net claims PHP "is installed on" 244 million websites

PHP is used by Facebook, Wikipedia, Twitter and many other large
sites.

PHP underlies many Content Management Systems including
Drupal and WordPress.

CSC 337 Fall 2013, PHP Slide 4

PHP: Good news and bad news

phpsadness.com
Comedy Central for language designers

"There are only two kinds of languages: the ones people
complain about and the ones nobody uses."
—Bjarne Stroustrup (the creator of C++)

Confession: PHP is the newest language in my toolbox.
My current opinion: "Lots of dopey stuff, too many must-

know details, but sorta fun to use. Lots of influence from
C but has automatic memory management."

CSC 337 Fall 2013, PHP Slide 5

Quick history

1994: Rasmus Lerdorf writes some Perl CGlI (Common Gateway
Interface) scripts for his personal homepage.

1995: Lerdorf announces Personal Home Page Tools (PHP Tools)
version 1.0, an evolved rewrite in C of those tools.

May 1998: 60,000 sites using PHP (about 1% of all sites.)
June 1998: PHP 3; first release that resembles today's PHP.
2004: PHP 5; improved support for OO programming

Later releases: PHP 5.3—2009, 5.4—2012, 5.5—2013

PHP 6 is on indefinite hold (but there are PHP 6 books!)

More at php.net/manual/en/history.php.php

CSC 337 Fall 2013, PHP Slide 6

PHP.net

PHP.net is the official PHP website and is the primary
resource for PHP. It is maintained by the PHP Group.

My "search engines" (browser keywords) for PHP:

© O O © O O O

np.net/manual/en/

np.net/results.

np.net/manua
np.net/manua
np.net/manua
np.net/manua

Np.net

php?q=%s
/en/function.%s.php
/en/language.types.%s.php
/en/language.operators.php
/en/ref.strings.php

CSC 337 Fall 2013, PHP Slide 7

PHP books

| still haven't found a PHP book | like even a tenth as
much as HFHC. But having said that...

Programming PHP, 39 edition by Tatroe, MaclIntyre and
Lerdorf

PHP and MySQL Web Development, 4th edition, by Welling
and Thomson

Learning PHP, MySQL, JavaScript, and CSS, 2" edition, by
Nixon

Head First PHP & MySQL by Beighley and Morrison

CSC 337 Fall 2013, PHP Slide 8

Interacting with PHP

CSC 337 Fall 2013, PHP Slide 9

PHP's interactive mode

PHP's interactive mode, invoked with php -a, provides
an environment to interactively evaluate PHP
expressions. It's great for learning and experimenting.

Sadly, PHP's interactive mode doesn't work on Windows
with standard PHP distributions, which lack "readline”
support.

If you've got a Windows machine, use PUTTY to login on
lectura and use php -—a there.

On Mac OS X, just run php —ainaTerminal oriTerm
window.

CSC 337 Fall 2013, PHP Slide 10

Sidebar: Getting and running PuTTY
If you Google for "putty", the first hit should be this:

PuTTY Download Page

www.chiark.esreenend.org.uk/~sgtatham/putty/
download.html

Download putty.exe. It's just an executable—no installer!

Binaries

The latest release version (beta 0.63).
fixed the bug, before reporting it to me

For Windows on Intel x86
PuTTY: p utty .eX_CT,ZQZ:',ﬁit»
PuTTYtel: puttytel exe

PSCP: pSCp.exe

CSC 337 Fall 2013, PHP Slide 11

PuTTY, continued

Click on putty.exe to run it. In the dialog that opens, fill in
lec.cs.arizona.edu for Host Name and click Open.

Q?. PuTTY Configuration

Categony:
= Session ‘ B aszic options far your PuT TY seszion ‘
P L.oggmg Specify the destination you want to connect ta
= Terminal
: Keyboard I-I/-:ns_tﬂamel‘?! IP addrezz) Part
Bel QEctura.cs.anzana.edQ | |22 |
' Features Connection type:
= Window (O Raw (O Telnet O Rlogin) 55H (O Serial
.;.ppea.rance Load, zave or delete a stored zezzion
- Behaviour
- Translation Saved Sessions
- Selection l ‘
- Colours

5 Drefault Settings
=- C'Dnnection Lo

=
o
o

Save
- Prosy
- Telnet Delete
- Rlagin
+-55H
----- Serial

Cloze window on exit:
O always (O MNever (%) Only on clean exit

[Abot] [Help] ® Cancel

CSC 337 Fall 2013, PHP Slide 12

php —a on lectura

Login to lectura using your netid. Runphp -a, and trya

couple of echo statements:

login asi whm
whmilec's password:

...stuff re passwords...

Last login: Wed Ooct 9 21:28:20 2013 from c-68-

S (1

Interactive shell

Hello
php >
7

php > {(control-D to exit php)
$ exit (to logout from lectura)

]

hd

Go to http://cs.arizona.edu/computing/services and use

"Reset my forgotten Unix password" if needed.

CSC 337 Fall 2013, PHP Slide 13

Extra Credit Assighment 1

Due: Monday, October 14 at 2:45pm
Worth: 3 points
Why: To get you up and running with php -a

What:

Use php -a to doten echo commands with some
amount of variety among them. (Hint: echo 1;
echo 2; ...will be worth about zero points.)

Capture the interaction as text, save it as a file
named php.txt and turn in that file (no zip!) via the
ecal D2L Dropbox. Note: Text only! No screenshots!

CSC 337 Fall 2013, PHP Slide 14

Interactive mode

php -a starts an interactive mode. Statements are
executed as they are entered.

One way to see the value an expression produces is to
use the echo statement:

o

5 php -a
Interactive shell
php > echo 1 + 2;
3

php > echo 1, 2, 3;
123

Don't forget the semicolon!!

CSC 337 Fall 2013, PHP Slide 15

Some basics

CSC 337 Fall 2013, PHP Slide 16

Arithmetic operators

The arithmetic operators are about what you'd expect.

php > echo 1+2, " ", 3*4;

3 12

php > echo 5-6, " ", 7 % 2;
-1 1

php > echo 4/3, " ", 120/3;

1.3333333333333 40
Any surprises?

php.net/manual/en/language.operators.arithmetic.php

CSC 337 Fall 2013, PHP Slide 17

Variables
Variable names are always preceded with a dollar sign.

php > Swidth = 10;

php > Sheight = 20;

php > $area=$width*Sheight; # spaces not needed
php > echo $area;

200

php > echo $area + $arae;

200

Undefined variables default to context-based values.

Variable names can start with letters and underscores, and can
contain digits after the first character.

There are no variable declarations (like int xin Java.)

CSC 337 Fall 2013, PHP Slide 18

Sidebar: error_reporting() —a PHP "knob"

Note this difference in behavior between lectura...
% php —a
php > Sx=Sy;
Notice: Undefined variable: y in php shell code on line 1
php > echo error_reporting();
22527

and my Mac...
% php —a
php > $x=Sy;
php > echo error_reporting();
22519
php > error_reporting(22527); # adjustit! (E_NOTICE on)
php > $x=Sy;
Notice: Undefined variable: y in php shell code on line 1

CSC 337 Fall 2013, PHP Slide 19

Variables have no type

In languages like Java and C, variables are declared to
have a type, like char, int [], String, List, and Object.

When a program is compiled, the compiler ensures that
all operations are valid with respect to the types involved.

Variables in PHP do not have a type. Instead, type is
associated with values.

In Java you say, "What's the type of x?"

In PHP you say, "What's the type of the value held by x?"

CSC 337 Fall 2013, PHP Slide 20

Variables have no type, continued
The gettype () function returns the type of a value.

php > echo gettype(2/3);
double

php > $x = 2/3;
php > echo gettype ($x) ;
double

php > $x = 7;
php > echo gettype ($x) ;
integer

php > echo gettype ($x/3);
double

CSC 337 Fall 2013, PHP Slide 21

Characterizing type-checking

Some people use the term "strongly typed" to
characterize languages like Java and C, and "weakly
typed" to characterize languages like PHP and Python but
the merit of those terms is debatable.

A better way to characterize a language is to say when
type checking is done.

e Java does compile-time type checking and some
run-time type checking, too.

e (Cdoes compile-time type checking but absolutely
no run-time type checking.

 PHP and Python do only run-time type checking.

CSC 337 Fall 2013, PHP Slide 22

The string type

PHP has a string type. Literals can be enclosed in
single- or double-quotes

The concatenation operator is dot.

php > echo 1, "...", 2, "...", 3;
1...2...3

php > echo "abe" . 'xyz';

abcxyz

http://www.php.net/manual/en/language.types.string.php

CSC 337 Fall 2013, PHP Slide 23

String literals

Literals can be enclosed in single- or double-quotes but

the only backslash escapes recognized in single-quotes
are \' and \\.

php > echo "Test\nthis\x21";
Test

this!

php > echo 'Test\nthis\x21';
Test\nthis\x21

php > echo 'How\'s\nthis?';
How's\nthis?

CSC 337 Fall 2013, PHP Slide 24

string, continued

Individual characters in a string can be accessed with zero-
based offsets enclosed in square brackets.

If an offset is out of bounds, an empty string is returned.

php > $s = "abcdef";

php > echo $s[2];

C

php > echo gettype ($s[2]);
string

php > echo $s[10];

php > echo strlen($s[10]);
0

Anything notable?

CSC 337 Fall 2013, PHP Slide 25

string, continued

PHP strings are mutable!

np > Ss = "abcd";
np > $s[0] = "X";
np > echo Ss;

bcd

X T T T

php > $s[1] = "YYY"; # Note: only Ss[1] is changed
php > echo Ss;
XYcd

php > $s[2] ="";
php > echo Ss; # Assigning " deletes! WRONG!
XYd

CSC 337 Fall 2013, PHP Slide 26

string functions

Almost 100 string functions are described in
http://php.net/manual/en/ref.strings.php

php > echo substr("abcdef", 2, 4);
cdetf

php > echo strtoupper ("hey!");
HEY!

php > echo rtrim(nhuh? | ?n , n | ?") ;
huh

php > echo htmlentities ("<&>");
&1lt; & >

php > echo str replace("to", "2", "tomato");
2maz

php > echo json encode ("\x61\x62\x63\x09\xa\x21") ;
"abe\t\n!" [added post-handouts]

CSC 337 Fall 2013, PHP Slide 27

Variable expansion in string literals

If a double-quoted literal contains a S, the following
characters are treated as a variable name. The value of the
variable is inserted. Braces can be used to delimit the name.

php > $x = 10; Sy = 20;

php > echo "x: $x; Sym in length";
x: 10; 1n length Was ${v)m

php > echo "x: $x; {$Sy!m in length";
x: 10; 20m 1in length

Idiom: Use variable expansion, not a bunch of concatenations
to form a string from many values.

CSC 337 Fall 2013, PHP Slide 28

The boolean type

The literals for PHP's boolean type are tRUe and FalSE
and are case insensitive.

