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CRUD
At the heart of many web applications is CRUD:

Creating records
Reading records
Updating records
Deleting records

Which of the the PHP problems on assighnments have
been CRUD apps?
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Relational Database Management Systems

CRUD operations can be done using a small set of operating
system services (primarily read/write/seek).

Over the years, many types of libraries and systems have been
developed to make CRUD operations easy.

In 1970, Dr. E. F. Codd at IBM wrote a seminal paper,
A Relational Model of Data for Large Shared Data Banks

The paper introduced the idea of relational database.

Web apps often use a relational database to store data.

Classes like CSC 460 provide a thorough treatment of
relational databases. In this class we'll only learn a few basics.
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RDBMSs, continued

Here's one way to describe the fundamental
characteristic of a relational database:
All data is represented as tables.

Some facts about tables in a relational database:
Tables have zero or more rows of data.

Rows have one or more columns of data.
All rows in a table have the same set of columns.
Columns exist even if there are no rows.

Conceptually, all data is just text. There are no "pointers”
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Examples of tabular data
Here is a table with information on plants:

e t——————— t—— Fo— - +
| 1d | plantname | price | maxheight | exposure |
R e ittt t——————— e o +
| 1 | Glossy Abelia | o | 6 | full sun |
| 2 | Grand Fir | 25 | 25 | full sun |
| 3 | Spanish Fir | 25 | 15 | full sun |
| 4 | Blue Spanish Fir | 25 | 15 | full sun |

This table has information about the owner of a residence:

e Fom e t—————— +
| 1d | ownername | city | state |
f——_—t - = f——_—_— t———— +
| 1 | James Grishom | Tucson | AZ |
| 2 | Walter Vickers | San Diego | CA |
| 3 | Callow Bruce | Casa Grande | AZ |
| 4 | Wright Frank | Casa Grande | AZ |

Does this data meet the requirements of the previous slide?

(Thanks to Dr. Snodgrass for this data from his CSC 460 examples!)
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Tabular data, continued

How could we represent the blog's data with tables?
What could correspond to rows?
What would the columns in each be?
What might some sample rows be?
How many tables?

Donec et convallis tellus. Mauris a sem erat. Etiam in facilisis turpis, sit
amet placerat sapien. Class aptent taciti sociosqu ad litora

aug 28
2013

4 tincidunt metus justo, ornare luctus enim
= aliquam pellentesque. Suspendisse ante nisl,
imperdiet non tortor et, mollis lacinia nisl.

Donec luctus porta dolor, blandit tincidunt arcu feugiat
posuere. In tempus, lorem non facilisis vehicula, nisi nisl sodales erat, at
suscipit massa mauris vitae purus. Donec sit amet justo sed ligula placerat
congue. Cras a justo dignissim, suscipit tortor nec, varius dolor. In egestas
erat ac augue facilisis iaculis.

-than]sandra] Bev
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MySQL
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MySQL

MySQL is a relational database system that's installed
with XAMPP.

SQL is an acronym for Structured Query Language but it's
not just for querying!

We can use SQL to:
Create databases
Create tables in databases
Insert rows into tables
Read rows
Update data in rows
Delete rows
Lots more...
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The mysgl command

The mysgl command provides a line-oriented interface that can be used to
enter SQL commands.

Z:\whm\337>c:\xampp\mysqgl\bin\mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.

mysgl> select now() ;

fmm e +
| now () |
Fmm e +
| 2013-11-05 20:10:40 |
o +

1 row in set (0.00 sec)

mysgl> select datediff('2013/12/13', now()) "Days to final";

mysgl> quit
Bye
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Making a database to experiment with
Let's make a database to work with using XAMPP's MySQL.

http://cs.arizona.edu/classes/cs337/fall13/files/plants.sql is a file
with data for three tables. Copy it into the current directory.

Z:\whm\337\sgl> c:\xampp\mysql\bin\mysgl -u root
mysgl> create database plants;
Query OK, 1 row affected (0.00 sec)

mysgl> use plants;
Database changed

mysgl> source plants.sql;
Query OK, 0 rows affected [...lots more...]

mysgl> show tables;

Fm - +
| Tables in plants |
Fo - +
| installation |
| plant |
| residence |
fom - +
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Using the plants database with XAMPP

The previous slide showed how to make a database named
plants and populate it from a file. That only needs to be done
once. (To repeat it, do "drop database plants;" first.)