Comparison and logical operators produce boolean values

Note how booleans are printed and converted to strings:

php >
php >
1

php >
php >
false:
php >

Sf = false; S$t=true;
echo $t, §$f;

echo false;
echo "false: $f, true: S$t";
, Ttrue: 1

var dump ($f) ; echo—var export{S£)

bool (false) #whynotboolean (false)?

CSC 337 Fall 2013, PHP Slide 29

Several ways to be false

Along with the keyword false, PHP considers these
values to be false, too:

integer and double zeros (0 and 0. 0)
The empty string (" ")

The string "0"

An array with no elements

NULL

SimpleXML objects created from empty tags

Every other value is TRUE. (Lots and lots of ways to be
truel!)

CSC 337 Fall 2013, PHP Slide 30

Comparison operators

These comparison operators are somewhat similar to
their counterparts in Java, C, and Python:

Some conversions ("type juggling") are surprising:

php > eehe var export("00" == "000");
true

php > eehe var export (20 < 100);

true

php > eehe wvar export("20" < "100");
true

php > var export(strcmp("20","100")) ;
1

CSC 337 Fall 2013, PHP Slide 31

Equality

Some PHP programmers never use the == or ! = operators

and instead use === and ! ==, "identical" and "not identical".
php > eehe var export("00" === "0");
false
php > echo var export(l === true);
false
php > echo var export(l === 1.0);
false
php > echo var export(false === "");
false
php > echo var export("10" !== 10);

TLrue

CSC 337 Fall 2013, PHP Slide 32

Full programs

Unlike Java but like Python, you don't need ary much
boilerplate to have a runnable PHP program.

% cat hello.php (> type hello.php on Windows)
<?php
echo "Hello, world!\n";

% php hello.php
Hello, world!

echo writes to standard output: [added post-handouts]
% php hello.php > x
% cat x
Hello, world!

CSC 337 Fall 2013, PHP Slide 33

PHP hits the web

The web server on lectura supports PHP. If we ask for a
file with a .php extension, we get not the contents of that
file but the data written to standard output when that file
is run as a PHP program. [reworded post-handouts]

% cat hello.php

<?php

echo "Hello, world!\n";

% scp hello.php lec.cs.arizona.edu:/cs/cgi/people/

whm/public_html/. How does the URL

= C' [https://cgi.cs.arizona.edu/~whm/hello.php di-l‘-fer from the ﬁ|e

Hello. world! name? What's the
, | mapping?

CSC 337 Fall 2013, PHP Slide 34

Extra Credit Assighment 2

Due: 22 Wednesday, October 22 16 at 2:45pm
Worth: 3 points

Why: To get you to put some PHP on the web
What:

Put a file named eca2.php in place on lectura such that hitting
https://cgi.cs.arizona.edu/~YOUR-NETID/eca2.php

runs it. It must produce at least one byte of output due to

execution of a PHP statement but feel free to have it do more.

There's nothing to "turn in"—we'll have a script hit the URL for
every student. Note: Everybody on the net will be able to hit it,
too, so don't have it print your SSN or anything like that!

Some students may run into problems with permissions and other
thing. If so, don't panic but let us know ASAP.

CSC 337 Fall 2013, PHP Slide 35

Sidebar: Copying a file to lectura
Mac OS X: Just use scp like | did.

Windows:
1. Get pscp.exe from the same place you got PuTTY.

2. Copy pscp.exe into the directory with your PHP
files.

3. c:\...>pscp hello.php NETID@Iec.cs.arizona.edu:/cs/
cgi/people/NETID/public_html/.
Or...
Get WiInSCP and read the instructions. Along with
simple copying there's Commands>Keep Remote
Directory Up To Date, which is very handy!

CSC 337 Fall 2013, PHP Slide 36

while loops

CSC 337 Fall 2013, PHP Slide 37

The while loop

The general form of a while loop is just like Java and C:

while (expression)
statement

Like Python but unlike Java, the value produced by
expressionis permitted to be of any type—int,
boolean, string, and more!

Like Java and C, statement can be a single statement
terminated by a semicolon, or a compound statement
grouping zero or more statements in curly braces.

Pythoners: Indentation does not matter in PHP! Note also
that expression must be enclosed in parentheses.

CSC 337 Fall 2013, PHP Slide 38

For reference:

while (expression)

statement

Example:

<?php

S1 = 1;

while (S1 <= 10) {

echo "$i\n";

Si += 1; // $i=S$1i+1;

J

while, continued

% php while0.php
1

O 00O NOO UL B WN

—
-

What's expression? What's its type?

What's statement?

CSC 337 Fall 2013, PHP Slide 39

while, continued

Here is whilel.php. Isit valid? If so, what does it do?
<?php
si = 10;
while (Si) {
echo "$i\n";

S1 —-= 1;
}

What would the behavior be if we left off the braces?

CSC 337 Fall 2013, PHP Slide 40

while, continued

What does this program do?
<?php
echo " =1 String literal split

|
<!doctype html> across lines. Later

<title>Countdown</title> '
"; we'll see a more

idiomatic construct.

Si = 10;
while (Si) {
Sem = 1 + $i/10;
echo "<1i style=font-size:{Sem}lem>$i";
$1 -= 1;
}
echo ""; // while2.php

CSC 337 Fall 2013, PHP Slide 41

Hitting Sidebar: Where are the examples?
http://cgi.cs.arizona.edu/classes/cs337/fall13/while0.php
runs while0.php and displays its\standard output:

| o (& @s.arizona.edu/classes/cs337/fa||13/whi|e0.php

.

12345678910

That URL corresponds corresponds to this path on lectura:
/cs/cgi/classes/cs337/fall13/while0.php

On lectura, /cs/www/classes/cs337/fall13/c is a symlink to

/cs/cgi/classes/cs337/fall13. Note what this URL shows:

| (& Q(WWW)s.arizona.edu/classes/c5337/fa||13/c/whi|e0.php
N

<?php : .

$i = 1; Experiment: what happens if

. . "www" is omitted?
while ($1i <= 10) {

echo "s$i\n";
Si += 1; // $i = $i + 1;
} 42

Reading from files and more

CSC 337 Fall 2013, PHP Slide 43

fopen and fgets: open afile and read it

The fopen function opens a file for reading (or writing).
fgets reads lines from a file one line at a time.

php > $f = fopen("five.txt", "xr");
php > echo gettype ($f) ;

resource

php > var dump ($Sf);

resource (2) of type (stream)

php > echo fgets (Sf);

one

php > echo json encode (fgets($f));
"two\n" (string has trailing newline)

php > echo json_encode(rtrim(fgets(Sf)));
"three" (use rtrimto strip trailing newline)

At end of file, fgets returns false.

CSC 337 Fall 2013, PHP Slide 44

Problem: reverse order of lines

Problem: Write a program that reads lines from the file
five.txt and prints them in reverse order: last line

first, first line last. (No arrays yet!)

Expected behavior:
5 php tacfive.php
five
four
three
two
one

o
°

CSC 337 Fall 2013, PHP Slide 45

Problem: reverse order of lines

tacfive.php:
<?php

Sf = fopen("five.txt", "r");
Sresult = "";

while ($line = fgets($f))
Sresult = Sline . Sresult;

echo Sresult;

Let's be sure we understand the operation of the while's
expression.

Because no path, like /w/337/five.txt, is specified, the
program will look for five.txt in the current directory.

CSC 337 Fall 2013, PHP Slide 46

fopen: Not just for files!

taccities.php: Same as tacfive.php but with this instead:
Sf = fopen("http://cs.arizona.edu/classes/cs337/fall13/al/

cities.txt", "r");

Execution:
% php taccities.php

Blacklight Dodgeball Tournament/...
Old Train Station:trainstation.jpg/...
toknc.com

Gateway to Walkertown
Kernersville

The City of Love
Paris

0
A) CSC 337 Fall 2013, PHP Slide 47

Reading from standard input

tac.php reads from standard input using a constant named STDIN:

<?php
Sresult = "";

while ($line = fgets (STDIN))
Sresult = $Sline . Sresult;

echo Sresult;

Execution:
5 php tac.php < five. txt
five
four

three :
two Speculate: What would the following do?

one % php tac.php < five.txt | php tac.php

o

=

(@)

CSC 337 Fall 2013, PHP Slide 48

More control structures

CSC 337 Fall 2013, PHP Slide 49

The i f—-else statement

PHP's if-else statement looks just like Java and C:

1f (expression)
statementl

else
statement’?

Like PHP's while statement, expression can have any
type, not just boolean.

The else clause is optional.

statementl and statement’2 can each be a single
statement or a compound statement, with zero or more
statements enclosed in curly braces.

CSC 337 Fall 2013, PHP Slide 50

Example: Computing a mean

Ssum = Sn = Sblanks = 0;

% php mean.ph

while (Sline = fgets(STDIN)) { 50 PIp PIp

Sline = trim(Sline);

if (strlen(Sline) == 0)

Sblanks += 1; p)
I .
© SSeS[{Jm += $line: NZ (control-Z RET on Win)
Sn+=1; mean = 3.5; 1 blank lines
} % seq 100 | php mean.php

} mean = 50.5; 0 blank lines

if (Sn>0){

Smean = Ssum / Sn;
echo "mean = Smean; Sblanks blank lines\n";

}

CSC 337 Fall 2013, PHP Slide 51

else—-ifandelseif

Nested "else-if''s can be done like in Java or, using el sei f, which
is like Python's e1if. These two versions are equivalent:

while (Sline = fgets(STDIN)) { while (Sline = fgets(STDIN)) {
Savg = trim(Sline); Savg = trim(Sline);
if (Savg >=90) { if (Savg >=90) {
Sgrade ="A"; Sgrade ="A";
} }
else if (Savg >= 80) { elseif (Savg >= 80) {
Sgrade ="B"; Sgrade ="B";
} }
else if (Savg >= 70) { elseif (Savg >= 70) {
Sgrade ="C"; Sgrade ="C";
} }
else { else {
Sgrade ="F"; Sgrade = "F";
} }
echo "Savg -> Sgrade\n"; echo "Savg -> Sgrade\n";
} }

CSC 337 Fall 2013, PHP Slide 52

elseif3.php and elseif.php, respectively

break and continue

break and continue are just like their counterparts in
Java, C, and Python:

break exits the enclosing loop.

continue skips the balance of the current iteration
of the enclosing loop and begins the next iteration.

CSC 337 Fall 2013, PHP Slide 53

break and continue, continued
This is breakl.php. What does it do?

<?php

while (true) {
Sline = trim(fgets (STDIN)) ;

if (Sline == ".")
break;

1f (!is numeric($line))
continue;

while (Sline) {
echo "x";
Sline —-= 1;
}

echo "\n";

}

CSC 337 Fall 2013, PHP Slide 54

Functions

CSC 337 Fall 2013, PHP Slide 55

Function basics

Like Python but unlike Java, PHP allows functions to be
"freestanding" —not associated with a class.

Here's a call to a trivial function, followed by the function's
definition:

<?php
say hello();

function say hello ()

{
J

The keyword function must precede the function's name.

echo "Hello, world!\n";

A function's definition need not precede a call to it.