Once created, start mysqgl like this, naming plants on the
command line:

Z:>c:\xampp\mysql\bin\mysql -u root plants
mysgl> show tables;

o m +
| Tables 1n plants |
t———— ————————— +
| installation |
| plant |
| residence |
o +

3 rows 1n set (0.00 sec)
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mysqgl on lectura

Here's how you can access the same tables on lectura:

5 mysql -h mysql -p -u cs337f13 whm cs337£13

Enter password: (tednelson)
mysgl> show tables;

o +
| Tables in whm c¢s337f13 |
T e _____ n
| installation |
| plant |
| residence |
e +

3 rows 1n set (0.00 sec)

Note that —h mysqgl is referencing the host mysql.cs.arizona.edu.
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MySQL and SQL resources
MySQL Reference manual
dev.mysqgl.com/doc/refman/5.5/en/

Learning PHP, MySQL, JavaScript, and CSS, 2"¥ edition,
by Nixon

Head First PHP & MySQL, by Beighley and Morrison

Sams Teach Yourself SQL™ in 10 Minutes, 4t ed.,
by Ben Forta. (On Safari!)

A "deep" book, for future reference:
Relational Theory for Computer Professionals: What
Relational Databases Are Really All About, by C.J. Date
(Date worked with E.F. Codd.)
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Examining rows with select
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The select statement
SQl's select statement is used to display sets of rows:

% mysql -u root plants
mysgl> select * from plant;

et e o o —— - Fo— - +
| 1id | plantname | price | maxheight | exposure |
e —— - f————————— f————— +
| 1 | Glossy Abelia | 6 | 6 | full sun |
| 2 | Grand Fir | 25 | 25 | full sun |
| 3 | Spanish Fir | 25 | 15 | full sun |
| 4 | Blue Spanish Fir | 25 | 15 | full sun |
| 5 | Common Boxwood | 6 | 7 | full sun |
| © | Incense Cedar | 25 | 18 | full sun |

éé.rows in set (0.00 sec)

The query above asks for all columns for all rows in the table
plant. We're using the database named plants.

The rows are considered to be a set. There is no guarantee of the
order in which they'll be produced.
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select, continued

select * ... meansselectall columns but we can
specify only certain columns in a certain order:

mysgl> select maxheight, plantname from plant;

| | Glossy Abelia |
| | Grand Fir |
| 15 | Spanish Fir |
| | |
| | |
| | |

15 Blue Spanish Fir
7 Common Boxwood
18 Incense Cedar
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select, continued

We can perform computations on columns, and give columns
new labels:

mysqgl> select
cast (maxheight*12*2 .54 as decimal(8,1))
"Max height in cm",
plantname '"Name"
from plant;

o o +
| Max height in cm | Name |
o o +

182. Glossy Abelia

762 . Grand Fir

457 . Spanish Fir

213.
543.
30.

Common Boxwood
Incense Cedar

| 9
| 0
| 2
| 457 .2
| 4
| 6
| 5 Harebell

|
|
|
| Blue Spanish Fir
|
|
|
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select, continued

We can add an order by clause to show the rows in the setin
sorted order. desc indicates descending.

mysgl> select plantname, maxheight from plant
order by maxheight desc;

et ataiait tom - +

| plantname | maxheight |

e tom - +
Grand Fir 25
Himalayan White Pine 18
Incense Cedar 18

| | |
| | |
| | |
| Spanish Fir | 15 |
| | |
| | |

Blue Spanish Fir 15
Blue-Needled Japanese White Pine 12
| Harebell | 1 |
| Black Mondo Grass | 0.5 |
f———_——_— f———_ +

22 rows 1n set (0.00 sec)
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select, continued

A where clause can be used to select a subset of the rows:

mysgl> select plantname, maxheight, price
from plant where exposure = 'indoor';

| Makinoi's Holly Fern |
| Sword Fern |
| Asian Saber Fern |
| Japanese Tassel Fern |
| Black Mondo Grass |
| Hybrid Sweet Olive |
| Sweet Olive |

7 rows 1n set (0.00 sec)

CSC 337 Fall 2013, RDBMS Slide 20



select, continued

We can use and and or to create arbitrarily complex

conditions for where:

mysqgl> select plantname, maxheight, price
from plant where exposure = 'indoor'
and price < 5
and maxheight >= 3;

fom - o mm - t——————— +
| plantname | maxheight | price |
fom tom - tomm———— +
| Sword Fern | 3 | 4 |
fom - t——mmm - t——————— +

1 row 1n set (0.00 sec)
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select, continued

The various clauses of select that we've seen must be
in this order:

select

columns/expressions

from table (we'll soon see multiple tables)
where condition

order by specs

Full details:
http://dev.mysqgl.com/doc/refman/5.6/en/select.html
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GUIs for MySQL (and others)

There are a variety of GUIs for working with MySQL and other
relational databases. XAMPP includes phpMyAdmin.

€ C‘

2 B © S
A
v

(Recent tables) Show query box

« Showing rows 0 - 21 ( 22 total, Query took 0.0004 sec)

+— | cdcol
I
+— | information_schema
8@ mysd SELECT *
I
— | performance_schema oot
+ ph phie EROM plant
& phpmyacmin LIMIT O, 30
—— | plants
o New
+— | installation
-Ii-—; plant Show : Start row: |0 Number of rows: |30 Headers every | 100
-Ii-—; residence
8- quotes Sort by key: | None ;
+- ) test
,;__ tgbox + Options
«—— ¥ id plantname
) & Edit 3¢ Copy @ Delete 1| Glossy Abelia 6
() ' Edit % Copy @ Delete 2 Grand Fir 25
() ¢ Edit & Copy @ Delete 3| Spanish Fir 25
"] « Edit %c Copy @ Delete 4 Blue Spanish Fir 25

Iocalhost/phpmyadmm/#PMAURL 2:tbl_sql.php?db= plants&table plant&server= l&target &token=1ef223.

php 7 localhost » @ plants » @ plant

| Browse ¥ Structure [ SQL \ Search #t Insert |[& Export

&4 Import | &° (

rows

price maxheight exposure

6 |full sun
25 full sun
15 full sun
15 full sun

Others are MySQL Workbench, DbVisualizer, and Navicat. IDEs

often include database tools, too.
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PDO: PHP Data Objects



PDO basics

PHP has several database abstraction layers and vendor-
specific database extensions.
(see php.net/manual/en/refs.database.php)

We'll be using PHP Data Objects, known as PDO.

There are PDO "drivers" that interface with MySQL, SQL
Server, Oracle, SQLite, PostgreSQL, and other databases.

PDO provides an object-based access mechanism.
Instead of calling functions we'll make instances of PDO
classes and invoke methods on them.
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Creating a database connection

pdol.php creates a connection to the plants database on
localhost (i.e., the plants db in XAMPP's MySQL) and asks the
server for its version number.

<?php
Sdsn = "mysqgl:host=localhost;dbname=plants";
Sconn = new PDO(Sdsn, "root", "");

// Data source name, user, password
Sversion = Sconn->getattribute(4); // server version
echo "Server version: Sversion";

Notes:
(1) new PDO(...) created an instance of the PDO class.
(2) Sconn->getattribute (4) invokes the
getattribute method on that object. The integer
4 happens to mean "server version".
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Creating a connection, continued

newconn.php holds a function that decides which database to connect to based
on where it's running (as indicated by gethostname()) and what connection
parameters to use.

<?php
function newconn()

if (gethostname() === "cgi-vm.cs.arizona.edu") {
Sdbname = "whm_cs337f13";
Suser = "cs337f13"; Spw = "tednelson";
Shost = "mysql.cs.arizona.edu";
} else {
Sdbname = "plants";
Suser = "root"; Spw =""; Shost = "localhost";

}

Sdsn = "mysql:host=Shost;dbname=Sdbname"; // Data source name
Sconn = new PDO(Sdsn, Suser, Spw);
return Sconn;

}

We'll use this function to make our examples with the plants database work on
both XAMPP and on lectura.
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Doing a select with PDO

First, get a database connection:
include("newconn.php"); Sconn = newconn();

Invoke the connection's query method, passing it an SQL
qguery in a string:

Splants = Sconn->query(
"select * from plant order by maxheight, plantname");

The query method returns an instance of PDOStatement. Its
fetchAll method returns an array of the results!

var_dump(Splants->fetchAll(PDO::FETCH_ASSOC));

The above is in plantsl.php. Let's hit it!
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Doing a select with PDO, continued
Here's the first part of the output:

array(22) {
[0]=> array(5) {
"id"]=> string(2) "17"
"plantname"]=> string(17) "Black Mondo Grass"
"price"]=> string(1) "3"
"maxheight"]=> string(3) "0.5"
"exposure"]=> string(6) "indoor"

}

[1]=> array(5) {

"id"]=> string(1) "7"
"plantname"]=> string(8) "Harebell"

'price”]=> string(1) "3" Try fetchAll() with

"maxheight"]=> string(1) "1" y

"exposure"]=> string(8) "full sun" PDO::FETCH_NUM and
} no arguments, too!