CSC 337 Fall 2013, PHP Slide 56

Function basics, continued

Here's a function that takes two parameters and returns a value:

<?php
// return Scount copies of Sstring
function repl(Sstring, Scount)

{ . Usage:
/ php > include("repl.php");

Sresult="";
php > echo repl("abc", 2);
while (Scount--)

abcabc
Sresult .= Sstring; php > echo strlen(repl("abc", 1000));
3000
return Sresult; php >

}// repl.php

Observations?

CSC 337 Fall 2013, PHP Slide 57

At hand:

Function basics, continued

function repl(Sstring, Scount)

{

Sresult="":

while (Scount--)
Sresult .= Sstring;

return Sresult;

Things to note:

Parameters prefixed with S, just like
variables.

No declaration of parameter or
return types.

If no return orjust "return;” NULL
is returned.

The function include (Sfile)
loads code at run-time, but
functions can't be redefined.

CSC 337 Fall 2013, PHP Slide 58

Function basics, continued

The type of the value returned by a function can vary!

function twice(Sx) // twice.php
{
if (gettype(Sx) === "string")
return Sx . Sx;
elseif (gettype(Sx) == "integer")

return Sx * 2; php > include("twice.php");
else php > echo twice("abc");
return "huh?"; abcabc
} php > echo twice(7);
14

php > echo twice(7.0);
huh?

CSC 337 Fall 2013, PHP Slide 59

PHP uses call-by-value (but...)

Like Java and Python, PHP uses "call-by-value"—changing
a scalar parameter in a function doesn't affect the value
in the caller.

hp > function zero($x) { $x = 0; }
hp > Sa = 10;

np > zero($a);

np > echo $a;

0

= T ©C CC O

However, we'll later see a way to make the above work.

CSC 337 Fall 2013, PHP Slide 60

The first assignment to, or access
of a variable $x in a scope causes
it to be created in with that
scope.

Code outside of a function is
considered to in the global scope.

Code inside a function is
considered to be in a local scope
created that invocation of that
function.

The callto £ () prints x =
because the $xin £ (), with local
scope has not been initialized!

The global keyword

% cat globall.php

<?php

Sx ="g": // This Sx has global scope
f();

function f()

{
// This Sx has local scope

echo "x = Sx\n";

)

% php globall.php
X =

CSC 337 Fall 2013, PHP Slide 61

global, continued

The global keyword allows a function to declare that it wants to
use the instance of a variable that's at global scope.

SX — |lgl|;

f();
g();

function f() {
global Sx;
echo "x = Sx\n";
Sx = "from f";

}

function g() {
global Sx;
echo "x = Sx\n";

}

Execution:

% php global2.php
X=8

X =from f

The global Sx declarations in
f () and g () cause references
to Sx in those functions to
reference the instance of $x
with global scope rather than

individual, local scope instances
of Sx.

CSC 337 Fall 2013, PHP Slide 62

Default values for parameters

PHP allows default values to be specified for parameters.

function wrap(Ss, Swrap = "<>" # wrap.php

{
J

return Swrap[0] . Ss . Swrap[1];

Execution:
php > echo wrap("abc");
<abc>
php > echo wrap("abc", "()");
(abc)

There are several related rules. One is that all parameters
without defaults must precede all parameters with defaults.

CSC 337 Fall 2013, PHP Slide 63

Running PHP with XAMPP

It started with "LAMP"

Over time this "solution stack" for web applications
emerged as a popular choice:

Linux as the operating system

Apache HTTP Server (a.k.a. "httpd")

MySQL as the database

PHP/Perl/Python as programming languages

All components are Open Source, and there are no
licensing fees.

The stack was later ported to Windows and Mac OS X.
WampServer and MAMP provide one-step installs of the
Apache Server, MySQL, PHP and more.

CSC 337 Fall 2013, PHP Slide 65

XAMPP

XAMPP is an AMP stack that runs on Windows, Mac OS X,
Linux, and Solaris. The "X" is for cross-platform.

XAMPP is my current recommendation if you'd like to have an
AMP stack on your machine.

Alternatively, you can use cgi.cs.arizona.edu, which is in fact a
LAMP stack.

Both need to be secured against access by other students in
the class.

XAMPP can be easily secured via firewall settings. Working on
cgi.cs.arizona.edu requires .htaccess and .htpasswd files.

CSC 337 Fall 2013, PHP Slide 66

PHP version headaches

php.net shows these stable versions:
5.3.27
5.4.20
5.5.4

cgi.cs.arizona.edu runs 5.3.10 and that's not likely to
change soon.

Compromise: | suggest XAMPP 1.8.2, which has PHP 5.4,
putting us not too far ahead of cgi.cs.arizona.edu and not
too far behind the leading edge.

CSC 337 Fall 2013, PHP Slide 67

Installing XAMPP

XAMPP 1.8.2 installer for Windows:

http://www.apachefriends.org/download.php?xampp-
win32-1.8.2-2-V(C9-installer.exe

XAMP 1.8.2 installer for Mac OS X:

http://www.apachefriends.org/download.php?xampp-
0sx-1.8.2-2-installer.dmg

You can save space by "unchecking" Tomcat, Perl, FileZilla
FTP Server, and Mercury Mail Server.

By default, XAMPP installs to C:\XAMPP on Windows
and /Applications/XAMPP on OS X.

CSC 337 Fall 2013, PHP Slide 68

The XAMPP control panel on Windows

The XAMPP control panel below shows that Apache is
running and MySQL is stopped. (We don't need it yet.)

@ XAMPP Control Panel ¥3.2.1 [Compiled: May 7th 2013]

XAMPP Control Panel v3.2.1 ‘
Service Module PID{s) Portis) Actions ® Metsta
Apache 2820 80,443 [Stop | [Admin | [Config | [Logs | [B Shel
My 3L Admin [Config][Logs] | | Explorer |
Filefilla Start Admin Config Logs
Mercury Start Admin Config Logs
Tamcat otart Adrmin Config Logs
11:35:34 P [main] The Tomcat maodule is disabled ™

11:35:34 P [rmain] Starting Check-Timer

11:35:34 Phi [rmain] Control Panel Ready

11:35:55 Pl [Apache] Installing service. ..

11:35:57 P [Apache] Successfull

11:41:06 P [Apache] Attempting to start Apache service. .
11:41:07 P [Apache] Status change detected: running
11:47:18 Ph [mysgl] Installing service. ..

114719 P [mysgl] Successfull

3

CSC 337 Fall 2013, PHP Slide 69

The htdocs directory

XAMPP's htdocs directory is the DocumentRoot for
Apache. On Windows itis C: \XAMPP\htdocs. On OS
Xitis /Applications/XAMPP/htdocs.

If you copy hello.php to htdocs, you can hit it like this:

= C' | | localhost/hello.php

Hello, world!

If hello.php was in htdocs/337, you'd instead hit
localhost/337/hello.php

CSC 337 Fall 2013, PHP Slide 70

Using XAMPP's PHP from the command line
You can use XAMPP's PHP directly on both Windows:

W:\337> c:\xampp\php\php --version
PHP 5.4.19 (cli) (built: Aug 21 2013 01:12:03)

W:\337> hello.php (If error, try c:\xampp\php\php hello.php)
Hello, world!

And OS X:

% [Applications/XAMPP/bin/php --version
PHP 5.4.19 (cli) (built: Aug 26 2013 14:04:00)

% [Applications/XAMPP/bin/php hello.php
Hello, world!

It's not hard to set your "path" so you can type just "php" but a
number of factors can come into play. Google, or see us during
office hours. My old 352 slides on Piazza talk about it.

CSC 337 Fall 2013, PHP Slide 71

Securing /cs/cgi/people/NETID

Securing /cs/cgi/people/NETID

If no special steps are taken, anybody on the Internet can
see what's in /cs/cgi/people/NETID/public_html by hitting
http://cgi.cs.arizona.edu/~NETID

Access can be controlled with appropriate .htaccess
and .htpasswd files in /cs/cgi/people/NETID/public_html.

CSC 337 Fall 2013, PHP Slide 73

Securing /cs/cgi/people/NETID, continued

Here is my .htaccess file. It is minimal but sufficient.

S cat /cs/cgi/people/whm/public_html/.htaccess
AuthUserFile /cs/cgi/people/whm/public_html/.htpasswd
AuthName "Who Dat?"

AuthType Basic

Require valid-user

AuthUserFile specifies a password file. We'll see it soon.

AuthName is used in a username/password prompt.

AuthType Basic specifies that "Basic authentication" is to be used. Itis
the simplest to configure but passwords are sent unencrypted so it
should only be used with HTTPS!

Require valid-user activates access control. If it is commented out with a

#, everybody still has access.

Docs: http://httpd.apache.org/docs/current/mod/directives.html

CSC 337 Fall 2013, PHP Slide 74

Securing /cs/cgi/people/NETID, continued

With that .htaccess file in place, hitting a URL in .../~whm/...
produces an authentication dialog:

& X || https://cgi.cs.arizona.edu/~whm/hello.php

Authentication Required

The server https://cgi.cs.arizona.edu:443 requires a
username and password. The server says: Who Dat?.

User Name:

Password:

Cancel Log In

IMPORTANT: ALWAYS USE httpS://... with sites that use Basic
Authentication!

When you set up your .htaccess file, confirm that the dialog
appears iff Require valid-user is present. (Try commenting with #.)

CSC 337 Fall 2013, PHP Slide 75

Securing /cs/cgi/people/NETID, continued

Recall the AuthUserFile line from .htaccess:
AuthUserFile /cs/cgi/people/whm/public_html/.htpasswd

. : Tl
Here is .htpasswd. It has entries for two users. Use your netid!

% cat .htpasswd
whm:Sapr1SuRHVz9RzSCMUHL1KQN72CUMwx7cF6il
test:Sapr1SniUSLU6bSZT68sIBua25B4UIGENgzb0

Entries for .htpasswd can be generated with the htpasswd
command on lectura. See options for htpasswd with man
htpasswd. The following invocation simply prints the user:password
entry. You can paste it into .htpasswd with an editor.

% htpasswd -n whm

New password: (I typed secret)

Re-type new password: (ditto)

whm:SaprlSuRHVz9RzSCMUHL1KQN72CUMwx7cF6il

CSC 337 Fall 2013, PHP Slide 76

Securing /cs/cgi/people/NETID, continued

At this point people/NETID is secure from Internet access but it
must also be secured from your untrustworthy classmates!

Use this command to change the directory permissions:
% chmod 750 /cs/cgi/people/NETID

When done, check it and confirm the drwxr-x--- sequence

-Id /cs/cgi/people/NETID
4 NETID 33 4 Oct 17 15:28 /cs/cgi/people/NETID

chmod is the "change (file) mode" command. It's used to change
the value of nine bits that specify who can can access a file. Mode
750, which is shown as rwxr-x---, means that (1) the owner of the
directory (you) can read it, write it, and "search" it, (2) the
"group" (which ends up being the Apache server) can read it and
search it, and (3) all other users can't access it in any way.