What do we see? What would be an interesting thing to display?
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Doing a select with PDO, continued
This is plants2.php. What does it do? Run it!

include("newconn.php"); Sconn = newconn();

Splants = Sconn->query(
"select * from plant order by maxheight, plantname");

foreach (Splants->fetchAll(PDO::FETCH_ASSOC) as Srow)

{
echo bar_for_length(Srow['maxheight']);

echo " {Srow['plantname']}<br>";

}

function bar_for_length(Slen)

{
Slen *=3;
return "<div class=bar style='width:{Slen}em'>Slen</div>";

}
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Our blog with a database

If we wanted our blog entries stored in a database, we might
use a table like this:

create table entry /* from blog.sqgl */

(

id bigint not null auto_increment primary key,
title varchar(100) not null,

posted date,
text varchar(2000) not null

/* no tags yet... */
);

What limitations on blog entries does the above imply?

What would need to be changed to display entries from a
database instead of blog.txt?
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Our blog with a database, continued

Here is load_entries_sql.php. Hit tle_sql.php.

function load_entries_sql()

{

Sentries = array();
Sconn = newconn(); // assumes params for blog db

Sstmt = Sconn->query("select posted, title, text from entry");

foreach (Sstmt->fetchAll(PDO::FETCH_ASSOC) as Srow) {
Sdate = Srow["posted"];
Stitle = Srow["title"];
Stext = Srow|["text"];
Stags = array(); /* no tags yet.. */

Sentries[] = array("title" => Stitle, "date" => Sdate,
"text" => Stext, "tags" => Stags);
}

return Sentries;
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The insert statement

The previous example assumed some rows in blog. They were
created with these lines in blog.sql:

insert into entry(title, posted, text)
values('l\'ve started a blog!',
'2013-08-28', 'Line 1\nLine 2');

insert into entry(title, posted, text)
values('Phone trouble...',
'2013-09-19', 'First (and last) line');

The general form is:
insert into TABLE(COL1, COL2, ..., COLN)
values(VALUE1, VALUE2, ..., VALUEN);

Using only what we've seen, how could we get all our blog.txt
data into the database?
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insert, continued

This program almost works:
include("load _entries.php");

foreach (load_entries("blog.txt") as Srow) {
echo "insert into entry(title, posted, text)
values('{Srow['title']}, '{Srow['date']},
{Srow['text']}');\n";
}

Execution:
% php gen_blog_inserts.php
insert into entry(title, posted, text)
values('l've started a blog!', '2013-08-26', 'Ligula ...");
insert into entry(title, posted, text)
values('New pictures!’, '2013-08-28", 'Donec et ...");

Questions:
(1) Why "almost works"?
(2) This just prints text. How would we use it?
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Example: Thanksgiving-in-a-Box

Thanksgiving-in-a-Box eliminates holiday stress by
delivering dinners in a box! Clerks at TGB use this app:

- C' | localhost/c/tgbox.php

Thanksgiving-in-a-Box Order Entry/Update

Customer
Servings
Add Order Update Order

4 Order(s):

Dean Ruiz: 20 servings
Dr. Hart: 100 servings
Dr. Mercer: 4 servings
whm: 2 servings

Where do we start?
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TGB, continued

User Stories (all are for clerk):
| can see what orders have been placed.

| can add an order for some number of servings for a
customer. A customer can only have one order.

| can change the number of servings for an existing
order.

What information do we need to store? How could it be
represented in a table?

CSC 337 Fall 2013, RDBMS Slide 36



TGB, continued
Here's a table definition: (tgbox.sql)

create table tgborder

(
id bigint not null auto_increment primary key,

time datetime not null,
customer varchar(100) not null,
servings int not null

);

Notes:
(1) We don't actually need the id column yet.
(2) Clerks don't see the (order) time but we'll go ahead

and track it.
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TGB, continued

We wrap top-level control in a function named main: (tgbox.php)
function main()

global Sconn; Sconn = newconn();

if (count(S_POST)) {
Scustomer =S_POST["customer"];
Sservings =S _POST["servings"];
if (isset(S_POST["add"]))
Sresult = add_order(Scustomer, Sservings);
elseif (isset(S_POST["update"]))
Sresult = update_order(Scustomer, Sservings);

}

if (Sresult) // show result of add/update_order
echo "<div class=result>Sresult</div><br>";

show_orders();

}
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TGB, continued

This is a helper function that returns the number of orders that a customer
has placed. We expect it to return O or 1.

A prepared statement is used for the select, to avoid a SQL injection attack.

function orders_for_customer(Scustomer)

{

global Sconn;

Sstmt = Sconn->prepare(
"select * from tgborder where customer=:cust");
Sstmt->bindParam(':cust’', Scustomer);

Sresult = Sstmt->execute();

if (1Sresult) {
var_dump(Sstmt->errorinfo());
die("error!");

}

return count(Sstmt->fetchAll());
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Sidebar: SQL Injection Attack!

Problem: We need to query for orders for a given customer.
We could do this:

Sconn->query(
"select * from tgborder where customer='Scustomer"');

What if a mischievous clerk entered the following?
'» drop table tgborder; select '

We'd execute these three commands:
select * from tgborder where customer="}
drop table tgborder;
select '';

And Poof! All our orders are gone and our app is dead!
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Sidebar, continued
At hand:

Sconn->query(
"select * from tgborder where customer='Scustomer"");

This query makes us vulnerable to a SQL injection attack.

The essence of a SQL injection attack is that a user has the ability to
"inject" additional SQL into a query.

In this case, whatever gets typed in the customer field goes straight
into a query string.

This scenario imagines a bad clerk but with a web app that faces
the whole world, anybody on the planet could mess with our
database.
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Sidebar, continued

If we use a "prepared statement"” we eliminate the possibility
of a SQL injection attack.

The prepare method is given a string with one or more tokens
preceded by a colon, like ":cust".

Sstmt = Sconn->prepare(
"select * from tgborder where customer=:cust")

One or more bindParam() calls supply values for the tokens.
Then the statement can be executed.

Sstmt->bindParam(':cust', Scustomer);
Sresult = Sstmt->execute();

Bottom line: Always use prepared statements to provide
data values to a query.
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TGB, continued

function add_order(Scustomer, Sservings)

{

global Sconn;

if (orders_for_customer(Scustomer) !=0)
return "Scustomer has already placed an order!";

Sstmt = Sconn->prepare("insert into tgborder(time, customer, servings)
values(now(), :cust, :serv)");

Sstmt->bindParam(':cust', Scustomer);

Sstmt->bindParam(':serv', Sservings);

Sresult = Sstmt->execute();

if (1Sresult) {
var_dump($stmt->errorinfo());
die("error!");

}

else
return "Order placed!";
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TGB, continued

function update_order(Scustomer, Sservings)
global Sconn;

if (orders_for_customer(Scustomer) == 0)
return "Scustomer has not placed an order!";

Sstmt = Sconn->prepare(
"update tgborder set servings=:serv where customer=:cust");
Sstmt->bindParam(":cust', Scustomer);
Sstmt->bindParam(':serv', Sservings);
Sresult = Sstmt->execute();

if (1Sresult) {
var_dump($stmt->errorinfo());
die("error!");

}

Scount = Sstmt->rowCount();
if (Scount == 1)
return "Order updated!”;
else {
return "Unexpected result: Scount rows updated! Notify a manager!";

}
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TGB, continued

-

function show orders()

{

global Sconn;

Srset = Sconn->query(
"select * from tgborder order by customer");

Sorders = Srset->fetchAll(PDO::FETCH_ASSOC);
Scount = count(Sorders);

if (Scount)
echo "<p>Scount Order(s):<blockquote>";
else
echo "<p>No orders! Make some cold calls for hot turkey!";

foreach (Sorders as Sorder) {
echo "{Sorder['customer']}: {Sorder['servings']} servings<br>\n";

}

echo "</blockquote>";
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Sessions
(really a PHP topic)
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What can you do with one request?

In some cases a user can easily derive value from a web
app with a single request:

What's the current temperature in Tucson?

Show me cs337/fall13/files/a8.pdf.

What's the sum of these ten values?

Show me a map centered on Grant and Campbell.

Play a video sent in a link by a friend.
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One request?, continued

Which of the following could be done with a single
request to a web app?

Make a hotel reservation.
Book a flight.
Sign up for a class next semester.

Order a list of ten products using a combination of a
credit card and a gift certificate.

Enter a series of numbers and be told when their sum
exceeds 1000.
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Conversational interfaces

Anything that requires a finite set of information can be
done with a single request to a web app—all in one big
form! (Ouch!)

However, users prefer a more conversational interface,
perhaps submitting many data values but spread across a

series of views.

What mechanisms have we learned that can be used to
turn a really big form into a very conversational interface?
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Sessions

As we've learned, PHP applications typically have sub-
second lifetimes. Users think they've got a long-running
interaction with an application but they're actually just
seeing the outputs of a series of invocations of one or
more applications.