CSC 337 Fall 2013, PHP Slide 77

Extra Credit Assighment 3

Due: Monday, October 21 at 2:45pm
Worth: 3 points

What:
Secure https://cgi.cs.arizona.edu/~YOUR-NETID as shown

on the preceding slides.

There's nothing to turn in. We'll test by hitting
https://cgi.cs.arizona.edu/~YOUR-NETID and also checking
directory permissions. If we get an authentication dialog and
the mode is 750, you get three points!

Some students may run into problems with permissions and
other things. If so, don't worry but let us know ASAP.

CSC 337 Fall 2013, PHP Slide 78

Securing /cs/cgi/people/NETID, continued

With the Network tab in Chrome DevTools we can see the
authentication information that the browser sends:

C' [https://cgi.cs.arizona.edu/~whm/hello.php

Hello, world!

X Elements Resources@work Sources Timeline Profiles Audits Console

Name %
Path Headers | Previ... Response Cookies Timing

() hello.php Request URL: https://cgi.cs.arizona.edu/~whm/hello.php
Request Method: GET

Status Code: @ 200 0K

equest Headers view source
Accept: text/html,application/xhtml+xml,application/xml
Accept-Encoding: gzip,deflate,sdch

Authorization: Basic d2htOnN1Y3J1ldA==

php > echo base64_decode("d2htOnNIY3JIdA==");
whm:secret

CSC 337 Fall 2013, PHP Slide 79

Securing /cs/cgi/people/NETID, continued

Once authenticated, browsers send the Basic Authentication
information along with every request sent to that site.

Exiting the browser causes the authentication information to be
discarded, unless you saved the password for the site. (Passwords
saved by browsers are trivially accessible, BTW!)

An .htaccess file protects both the directory it is in and all
subdirectories of that directory, too.

XAMPP's Apache HTTP server can be secured with .htaccess
and .htpasswd but there's no need to do that if the firewall on your
machine is configured to block external access to the server.

We'll talk more about the HTTP protocol later.

CSC 337 Fall 2013, PHP Slide 80

Testing your a5 solutions

CSC 337 Fall 2013, PHP Slide 81

Testing with XAMPP

If XAMPP is installed, you might test an a5 solution by
putting it in htdocs/a5 and hitting it on localhost:

= C' || localhost/a5/toss.php

There's nothing magic about "a5"; the example just points
out that the URL can specify a file in a subdirectory.

If trouble, use View>Developer>View source to see the
generated HTML and CSS.

CSC 337 Fall 2013, PHP Slide 82

Testing with the command-line on Windows

XAMPP's default install on Windows associates the
extension .php with c:\xampp\php\php.exe. Typing the name
of a php file at the command prompt causes the file to be run:

C:\xampp\htdocs\a5> pattern.php

<ldoctype html><title>Pattern</title>
<blockquote><img src=blackpixel.png...LOTS MORE...
AC

Redirect the output into a file and then open the file:

C:\xampp\htdocs\a5> pattern.php > x.html
C:\xampp\htdocs\a5> x.html
C:\xampp\htdocs\a5> blog.php > blog.html & blog.html

CSC 337 Fall 2013, PHP Slide 83

Testing with the command line on OS X
You can use the Apple-supplied php like this:

% php pattern.php

<ldoctype html><title>Pattern</title>
<blockquote><img src=blackpixel.png...LOTS MORE...
AC

Redirect the output into a file and open the file with the "open"
command, which uses OS X file associations:

% php pattern.php > x.html
% open xX.html
% php pattern.php > x.html ; open x.html

Or maybe add an alias for XAMPP's php and use it:
% alias xp=/Applications/XAMPP/bin/php
% xp pattern.php >x2.html

To avoid typing the alias each time you start Terminal, put it in one of the
bash initialization files like ~/.profile or ~/.bashrc. (See my 352 slides.)

CSC 337 Fall 2013, PHP Slide 84

Testing on lectura

If running PHP on your own machine is not an option, you
could edit files in /cs/cgi/people/NETID/public_html on
lectura and then hit http://cs.cgi.arizona.edu/NETID/...

A variant would be to edit files on your own machine and
copy them to lectura to test them.

| use this "search engine"/keyword for testing:
wc https://cgi.cs.arizona.edu/~whm/%s

Let us know if you find yourself having to frequently enter
your password when hitting cs.cgi.arizona.edu.

CSC 337 Fall 2013, PHP Slide 85

The White Screen of Death

Here's a problem with testing on lectura:
% cat /cs/cgi/people/whm/public_html/error.php

<?php
echo 1 # missing semicolon!

When it's hit, we get The White Screen of Death:

| o C [https://cgi.cs.arizona.edu/~whm/error.php

| am unaware of anything that can be put in error.php to
cause that syntax error to be shown. (Let me know if you've

got a solution!)

Note: XAMPP's configuration doesn't have this problem.

CSC 337 Fall 2013, PHP Slide 86

A workaround for The White Screen of Death

We can use a "wrapper" that loads the file of interest after
turning on the display_errors configuration option:
% cat /cs/cgi/people/whm/public_html/wrap.php
<?php
ini_set('display_errors', 'On');
include("error.php");

When we hit the wrapper, we see the error:
& C' [https://cgi.cs.arizona.edu/~whm/wrap.php oy =

[Za\

Parse error: syntax error, unexpected $end, expecting ', or ';'
in /var/www/zuni/cgi-
bin/people/whm/public_html/error.php on line 3

Putting the ini_set(...) in error.php doesn't work because
compilation fails before ini_set(...) is called. ini_get(...) can be
used to see the initial value of display_errors.

CSC 337 Fall 2013, PHP Slide 87

A round of odds and ends

CSC 337 Fall 2013, PHP Slide 88

NULL

There is a null type with one value, represented by the literal
NULL, which is case-insensitive.

A variable's value is NULL if it has never been assigned a non-
null value or it has been unset ().

php > var_dump(null);

NULL

php > var_dump(Sx);
NULL

php > $x =1;

php > unset(Sx);
php > var_dump(Sx);
NULL

CSC 337 Fall 2013, PHP Slide 89

Automatic type conversions

One way to compare languages is to consider the type of the result
of a binary operator for various operand types.

Java Python C

+ |1 d S + | f S ¥ i d C
i i d S i i f E i i d i
d d d S f f f E d d |d d
S S S S S E E S C i d [

+ i f S i f S

i i f iorf PHP i S S S

f f f iorf - f S S S

S iorf |iorf |iorf S S S S

CSC 337 Fall 2013, PHP Slide 90

Automatic type conversions, continued

As shown in the previous tables, the result of binary + is
always a number, assuming no error:

php >var_dump(1 +"2" +"7/11");

int(10)

php > var_dump(1 +"2" + "7.0/11");

float(10)

php > var_dump(null + false + true);

int(1)

The string concatenation operator (.) always yields a string:
php >var_dump(1."2"."7/11" . true);
string(7) "127/111"
php > var_dump(null . false . true);
string(1) "1"

CSC 337 Fall 2013, PHP Slide 91

"Casting"

(I believe) C introduced the term "casting" for explicit type
conversions. PHP uses the same syntax:

php > Sx = (int)2.3; # like int(2.3) in Python
php > var_dump($x);
int(2)

php > Sy = (double)2;
php > var_dump(Sy);
float(2)

php > Sz = (string)("10" + "20");
php > var_dump(Sz);
string(2) "30"

Automatic conversions are called "implicit casting" in PHP literature.
That seems like an oxymoron: implicit explicit conversions!

CSC 337 Fall 2013, PHP Slide 92

is SOMETHING functions

PHP has a number of functions to test whether a value meets some
criteria. A few examples:

php > var_dump(is_int(10));

bool(true)

php > var_dump(is_int(10.0)); #is_float would be true
bool(false)

php > var_dump(is_numeric("10")); # "10.1" would be true, too
bool(true)

php > var_dump(is_string(1 . 1));
bool(true)

php > var_dump(is_file("..")); #is_dir("..") is true
bool(false)

php > var_dump(is_file("a5/blog.txt"));
bool(true)

CSC 337 Fall 2013, PHP Slide 93

Logical operators
Like C and Java, PHP has logical operators !, &&, | |.

PHP also has and, or, and xor, which have lower precedence that
the assignment operators. PHP does not have not.

php >var_dump(1l <2 && 3 > 4);
bool(false)

php > var_dump(1<2or3>4);
bool(true)

php > var_dump(true and true and true and false);
bool(false)

php > var_dump(true and true and true and !false);
bool(true)

php > var_dump(true xor true);
bool(false)

CSC 337 Fall 2013, PHP Slide 94

Constants

PHP has the notion of a constant. It is an identifier that is
given a scalar value (int, float, boolean, or string) by calling the
define function:

php > define("DOTS", "...");

php > define("NL", "\n");

php > echo 10, DOTS, NL;

10...

php > var_dump(DOTS);

string(3) "..."

On an earlier slide we saw the constant STDIN:
Sline = fgets(STDIN);

Constants have global scope, even if defined in a function.

Using a constant implies that the value won't change, but a
constant can be changed!

CSC 337 Fall 2013, PHP Slide 95

Bare strings

A "bare string" is an unquoted sequence of alphanumeric
characters starting with an underscore or a letter.

If it hasn't been defined as a constant, it's treated as a string literal!

php > echo hello, world;

helloworld

php > include(wrap .".". php);

php > var_dump(wrap(TESTING, E3));
string(9) "ETESTING3"

php > define(TESTING, XXXXXXXX);
php > var_dump(wrap(TESTING, E3));
string(10) "Exxxxxxxx3"

CSC 337 Fall 2013, PHP Slide 96

Arrays

CSC 337 Fall 2013, PHP Slide 97

Array basics
A PHP array is in fact an ordered map.

PHP arrays are used in cases where a Java programmer might
use an array, a Map, or List; or where a Python programmer
might use a tuple, list, or dictionary. (One type does it all!l)

php.net/manual/en/language.types.array.php describes the
basics of the type.

There are dozens of library functions specifically for
manipulating arrays, and dozens of others that use and/or
produce arrays.

php.net/manual/en/ref.array.php describes the array-
manipulating functions.

CSC 337 Fall 2013, PHP Slide 98

Array basics, continued

An array can be created with the array construct:
php > Sa = array("one"=>1,"ten"=>10.0,"five"=>"V");
php > var_dump(Sa);
array(3) {

"one"]=>int(1)

"ten"]=> float(10)

"five"]=> string(1) "V"

}

The array Sais can be thought of as a map/dictionary
with these key/value associations:

Key Value

"one" integerl

"ten" float 10

"five" string "V"

CSC 337 Fall 2013, PHP Slide 99

Array basics, continued

The value associated with a key can be accessed with a
subscripting notation.

php > Sa = array("one"=>1,"ten"=>10.0,"five"=>"V");
php > var_dump(Sa["one"]);

int(1)

php > var_dump(Sa['ten"]);

float(10)

php > var_dump(Sa["twenty"]);

NULL

Note that NULL is produced if a key is not found. With
error_reporting(22527), "Notice: Undefined offset: ..." is
printed.

CSC 337 Fall 2013, PHP Slide 100

% cat tallywords.php Example: Tallying words

<?php
Scounts = array();

while (Sword = fgets(STDIN)) {
Sword = trim(Sword);
Scounts[Sword] +=1; # Very expressive—that's good!
How is first occurrence handled?
}

var_dump(Scounts);

% cat tallywords.1
% php tallywords.php < tallywords.1 |to

array(4) { be
"to"]=>int(2) or
"be"]=>int(2)
:noru:=> |nt(1) not
"not"]=> int(1) to

} be

CSC 337 Fall 2013, PHP Slide 101

Implicit values for keys

If array(...) is invoked with only values (no =>), the values are
associated with integer keys O, 1, 2, ...

php > Sa = array(1, 10.0, "V", false);
php > var_dump($a);
array(4) {
0]=> int(1)
1]=> float(10)
2]=> string(1) "V"
3]=> bool(false)

}

php > var_dump($a[0], $a[2], $a[4]);
int(1)

string(1) "V"

NULL

CSC 337 Fall 2013, PHP Slide 102

Exploding a string
Many PHP functions return arrays. Here's one:
explode (string Sdelim, string Ss [, int Slimit])

Usage:
php > Sparts = explode("/", "a:3/b:4/c:2");
php > var_dump(Sparts);
array(3) {

0]=> string(3) "a:3"

1]=> string(3) "b:4"

2]=> string(3) "c:2"

}
What does explode() do?

Problem: Write f(Ss) such that f("a:3/b:10/xy:2") returns
"aaabbbbbbbbbbxyxy". Here's function that will help:
count(array(10,2,4)) returns 3.

CSC 337 Fall 2013, PHP Slide 103

Exploding a string, continued

Solution: (explodel.php)
function f(Ss)

{
Sresult="":
Ssegs = explode("/", Ss);
Si=0;
while (Si < count(Ssegs)) {
Sparts = explode(":", Ssegs[Si]);
Sresult .= str_repeat(Sparts[0], Sparts[1]);
Si+=1;
}
return Sresult;
}

var_dump(f("a:3/b:10/xy:2"));
var_dump(f("10:0/1:10"));
var_dump(f(":1000000000000/xxxx:0")); # a trillion(?)

CSC 337 Fall 2013, PHP Slide 104

parse url(...)

PHP's parse_url() function returns an array where the the keys
name the parts of a URL:

php > var_dump(parse_url("http://safaribooks.com.
ezproxyl.library.arizona.edu/978144068/ch03_html?
readerfullscreen=1&readerleftmenu=0=#X2ludGVybm"));
array(5) {

"scheme"]=> string(4) "http"

"host"]=> string(44)
"safaribooks.com.ezproxyl.library.arizona.edu"

"path"]=> string(20) "/978144068/ch03 _html"
"query"]=> string(36) "readerfullscreen=1&leftmenu=0="
"fragment"]=> string(10) "X2ludGVybm"

}

The various elements can be referenced with names rather
than integer offsets.

CSC 337 Fall 2013, PHP Slide 105

The foreach statement

PHP's foreach statement provides a way to easily
iterate over elements in an array:

php > foreach ($a as Skey => Svalue)

php > echo "key=Skey, value=Svalue\n";
key=one, value=1

cey=ten, value=10

cey=five, value=V

Any names can be used for the key and value; | typically
use Sk and Sv.

Note that foreach is one word.

CSC 337 Fall 2013, PHP Slide 106

foreach, continued

Instead of specifying ... Skey => Svalue ..., we can specify
a single variable:

p > Sa = array("one"=>1,"ten"=>10.0,"five"=>"V");
np > foreach (Sa as Sx)
hp > echo "$x\n";

= C T O

10
V

When only a single variable is named, which is iterated
over, the keys or the values? What if we wanted to
iterate over the others?

CSC 337 Fall 2013, PHP Slide 107

Arrays and functions

m_to_n creates an array holding a
sequence of integers:
function m_to_n(Sstart, Send {
Sr = array();
Sn = Sstart;
while (Sn <= Send) {
Sr[]1 =$n; Sn+=1;
}

return Sr;
}// m_to _n.php

a_to _sreturns a string with
the values from an array:
function a_to_s(Sa) {
Sr=Ssep="";
foreach (Sa as Svalue) {
Sr .= Ssep Svalue;
Ssep=",";
}

return "array(Sr)";
}// m_to _n.php

Usage:

php > echo a_to_s(m_to_n(-3,3));

array(-3,-2,-1,0,1,2,3)

php > echo a_to_s(array_reverse(m_to_n(1,7)));

array(7,6,5,4,3,2,1)

CSC 337 Fall 2013, PHP Slide 108

Lots of array functions...

Some fun with a few of PHP's many array-related functions:
php > $x = array_slice(str_split("pickle"),1,3);
php > echo a_to_s(Sx);
array(i,c,k)

php > array_unshift(Sx, "t"); array_push(Sx, "s");
php > echo a_to_s($x);
array(t,i,c,k,s)

php > sort(Sx); echo a_to_s(Sx);
array(c,i,k,s,t)

php > Snums = m_to_n(1,12);
php > shuffle(Snums); echo a_to_s(Snums);
array(4,12,7,11,5,2,3,6,9,8,10,1)

Some array functions are applicative; some are imperative.

CSC 337 Fall 2013, PHP Slide 109

Passing parameters by reference

In PHP, call-by-value is used with arrays, too! Because of that,
this function has no effect: (It works in Java and Python.)

function twice(Snums) { # callbyrefl.php
Si=0;
while (Si < count(Snums)) {
Snums[Si] *= 2;
Si+=1;
}

Usage:
php > $a=m_to_n(1,5);
php > twice($Sa);
php > echo a_to_s(Sa);
array(1,2,3,4,5)

CSC 337 Fall 2013, PHP Slide 110

Passing parameters by reference, continued

We could make twice() applicative by returning a new array
but another option is to pass the array by reference, indicated
by preceding the parameter with an ampersand:

fugction twice(&Snums) { # callbyref2.php
| =0;
while (Si < count(Snums)) {
Snums[Si] *= 2;
Si+=1;
}
}

Now this imperative version works as if it were Java or Python:
php > Sa=m_to_n(1,5);
php > twice(Sa);
php > echo a_to_s(Sa);
array(2,4,6,8,10)

CSC 337 Fall 2013, PHP Slide 111

PHP converts various values for keys!

Keys can be only strings or integers. Others are converted.
php > $a = array(); # Actual key
php > Sa["10"] = "10"; #int 10
php > $a["010"] = "010"; # string
php > Sa[7.2] =7.2; #int7
php > Sa[false] = false; #intO
php > Sa[true] = true; #int1
php > Sa[null] = null; # empty string

php > var_dump($a);
array(6) {

10]=> string(2) "10"
"010"]=> string(3) "010"
7]=> float(7.2)

0]=> bool(false)

1]=> bool(true)

IIII] > NULL

CSC 337 Fall 2013, PHP Slide 112

array_merge

The array_merge function can be used to concatenate
arrays with integer keys:

php > Sa=m_to_n(1,5);

php > Sb=m_to_n(20,25);

php > Sc = array_merge(Sa, Sb, Sa);

php > a_to_s(Sc);

php > echo a_to_s(Sc);
array(1,2,3,4,5,20,21,22,23,24,25,1,2,3,4,5)

Things are more "interesting" if the arrays have any non-
integer keys or if there's a mix. (Try it!)

CSC 337 Fall 2013, PHP Slide 113

PHP's S GET array

CSC 337 Fall 2013, PHP Slide 114

The HTTP GET request

When we hit a URL in a browser, the browser sends a
"GET" request to a server using the HTTP protocol.

The server responds with data that the browser renders
as HTML.

We can use the curl command to see the complete
interaction.

curl is available on lectura and OS X. There's a Cygwin
curl package, too.

CSC 337 Fall 2013, PHP Slide 115

Watching a GET with CURL

% curl -v http://cgi.cs.arizona.edu/classes/cs337/fall13/hello.php
* Connected to cgi.cs.arizona.edu (192.12.69.39) port 80 (#0)

> GET /classes/cs337/fall13/hello.php HTTP/1.1 (1)

> User-Agent: curl/7.25.0 (x86_64-apple-darwin10.8.0) I/...(2)

> Host: cgi.cs.arizona.edu
> Accept: */*

> (3) Note the...
< HTTP/l.l 200 OK (4) (1) GET

< Date: Tue, 22 Oct 2013 20:44:33 GMT (5) g

< Server: Apache/2.2.22 (Ubuntu) (2) Headers

< X-Powered-By: PHP/5.3.10-1ubuntu3.8 (3) Blank line
< Content-Type: text/html (4) 200 OK
< (6) (5) Headers
|
Hello, world! (7) (6) Blank line

* Closing connection #0

(7) Data

">" lines were sent by curl; "<" lines were received from the server;
"*" [ines are info printed by curl.

CSC 337 Fall 2013, PHP Slide 116

Viewing GET results with Chrome

& C' | cgi.cs.arizona.edu/classes/cs337/fall13/hello.php

Hello, world!

X Elements Resource(ﬂetwom)ources Timeline Profiles Audits Console
Name \“‘;",

Path Headers Preview Response Cookies Timing

;;: hello.php Request URL: http://cgi.cs.arizona.edu/classes/cs337/falll3/hello.php

Request Method:
Status Code: @ 200 0K
v Request Headers view parsed

GET /classes/cs337/falll3/hello.php HTTP/1.1_—>
Host: cgi.cs.arizona.edu

Connection: keep-alive

Cache-Control: no-cache

Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/we
Pragma: no-cache

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_8_5) AppleWebKit
Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Cookie: _ga=GA1.2.2058714000.1311104606; _ utma=103637456.2058714000.1
organic|utmctr=(not%2@provided); _ utmv=103637456.anonymous%20users3A |
1382369561.1382411197.68; _ utmz=110116631.1382291135.65.6.utmcsr=goog

v Response Headers view parsed

Dater—Tuey Oct 2013 21:15:16 GMT

Server: Apache/2.2.22 (Ubuntu)

X-Powered-By: PHP/5.3.10-1ubuntu3.8

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length:

Keep—Alive: timeout=5, max=100

Connection: Keep-Alive 117
Content-Type: text/html

URL parameters
Note the result of this parse url call:

php> var_dump(parse_url("http://localhost/c/getl.php?
start=10&end=20"));

array(4) {

"scheme"]=> string(4) "http"

"host"]=> string(9) "localhost"

"path"]=> string(11) "/c/getl.php"
"query"]=> string(15) "start=10&end=20"

}

The query string has two name/value pairs. These are known
as URL parameters.

URL parameters are one way to provide data to a web
application.