A "session" is essentially a collection of data values that

the server can hold for the lifetime of the application, as
perceived by the user.

These server-maintained sessions provide a convenient
mechanism to build conversational interfaces.
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Sessions in PHP

A PHP application indicates that it wants the server to
create a session by calling session_start().

After calling session_start(), a value can be added to the
session by assigning a value to a key in S_SESSION.

Here's sessionl.php:

session_start();
S_SESSION['class'] = "CSC 337";

In English:

Server, please store the key/value pair class="CSC
337",
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Sessions in PHP, continued
Let's hit it with curl:

% curl -i localhost/c/sessionl.php
HTTP/1.1 200 OK

Date: Fri, 15 Nov 2013 07:52: A+
Set-Cookie: PHPSESSID£ag31nng3o7ct4ljtjtao1851k3Dpath=/
Expires: Thu, 19 Nov 1981 08752-66-GiVi+

Let's look in XAMPP's temp directory, most recent first:
% Is -It /Applications/XAMPP/xamppfiles/temp

total 52
-rW------- daemon 20 Nov 15 00:52 ses@ng3o7ct4|jtjta01851k3

drwxr-xr-x _mysgl 68 Nov 13 15:16 mysq|

Let's look at that file:
% sudo cat sess _aug@mg3o7ct4ljtjta01851k3
class|s:7:"CSC 337",
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Sessions in PHP, continued
Here's what just happened:

(1) The browser said to the server:
GET /c/sessionl.php HTTP/1.1

(2) The server ran sessionl.php. When it reached the session_start() call,
it generated a long random string, using it to create the file name
sess_ag3lnng3o7ctdljtjtao1851k3. It also generated a Set-Cookie header
for a PHPSESSID cookie with that same random string as its value.

(3) When sessionl.php exited PHP wrote a representation of the contents
of S_SESSION (class|s:7:"CSC 337";) tothefile. (It is serialized.)

(4) The browser saw the Set-Cookie header in the response and stored
the PHPSESSID cookie, which references the XAMPP temp file named
sess_ag3lnng3o7ctdljtjtao1851k3.

Of course, the PHPSESSID cookie will be sent to the server the next time

we hit localhost.
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Sessions in PHP, continued
This is session2.php:

var_dump(S_COOKIE);
var_dump(S_SESSION);
echo "calling session_start\n";

session_start();
var_dump(S_SESSION);

Its output follows. Explain it!

array(1) {
["PHPSESSID"]=> string(26) "ag31nng3o07ct4ljtjtao1851k3"
}
Notice: Undefined variable: SESSION in session2.php on line 4
NULL
calling session_start
array(1) {
["class"]=> string(7) "CSC 337"

}
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PHP sessions, continued

If a PHPSESSID cookie is present when session_start() is
called, the data in sess_ PHPSESSID is deserialized and

used to populate S _SESSION.
The short story: If we simply call session_start() at the
start of our program, we get per-user saving and loading

of $_SESSION.

Hmm...What if a user has disabled cookies?
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Super KLKR hacked!

Our Super KLKR game has been hacked! A user has
reached level 1002, and won a new car!

| C | localhost/c/clickerl.php

SUPER KLKR

Keep clicking me to level up!
Level: 1002

Back to nOO0b!

How'd they do it? How can we secure Super KLKR?
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Super KLKR, continued

clickerl.php: (minus the boilerplate...)
if (isset(S_POST["clicks"]))
Sclicks = S_POST["clicks"];

else
Sclicks = 0;

if (isset(S_POST["click"])) How was this outrage
Sclicks += 1; committed?!

if (isset(S_POST["n00b"]))
header("Location: {S_SERVER['PHP_SELF']}");

>
<form method=post>
<input type=submit name=click value="Keep clicking me to level
up!Il>
<br>
Level: <?= (int)(Sclicks/10)+1 ?>
<br><br>
<input type=submit name=n00b value="Back to nO0b!">
<input type=hidden name=clicks value=<?=Sclicks?>>
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Super KLKR v2!

clicker2.php:
session_start();
if (lisset(S_SESSION|["clicks"]))
S_SESSION["clicks"] = 0;

if (isset(S_POST["click"]))
S_SESSION["clicks"] += 1;

if (isset(S_POST["n00b"])) {
header("Location: {S_SERVER['PHP_SELF']}");
session_destroy();

}

>
<form method=post>
<input type=submit name=click value="Keep clicking me to level up!">
<br>
Level: <?= (int)(S_SESSION["clicks"]/10)+1 ?>
<br><br>
<input type=submit name=n00b value="Back to nO0b!">
</form>
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Serialization
(another PHP topic)
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The serialize() function

The value of S_SESSION is serialized into sess . .. files
maintained by the server. We can use that same serialization
machinery.