CSC 337 Fall 2013, PHP Slide 118

Accessing URL parameters with S GET
PHP makes URL parameters available in the S_GET array.
<?php # getl.php
echo "<pre>";
var_dump(S_GET);
echo "</pre>";
Note the result when we hit getl.php

¢« C | localhost/c/getl.php?start=5&end=10&s=Hello, GET!

array(3) {
["start"]=>
string(1l) "5"
["end"]=>
string(2) "10"
["s"]=>
string(1ll) "Hello, GET!"

CSC 337 Fall 2013, PHP Slide 119

Problem: Sequence of numbers

Make it so!
| C' |] localhost/c/numbers.php?start=2013&n=7&color=blue&size=2
Here are your numbers!
e 2013
e 2014
e 2015
e 2016
o 2017
e 2018
e 2019

CSC 337 Fall 2013, PHP Slide 120

Solution: Sequence of numbers

<?php # numbers.php
echo "<!doctype html>

<title>Numbers</title>

<body style=font-size:{S_GET['size']}em>

Here are your numbers!

<ul style=color:{S_GET['color']}>";

Si=S_GET["start"];
Send=Si+$S_GET["n"] - 1;
while (Si <= Send) {

echo "<I|i>Si";

Si+=1;

}

What's the behavior if a parameter is omitted?

CSC 337 Fall 2013, PHP Slide 121

HTML Forms

CSC 337 Fall 2013, PHP Slide 122

The HTML input element

HTML forms typically contain one or more input elements.
HTMLS5 has 20+ types of input elements.

Two common input types are text and submit:
<div style='border:dotted 1px; padding: .5em; display:
inline-block'>
What's your guess?
<input type=text name=guess size=5>
<input type=submit value='Go!'>
</div> inputl.html

Rendering:

. .

CSC 337 Fall 2013, PHP Slide 123

The HTML form element

Input elements are usually children of an HTML form
element:
<form method=get action='guess.php'>
<div style=...>
What's your guess?
<input type=text name=guess size=5 required>
<input type=submit value='Go!'>
</form> form1.html

boolean
attribute!

If 777 is entered in the text field and the Go! button is
clicked, the browser sends this HTTP request:
GET /.../guess.php?guess=777 HTTP/1.1

Let's try it!

CSC 337 Fall 2013, PHP Slide 124

<form>, continued
For reference:
<form method=get action='guess.php'>

<input type=text name=guess size=5>
<input type=submit value='Go!'>
</form>

Key points:
Clicking the Go! button generates an HTTP GET request that

references the URL specified by the form's action.

The GET request will include a URL parameter that specifies a value
for guess.

The form's method=get attribute indicates that the request is to be
a GET. (We'll see POSTs soon.)

Like any other HTML element, a <form> might be on a manually
typed HTML page or be generated by PHP execution.

What do we need now?

CSC 337 Fall 2013, PHP Slide 125

guess.php

A simple back-end:
<?php
Sguess =S _GET['guess'];
Sreferer =S_SERVER['HTTP_REFERER'];

if (lisset(Sguess)) die("Oops! Expected a URL parameter!");

if (Sgues P llll)
die("No guess?! (Try again)");

echo "Wow! Sguess is a great guess, but it is incorrect!
Try againl";

How does it work? How could we improve it?
Try it with the DevTools Network tab. Do Rt.clk>Copy as cURL, too!

Notes: S_SERVER['HTTP_REFERER'] is the page we came from. The
die(...) function outputs its arguments and exits PHP.

CSC 337 Fall 2013, PHP Slide 126

IREPLACEMENT SET!]
Discard sheet with slides 127-133
from Friday, 10/25/13

Longer example: sequence.php

A form that specifies a sequence Result:
of numbers to generate:

Here you go!
Start? 1
How many? 5 l
... o 2
(Funky ¢} ° ?2
| Bold |
() Italic ; * I
@ Underlined ¢ 5
Generate
New

What <input>s are new?
Run it: http://cgi.cs.arizona.edu/classes/cs337/fall13/sequence.php

CSC 337 Fall 2013, PHP Slide 128

sequence.php, continued

Top-level control and some styling:
write _header();

if (count(S_GET) == 0)
write_form();

else
write_numbers();

function write_header()

{

echo "<!doctype html><title>Sequence</title>

<style>

#controls { border: 1px solid; padding: 0.5em lem;
line-height: 2em; float: left; }

#attrs { border:dotted 1px; width:6em; line-height: 1em;
padding: 0.5em }

#iresults { border: 1px solid; float:left; margin-left:-1px;
padding: 0.5em }

</style>";

CSC 337 Fall 2013, PHP Slide 129

sequence.php, continued

function write_form()
{
echo "<div id=controls>
<form method=get action='sequence.php'>
Start? <input name=start type=text size=5 value=1 required>

How many? <input name=n type=text size=5 value=5 required>

<div id=attrs>
<select name=font-family>
<option value=sans-serif>Sans Serif</option>
<option value=cursive>Cursive</option>
<option value=fantasy selected>Funky</option>
</select>

<input type=checkbox name=attrs[] value=bold> Bold

<input type=checkbox name=attrs[] value=italic> Italic

) <input type=checkbox name=attrs[] value=underlined> Underlined

</div>
<div style=text-align:center><input type=submit value='Generate'></div>
</form>
</div>";

}

See HFHC Chapter 14 for lots of detail on form elements. (Skim it!)
CSC 337 Fall 2013, PHP Slide 130

sequence.php, continued

function write_numbers()

{
Sattrmap = array("bold"=>"font-weight:bold;", "italic"=>"font-style:italic;",
"underlined"=>"text-decoration:underline;");

Sstyle = "font-family:{S_GET['font-family']};";
if (isset(S_GET["attrs"])) {
foreach (S_GET["attrs"] as Sattr) {
}Sstyle .= Sattrmap|[Sattr];
}

echo "<div id=results>Here you go!<ul style='Sstyle' >";

Si=S_GET["start"];
Send=Si+S_GET["n"] - 1;
while (Si <= Send) {

echo "<Ii>Si"; Si += 1;

}

echo "<form method=get action='sequence.php' style=text-align:center>
<input type=submit value='New'></form></div>";

CSC 337 Fall 2013, PHP Slide 131

Sidebar: GETs are one-line test cases

If the code that handles form submission has a bug, we
have two choices for debugging:

(1) The slow way, by repeatedly filling out the form
and clicking a button to submit it.

(2) The fast way, by saving the URL and hitting it again.
Let's try it with seqbug.php, a buggy sequence.php.

The URL for a GET can be mailed, put in a text file, added
to a bug report, etc. It's a one-line test case!

CSC 337 Fall 2013, PHP Slide 132

Accumulating a sum

Problem: Write a PHP app that sums a series of numbers
entered on a form one at a time.

- C' || localhost/c/suml.php
Number? | Add
Sum: 0

What's the problem?

suml.php, which doesn't work:

error_reporting(22519);

Ssum +=S_GET["value"];

echo "

<form action="suml.php'

method=get>
Number? <input type=text
name=value size=5>

<input type=submit value=Add>

Sum: Ssum

</form>";

CSC 337 Fall 2013, PHP Slide 133

Accumulating a sum, continued

If we hit the URL suml .php?value=7, we'll execute this
line:

Ssum += $ GET["value"];
What's Ssum now?

If the user next enters 9, we'll hit suml .php?value=9 and
do Ssum += $ GET["value"] again.

Then what will $sum be?
It might look like the app is running continuously but each

form submission causes sum1.php to be run from scratch.
There's no retention of any information from the last run.

CSC 337 Fall 2013, PHP Slide 134

One solution: a hidden field
This is sum2.php. It uses a hidden field.

error_reporting(22519);
Ssum=S_GET["sum"] +S_GET["value"];
echo "<!doctype htmlI><title>Hidden</title>
<form action='sum2.php' method=get>
<input type=hidden name=sum value=Ssum>
Number? <input type=text name=value size=5>
<input type=submit value=Add>

Sum: Ssum
</form>";

If 7 is entered, we hit sum2.php?sum=0&value=7
If 9 is then entered, we hit sum2.php?sum=7&value=9

CSC 337 Fall 2013, PHP Slide 135

Sidebar: The autofocus attribute

The autofocus binary attribute lets us specify that a control
is to be given input focus when a form loads. sum2a.php uses

it:

error_reporting(22519);

Ssum =S _GET["sum"] +S_GET["value"];

echo "

<ldoctype html>

<title>Hidden</title>

<form action='sum2a.php' method=get>
<input type=hidden name=sum value='Ssum'>
Number? <input type=text name=value

size=5 autofocus>

<input type=submit value=Add>

Sum: Ssum

</form>";

Try it!

CSC 337 Fall 2013, PHP Slide 136

"Sticky" values

With sum2.php the number field clears after the form is submitted.

sum3.php makes the number field have a "sticky" value—instead of
clearing, the field is prepopulated with the last-entered value.

error_reporting(22519);
Svalue =S _GET["value"];
Ssum =S _GET["sum"] + Svalue;
echo "<!doctype html><title>Sticky</title>
<form action='sum3.php' method=get>
<input type=hidden name=sum value='Ssum'>
Number? <input value='Svalue' type=text name=value
size=5 autofocus>
<input type=submit value=Add>

Sum: Ssum
</form>";

Let's try it! CSC 337 Fall 2013, PHP Slide 137

Multiple submit buttons

If a form has multiple submit buttons we can add a name attribute
to distinguish between them. Here is sum4.php:

if (S_GET["submit"] =="Add") {
Svalue =S _GET["value"]; Ssum =S_GET["sum"] + Svalue;
}
else {
Svalue = null; Ssum = 0;
}
echo "<!doctype html><title>Reset</title>
<form action='sum4.php' method=get>
<input type=hidden name=sum value='Ssum'>
Number? <input value='Svalue' type=text name=value size=5
autofocus>
<input type=submit name=submit value=Add>
<input type=submit name=submit value=Reset>

Sum: Ssum
</form>";

CSC 337 Fall 2013, PHP Slide 138

Assignment 6 stuff

CSC 337 Fall 2013, PHP Slide 139

Arrays of arrays
A PHP array can have arrays as values.

php > Sodds = array(1,3); Sevens = array(2,4);
php > Sboth = array(Sodds, Sevens);
php > var_dump(Sboth);
array(2) {
[0]=> array(2) {
[0]=> int(1)
[1]=> int(3)
}
[1]=> array(2) {
[0]=> int(2)
[1]=> int(4)
}
}

Sboth = array(array(1,3),array(2,4)); works, too.
Python equivalent: both =[[1,3],[2,4]]. How about Java?

CSC 337 Fall 2013, PHP Slide 140

arrays of arrays, continued
mexplode() explodes a string first by slashes and then by colons:

function mexplode(Ss) php > $a =
{ mexplode("a:10/bbb:5");
$r = array(); php > var_dump($a);

foreach (explode("/", Ss) as Spart)

Sr[]= explode(":", Spart); array(2) {

[0]=>
return Sr; array(2) {
} // mexplode.php [0]=> string(1) "a"
[1]=> string(2) "10"
}
[1]=>
array(2) {
[0]=> string(3) "bbb"
[1]=> string(1) "5"
}

} CSC 337 Fall 2013, PHP Slide 141

arrays of arrays, continued

Here's a function that takes an mexplode(...) result as an argument
and produces a string with replications:

function mrepl(Sa)

{
Sr — ||||’,
foreach (Sa as Sspec)
Sr .= str_repeat(Sspec[0], Sspec[1]);
return Sr;
}
Usage:

php > Sa = mexplode("a:3/xy:4/ccc:10");

php > echo mrepl($Sa);
aaaxyXyXyXyCCCCCCCCCCCCCCCCCCCccccececeeeee

php > echo mrepl(mexplode("[]:3/():5/@-@:2"));
(1000000 @-@@-@

CSC 337 Fall 2013, PHP Slide 142

% cat entriesl.txt
I've started a blog!
tags: x,y,z
2013-08-28

Line 1

Line 2

.end

Phone trouble...
2013-09-19

First (and last) line.

.end

load _entries.php on a6

% php test_load_entries.php

array(2) {

[0]=> array(4) {

-nhtkyl
:ndaten
"text'

=> string(20) "I've started a blog!"
]=> string(10) "2013-08-28"

'1=> string(14) "Line 1...

"tags"]

=> array(3) {

[0]=> string(1) "X"
[1]=> string(1) "y"
[2]=> string(1) "z ”

}
}

[1]=>array(4) {

title"]
:ndaten
"text
line...."

=> string(16) "Phone trouble..."
]=> string(10) "2013-09-19"

"1=> string(23) "First (and last)

:Iltagsll

]=>array(0) { }

CSC 337 Fall 2013, PHP Slide 143

Demos of shapes.php and
blog2.php

The HTTP POST request

form1.html revisited

Here's a revision of form1.html from slide 124, trivially recast
as PHP, but also with get changed to post and a slightly
revised back-end (guesspost.php).

<?php
echo "<ldoctype html><title>form</title>
<link rel=stylesheet href=form1.css type=text/css>
<form method=post action=guesspost.php>
<div>
What's your guess?
<input type=text name=guess size=5 required>
<input type=submit value='Go!'>
</div>
</form>":

Try formlget.php and forml1post.php. What differences do
you see?

CSC 337 Fall 2013, PHP Slide 146

guesspost.php

There's only one difference between guess.php and guesspost.php:

Sguess guess'];
Sreferer =S—SERVER['HTTP_REFERER'];

if (lisset(Sguess))
die("Oops! Expected a URL parameter!");

if (Sguess ==="")
die("No guess?! (Try again)");

echo "Wow! Sguess is a great guess, but it is incorrect!

Try again!";
echo "</div>";

Confirm with diff:
% diff guess.php guesspost.php
8c8
< Sguess =S _GET['guess'];

> Sguess =S_POST['guess'];

CSC 337 Fall 2013, PHP Slide 147

GET vs. POST

w3.org/Protocols/rfc2616/rfc2616-sec9.html defines HTTP
"methods" (a.k.a. verbs). Excerpts:

"The GET method means retrieve whatever information is
identified by the [URL]."

"The PUT (note: PUT, NOT POST!) method requests that the
enclosed entity be stored under the supplied [URL].

"The POST method is used to request that the origin server
accept the entity enclosed in the request as a new
subordinate of the resource identified by the [URL]."
Examples: (also from the RFC)
Adding a message to a group of articles
Providing a block of a data to a data-handling process
Extending a database through an append operation

CSC 337 Fall 2013, PHP Slide 148

GET vs. POST continued

GETs... POSTs...

Can be bookmarked Can't be bookmarked

Are kept in browser history |Not kept in browser history
Have a maximum length No maximum length

URL parameters are logged; |Data not logged
also are visible OtS.

Broad rules of thumb:
Use GET when requesting data
Use POST when changing data
Feel free to bend rules when developing/debugging

MUST use POST if data might be "long", like an uploaded
image or document.

There are caching issues, too...

CSC 337 Fall 2013, PHP Slide 149

Sidebar: Apache's access log

Here are some lines from /Applications/XAMPP/logs/access_log on my machine.
What have the users been doing?

127.0.0.1 [31/0ct/2013:16:08:58] "GET /a6/blog2.php HTTP/1.1" 200 15643
127.0.0.1 [31/0ct/2013:16:08:58] "GET /a6/tilel.png HTTP/1.1" 304 -
127.0.0.1 [31/0ct/2013:16:08:58] "GET /a6/folly.jpg HTTP/1.1" 304 -
127.0.0.1 [31/0ct/2013:16:08:58] "GET /a6/raffle.jpg HTTP/1.1" 304 -

127.0.0.1 [31/0ct/2013:16:09:06] "GET /a6/blog2.php?filter=World%20Series
HTTP/1.1" 200 3701

127.0.0.1 [31/0ct/2013:16:09:18] "GET /a6/form1.htm| HTTP/1.1" 404 1030
127.0.0.1 [31/0ct/2013:16:09:23] "GET /c/form1.htm| HTTP/1.1" 304 -
127.0.0.1 [31/0ct/2013:16:09:23] "GET /c/form1.css HTTP/1.1" 304 -
127.0.0.1 [31/0ct/2013:16:09:29] "GET /c/guess.php?guess=1234 HTTP/1.1"
200 208

127.0.0.1 [31/0ct/2013:16:11:24] "GET /c/sequence.php?
start=-99&n=200&font-family=fantasy&attrs%5B%5D=bold&attrs%5B
%5D=underlined HTTP/1.1" 200 1813

Runtail —-f /Applications/XAMPP/logs/access log and hit some
URLs.

CSC 337 Fall 2013, PHP Slide 150

& C | localhost/c/guesspost.php

| T —

[}

Wow! 10 is a great guess, but it is incorrect!
Try again!

X Elements Resources | Network | Sources Timelin

Name
Path

Method

| guesspost.php

Open Link in New Tab

Copy Link Address
Copy Request Headers
Copy Response Headers

Copy as cURL

Copy All as HAR

forml.css
/C

CSS

Chromes' Copy as cURL

A right-click on a
request shows a menu
with "Copy as cURL".

Clicking it puts a curl
command on the
clipboard that

reproduces the request.

% pbpaste (cat/dev/clipboard on Cygwin)
curl 'http://localhost/c/guesspost.php’ -H 'Origin: http://

localhost' (...more -H header args..

.) -H 'Referer: http://

localhost/c/form1post.php' --data 'guess=10'

CSC 337 Fall 2013, PHP Slide 151

Refreshing a page generated by a POST

If a page is produced by a POST and we do "View>Reload
this Page", we get a prompt:

| ,
| € C [localhost/c/guesspost.php

Confirm Form Resubmission

Wow! 10 is a great gues The page that you're looking for used information that you entered.
Try ag: Returning to that page might cause any action you took to be repeated.
Do you want to continue?

i Cancel Continue

Why?

CSC 337 Fall 2013, PHP Slide 152

File uploads

CSC 337 Fall 2013, PHP Slide 153

File uploads
File uploads are almost always done with POST. (Why?)

Here's a form with an input element for uploading a file:

<form enctype=multipart/form-data method=post
action='http://localhost:4000/xyz.php' >
File: <input name=f1 type=file>
<input type=submit value=Upload>
</form> uploadl.php

It renders like this:

File: Choose.... Upload

"Choose..." brings up an OS-specific file-choosing dialog.

Note the form's enctype attribute. It is required for uploads.

CSC 337 Fall 2013, PHP Slide 154

File uploads, continued

Recall the form attributes:
<form enctype=multipart/form-data method=post
action='http://localhost:4000/xyz.php' >

XAMPP's Apache HTTP server listens on port 80 by default.

In order to see what exactly what gets sent by this POST, we'll
use "netcat" (nc) to listen on port 4000 and print out
whatever gets sent to it:

% nc -1 4000

netcat will wait silently, producing no output until something
connects to port 4000 on this machine and sends data.

CSC 337 Fall 2013, PHP Slide 155

File uploads, continued

If we hit uploadl.php and upload a.txt, we see this from netcat:
% nc -1 4000
POST /xyz.php HTTP/1.1
User-Agent: Opera/9.80 (Macintosh; Intel Mac OS X 10.8.5) ...
Host: localhost:4000
Referer: http://localhost/c/uploadl.php
Content-Length: 208
Content-Type: multipart/form-data; boundary=---------- JroWp5V
WjjjoMvPwdfrNBJ

------------ JreWp5VWijjjoMvPwdfrNBJ
Content-Disposition: form-data; name="f1"; filename="a.txt"

Content-Type: text/plain

Testing at...
Thu Oct 31 20:05:34 MST 2013

------------ JreWp5VWijjjoMvPwdfrNBJ—

What does the browser do after sending data to localhost:40007?

CSC 337 Fall 2013, PHP Slide 156

File uploads, continued

When a POST with a file is received, PHP populates S_FILES.
Here's how PHP transforms the file data in the browser's POST
request, which we dumped out with netcat:

array(1) { # NOTE: an array of arrays!
["f1"]=> array(5) {
"name"]=> string(5) "a.txt"
"type"]=> string(10) "text/plain"
"tmp_name"]=>
string(45) "/Applications/XAMPP/xamppfiles/temp/
phpWgA5Ru"
["error"]=>int(0)
["size"]=>int(43) } }

What do we see? Where are the file contents?

CSC 337 Fall 2013, PHP Slide 157

Simple file display
upload2.php simply displays the contents of an uploaded file:

if (S_SERVER["REQUEST_METHOD"] == "GET") {
echo "<form enctype=multipart/form-data method=post
action=upload2.php>
File: <input name=f1 type=file>
<input type=submit value=Upload></form>";
} else {
Sf = fopen(S_FILES["f1"]["tmp_name"], "r");
echo "<pre style='...[borders, padding, inline-block]...">";
while (Sline = fgets(Sf)) {
echo htmlspecialchars(Sline); // Try it without this fen...
}
echo "</pre><form><input type=submit value=Again>
</form>"; // Note minimal form!

Run it!

CSC 337 Fall 2013, PHP Slide 158

What lies outside <?php ... ?>

CSC 337 Fall 2013, PHP Slide 159

PHP in 1996

Here's an example from php.net/manual/en/history.php.php:

<l--getenv HTTP_USER_AGENT-->
<!l--ifsubstr Sexec_result Mozilla-->

Hey, you are using Netscapel<p>
<l--endif-->

<l--sgl database select * from table where
user='Susername'-->
<!--ifless Snumentries 1-->
Sorry, that record does not exist<p>
<l--endif exit-->
Welcome <!--Suser-->I<p>
You have <!--Sindex:0--> credits left in your account.<p>

Note that the PHP code is enclosed in HTML comments
interleaved with literal text and markup.

CSC 337 Fall 2013, PHP Slide 160

<?php ... ?> ("PHP tags")

We've learned to start PHP programs with "<?php", but
maybe you've occasionally forgotten to do that...

% cat hello-oops.php
echo "Hello, world!";

and gotten this:

% php hello-oops.php
echo "Hello, world!";

CSC 337 Fall 2013, PHP Slide 161

PHP tags, continued
Early PHP only looked for code in HTML comments.