The serialize() function produces a string representation of a
PHP value.

php > var_dump(serialize(37));
string(5) "i:37;"

php > var_dump(serialize(3.7));
string(21) "d:3.7000000000000002;"

php > var_dump(serialize(array(37, 3.7)));
string(40) "a:2:{i:0;i:37;i:1;d:3.7000000000000002;}"

Why does the last serialization contain i:0 and i:17?
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serialize(), continued
Arbitrarily complex values can be serialized:

php > Sa = array(true, false, null);

php > Sb = array("I" => 1, "V" => 5, "X" => 10);

php > Sc = array("first" => Sa, "second" => Sb);

php > Ss = serialize(Sc);

php > echo Ss;
a:2:{s:5:"first";a:3:{i:0;b:1;i:1;b:0;i:2;N;}s:6:"second";a:3:{s:
1:"1"00:1;8:1:"Vi:5;5:1:"X"5i:10; 1}

php > echo strlen(Ss);
102

How are boolean values and null represented?
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unserialize()

The unserialize() function is the inverse of serialize(): it takes a string
produced by serialize() and reconstitutes the value that was serialized.

php > echo Ss;
a:3:{i:0;i:10;i:1,i:20;i:2;a:3:{s:3:"one";i:1;s:3:"two";i:2;s:4:"true";b:1;}}

php > Srecreated = unserialize(Ss);

php > var_dump(Srecreated);
array(3) {

[0]=> int(10)

[1]=> int(20)

[2]=> array(3) {
["one"]=>int(1)
["two"]=>int(2)

["true"]=> bool(true)

}

}

How can serialize() and unserialize() be put to use?
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Storing serialized data in an RDBMS

We can create a hybrid storage system by using wide columns to
store serialized data.

create table players ( -- serialstore.sq|
name varchar(50),
data text -- Up to 64k bytes. longtext is 2Gb

);

mysgl> select * from players;

|

_|_ ______________________________________

| a:3:{s:4:"wins";i:7;s:0:"1osses";....
| J-than | a:3:{s:4:"wins";1:10;s:6:"1losses"; ...

| a:3:{s:4:"wins";1:3;s:0:"1losses";....

_|_
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Serialized data in an RDBMS, continued

We might write routines to load and save all data for a player
in one shot.

Here's code that loads player data, increments the number of
wins, and saves it:

Swho =S _GET["winner"]; // serialstore2.php
Sdata = get_player_data(Swho);
Sdata["wins"] += 1;

echo "{Sdata['wins']} wins for Swho";

save_player_data(Swho, Sdata);
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Serialized data in an RDBMS, continued

Here's the function that loads player data.

function load_player_data(Sname)

{

Sconn = newconn();
Sstmt = Sconn->prepare(
"select data from players where name=:name");
Sstmt->bindParam(":name", Sname);
Sresult = Sstmt->execute();
if (1Sresult) pdo_die(Sstmt);

Srows = Sstmt->fetchAll(PDO::FETCH_ASSOC);
assert(count(Srows) == 1);

Sdata = unserialize(Srows[0]["data"]);

return Sdata;

}

save_player_data(...) is similar. Both are in serialstore2.php.
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Serialized data in an RDBMS, continued

In essence, we've turned a relational database into an
object store.

Is this a good idea? Is it heresy?
"A principle of RDBMS normalization is that at each row/
column intersection there should be an atomic value."

What does this make easier?

What does this make harder?
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Blog Overhaul
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Blog overhaul
Some major revisions have been made to the blog:

Uses database for everything except images.

Can host blogs for any number of owners.

Blog owner sign-up/sign-in support (using sessions).
Simple control panel for blog owners.

Refactored into multiple source files.

Went from about 300 lines to over 700 lines of code.
Hit http://cgi.cs.arizona.edu/classes/cs337/fall13/blog/

Files in /cs/cgi/classes/cs337/fall13/blog on CS machines.
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New source file structure

index.php Sign-in/sign-up code
control.php Control panel
blog.php Displays entries
images.php Image library

newentry.php New entry dialog
load_entries.php  Loads entries from database
sgl.php Various database operations as functions

utils.php Miscellaneous utilities
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index.php—sign-in/sign-up

If we hit a URL that names a directory and index.php is
present, it is run.