Modern PHP only looks for code in in <?php ... ?> blocks.

Text outside of <?php ... ?>is simply copied to standard
output!

CSC 337 Fall 2013, PHP Slide 162

PHP tags, continued

Here are two ways to write a program that shows what's

inS_GET:

<?php

echo "Contents of \S_GET
<pre>";
var_dump(S_GET);

echo "</pre>";

Which is easier to read?

Contents of S GET

<pre>

<?php var_dump(S_GET); ?>
</pre>

dumpget.php and dumpgettags.php

Conceptually, text outside <?php ... ?> is just echoed.

CSC 337 Fall 2013, PHP Slide 163

PHP tags, continued

nich of these is easier to read? Which is faster?

<?php <ldoctype html>
echo "<!doctype html> | |<title>1 to 10</title>
<title>1 to 10</title>
";
<?php
Si=1, Si=1;
while (Si <= 10) { while (Si <= 10) {?>
echo "Si"; <?php echo Si; ?><?php
Si+=1; Si+=1;
} }
>
echo "";

ten.php and tentags.php CSC 337 Fall 2013, PHP Slide 164

PHP tags, continued

Here's a slight variant that uses alternative syntax for control
structures and a short echo tag:

<ldoctype html>
<title>1 to 10</title>

<?php

Si=1;

while (Si <= 10): ?> # colon instead of opening brace
<?=Si ?><?php #<?=...7?>for echo
Si+=1;

endwhile; # endwhile instead of closing brace

>

CSC 337 Fall 2013, PHP Slide 165

Best practice: don't end with ?>

It is considered a bad idea to have the PHP closing tag
(the ?>) at the end of the following program. Why?

<ldoctype html>

<title>Testing</title>

<?php # endtag.php
echo str_repeat("testing ", 100);

>

CSC 337 Fall 2013, PHP Slide 166

Cookies

CSC 337 Fall 2013, PHP Slide 167

What is a cookie?

A cookie is a name/value pair that a site asks a browser to
store on the site's behalf.

Whenever a browser hits a URL at a site, it sends the
site's cookies in a Cookie header.

Cookies are another way to provide input to a web app.
Chrome lets us examine cookies. Here are two ways:
Hit chrome://settings/cookies#tcookies

In DevTools: Resources tab, then Cookies

CSC 337 Fall 2013, PHP Slide 168

Example: SunTran cookies

Filtering my cookies with suntran.com shows this:

Site Locally stored data Remove all suntran.com
suntran.com 10 cookies, Local storage
ASP.NET_Sessionld || __session:0.59502145...| | __session:0.59502145...|| __utma || __utmb \
\/ \7
__utmc \ \ _utmz \ \ directior route stop Local storage \
Name: route
Content: 32
Domain: suntran.com A
Path: /tmwebwatch
Send for: Any kind of connection

Accessible to script: Yes

Created: Sunday, November 3, 2013 8:23:06 PM
Expires: Tuesday, December 3, 2013 8:23:06 PM
Remove

What information is associated with the "route" cookie? How does
"route" differ from other cookies?
Try the DeVTOOIS VIeW’ tool CSC 337 Fall 2013, PHP Slide 169

SunTran cookies, continued

With cookies present, hitting
Live Arrival Times shows this:

C' |] suntran.com/tmwebwatch/LiveArrivalTimes

If | delete the cookies, | see
this:

C' |] suntran.com/tmwebwatch/LiveArrivalTimes

Live Arrival Times

Live Arrival Times

Route: 4 - Speedway " | Route: Select a route... -
Direction: | East | | Direction: | Select a direction... .
Stop: [Speedway/Kolb v] Stop: Select a stop... -
Next Vehicle Arrival Do cookies improve the
8:56 pm user experience in this
Last updatad at8:42 i case?

CSC 337 Fall 2013, PHP Slide 170

Cookies in headers

If | hit http://suntran.com/tmwebwatch/LiveArrivalTimes,
here's the Cookie header that's sent by the browser:

GET /tmwebwatch/LiveArrivalTimes HTTP/1.1

Cookie: route=32; direction=2; stop=984;

__utma=243881607.944773664.1383537905.1383537905.

1383537905.1; utmb=243881607.2.10.1383537905;

_ utmc=243881607;
_utmz=243881607.1383537905.1.1.utmcsr=(direct) |

utmcen=(direct) | utmcmd=(none);
ASP.NET_Sessionld=aplzjorggquuuzlwcsrvkrow; session:
0.9430673203896731:enableLogin=true; _ session:

0.9430673203896731:=http:

How many cookies are being sent?
How do cookies differ if we instead hit http://suntran.com?

CSC 337 Fall 2013, PHP Slide 171

Cookies in headers, continued

If | hit http://cgi.cs.arizona.edu/classes/cs337/fall13/
showcookies.php, here's the cookie header:

Cookie: ga=GA1.2.2058714000.1311104606;
__gca=P0-726865078-1382207025843;
__utma=103637456.2058714000.1311104606.1383274970.138
3281857.50;
_utmz=103637456.1378597841.20.2.utmcsr=google |
utmccn=(organic)|utmcmd=organic|utmctr=(not%20provided);
___utmv=103637456.anonymous%20user%3A|1=User
%20roles=anonymous%20user=1;
__utma=110116631.537126843.1313707269.1383066322.1383
458132.74;
_utmz=110116631.1382291135.65.6.utmcsr=google |
utmccn=(organic)|utmcmd=organic|utmctr=catcard

_gaand the _ ut™* cookies are for Google Analytics. _ qgcais for
QuantCast analytics.

CSC 337 Fall 2013, PHP Slide 172

Examining cookies with PHP

When a PHP page is hit, S_ COOKIE is populated with the
cookies sent in the HTTP request's Cookie: header.

showcookies.php simply does var_dump(S_COOKIE):

| ,
& C' | | cgi.cs.arizona.edu/classes/cs337/fall13/showcookies.php

array(5) {
["_ga"]=>
string(27) "GA1.2.2058714000.1311104606"
["__gca"]=>
string(26) "P0-726865078-1382207025843"
[" utma"]=>
string(56) "103637456.2058714000.1311104606.
[" utmz"]=>
string(93) "103637456.1378597841.20.2.utmcs:
[" utmv"]=>

1=Use1

string(55) "103637456.anonymous user:

CSC 337 Fall 2013, PHP Slide 173

Creating a cookie

PHP's setcookie (.. .) function causes a Set-Cookie
header to be generated.

Trivial example: (cookiel.php)
<ldoctype html>
<title>Cookies</title>
<?php

setcookie("last_visit", time());

time () returns the number of seconds since the UNIX
"epoch" (Jan 1 1970 00:00:00 GMT)

What can this cookie be used for?

CSC 337 Fall 2013, PHP Slide 174

Creating a cookie, continued

Let's hit it with curl:
% curl -i http://localhost/c/cookiel.php
HTTP/1.1 200 OK
Date: Mon, 04 Nov 2013 05:15:10 GMT
Server: Apache/2.4.4 (Unix) ...
X-Powered-By: PHP/5.4.19
Set-Cookie: last visit=1383542110

Content-Length: 39

% cat cookiel.ph
Content-Type: text/html PP

<ldoctype html>

<title>Cookies</title>
<ldoctype html> <?php

<title>Cookies</title> setcookie("last_visit", time());

Will we be able to see this cookie in Chrome?

CSC 337 Fall 2013, PHP Slide 175

Creating a cookie, continued
Let's do this with Chrome:

(1) Delete cookies for localhost

(2) Open Network tab in DevTools

(3) Hit localhost/c/cookiel.php

(4) Examine Request and Response headers for cookie.
(5) Hit cookiel.php

(6) Examine headers again

CSC 337 Fall 2013, PHP Slide 176

Using a cookie
What does this program do?

<ldoctype html>
<title>Cookies</title>
<?php
error_reporting(22519);

Scookie =S _COOKIE["last_visit"];
if (Scookie) {
Selapsed = time() - Scookie;
echo "You were last here Selapsed seconds ago.";

}

else
echo "Hmm... Is this your first time here?";

setcookie("last_visit", time());

Let's run it! (cookie2.php)

CSC 337 Fall 2013, PHP Slide 177

The big picture

The PHP setcookie(...) function causes the response (the
PHP output) to a request to have a Set-Cookie header.

When a browser sends a request (a GET or POST) to a

site, all” the cookies for the site are put in a single Cookie:
header.

In other words...

A web app at x.com tells the browser to store a
cookie.

When the browser sends a request to x.com, it sends
all” the cookies for x.com, not knowing which, if any,
the app being hit might use.

CSC 337 Fall 2013, PHP Slide 178

Larger example: Text preferences

textprefs.php uses a cookie to hold size and background-
color preferences.

€& C' | localhost/c/textprefs.php

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

[2 2] | Set
Forget

Let run it!

CSC 337 Fall 2013, PHP Slide 179

Text preferences, continued

Testing:
(1) Delete text_prefs cookie for localhost
(2) Hit textprefs.php. Confirm white background.
(3) Set size and background.
(4) Close browser.
(5) Reopen and confirm size and background same.
(6) Open new tab, hit app, set new color and size.
(7) Reload in first tab, confirm color and size.
(8) Click Forget, then reload in second tab.

CSC 337 Fall 2013, PHP Slide 180

Here's the main logic. Text preferences, continued
error_reporting(22519); include("lorem.php");

Ssize = "10"; Sbgcolor = "white";
Scookie =S _COOKIE["text_prefs"];

if (5_POST["size"]) {
Ssize =S_POST["size"];
Sbgcolor =S_POST["bgcolor"];
setcookie("text prefs", // expire in 7 days
"{S_POST['size']}/{S_POST['bgcolor']}", time() + 7*24*60*60);

}
elseif (5_POST["forget"]) {

setcookie("text_prefs", "", time() - 24*60*60); # delete with prior
time
}

elseif (Scookie) {
list(Ssize,Sbgcolor) = explode("/", Scookie); # parallel assignment

echo "<div style='font-size:{Ssize}px; background-color:Sbgcolor'>";
eChO |Orem()' eChO "</dIV>"; CSC 337 Fall 2013, PHP Slide 181

Text preferences, continued

Here are the forms. Note that two forms are used—why?
<form action=textprefs.php method=post>
<select name=size required>
<option></option>
<option value=16>Small</option>
<option value=24>Medium</option>
<option value=32>Large</option>
</select>
<select name=bgcolor required>
<option></option>
<option value=antiquewhite>Antique White</option>
<option value=lightcoral>Light Coral</option>
<option value=skyblue>Sky Blue</option>
</select>
<input type=submit name=submit value=Set>
</form>
<form action=textprefs.php method=post>
<input type=submit name=forget value=Forget>
</form>

CSC 337 Fall 2013, PHP Slide 182

Cookie details

Cookies are far from bulletproof:
Users can disable storage of cookies.
Users can delete cookies.
Users can hack cookies.

setcookie(...) has some additional arguments that we
didn't talk about.

CSC 337 Fall 2013, PHP Slide 183