& C' || cgi.cs.arizona.edu/classes/cs337/fall13/blog/

Welcome to Blog!

Sign in Sigh up

Sign-up is "streamlined"—just enter desired user name and
password, and click Sign Up.

Errors are produced if name is already used or has disallowed
characters, or if password is too short.
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index.php, continued

include_once("sqgl.php");
session_start();

if (Suser = @S_SESSION["blog_owner_id"]){  // If already signed in,
header("Location: control.php"); // go to owner's control panel.

}

elseif (isset(S_GET["who"])) { // can hit .../fall13/blog?who=whm
header("Location: blog.php?who={S_GET['who']}");
}

elseif (isset(S_POST["owner"]) && isset(S_POST["pw"])) {
Suser =S_POST["owner"]; Spw =S_POST["pw"];
if (isset(S_POST["signin"]))
signin(Suser, Spw);
elseif (isset(S_POST["signup"]))
signup(Suser, Spw);
else
show_signin(); // shows form

else show_signin();
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The owner table

Here's the owner table. Along with a unique id, rows have the
owner's username and an encrypted password.

mysqgl> select * from owner;

t————t——————— - +
| 1d | owner | password |
+-—-——-— - —————————— == e T —— +
| 1 | test | 04413e8e0ad4558caoal...12354 |
| 2 | whm | 94c07b7e6e2b129c300...19973 |
| 3 | bkm | 34fe8cd7e2f4d3c3671...34028 |
e +

3 rows 1n set (0.00 sec)
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index.php, continued
This function handles new user sign-up:

function signup(Sowner, Spw)

{

if (sql_id_for_owner(Sowner)) // returns id iff owner exists
show_signin("sorry, that's taken!");

if (strlen(Spw) < 3) show_signin("password too short!");

Sents = htmlentities(Sowner, ENT_QUOTES);
if (Sents != Sowner) show_signin("disallowed characters!");

if (strlen(Sowner) > 50) show_signin("name too long!");

Sowner_id = sgl_add_owner(Sowner, Spw);

if (Sowner_id) {
assert(mkdir("images/Sowner_id"));
start_with_id(Sowner _id);

}
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This function adds a new owner and index. ph P, continued

password to the owner table.

function sgl_add_owner(Sowner, Spassword) // in sgl.php

{

Ssalted = shal(Sowner) . Spassword;
Shashed = shal(Ssalted);

Sconn = getconn();
Sstmt = Sconn->prepare(
"insert into owner(owner, password) values(:owner, :hashed)");

Sstmt->bindParam(":owner", Sowner);
Sstmt->bindParam(":hashed", Shashed);

Sresult = Sstmt->execute();
Sowner_id = Sconn->lastinsertld();

if (ISresult) pdo_die(Sstmt);

return Sowner_id;
}
We use shal(...) to turn a string like "secret" into a digest like
e5e9falba3lecdlae84f75caaad74f3a663f05f4. We use some simple "salting" to
make it a little harder to crack passwords, should the owner table be stolen.
With PHP 5.5 we'd use password _hash(...) instead.
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index.php, continued
function signin(Sowner, Spw) // Called when "Sign In" is clicked

{
Sowner_id =
sql_check password(Sowner, S_POST["pw"]);
if (Sowner_id)
start_with_id(Sowner _id);
else
show_signin("login incorrect");
}

function start_with_id(Sowner_id)

{

// Set owner id in session and load control panel view
S_SESSION["blog_owner_id"] = Sowner _id;

header("Location: control.php");
exit();

}
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Sowner_id = check_signedin(); // on next slide
Sowner = sgl_owner_for_id(Sowner_id);

if (isset(S_POST["new"])) {
header("Location: newentry.php"); exit();

)

elseif (isset(S_POST["blog"])) {
header("Location: blog.php?who=Sowner");
exit();

}

elseif (isset(S_POST["images"])) {
header("Location: images.php"); exit();

}

elseif (isset(S_POST["signout"])) {
session_destroy();
header("Location: ."); exit();

}

control.php

Blog Control

whm's blog
New Entry

Image Library
Show Blog

Sign Out
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control.php, continued

KEY MECHANISM
start_with_id(...) stores the owner's id in the session
check_signedin() looks for an owner's id in the session
User is signed in iff there's an owner's id in the session!

function start_with_id(Sowner_id) // index.php

S_SESSION["blog_owner_id"] = Sowner _id;
header("Location: control.php");
exit();

}

function check_signedin() // utils.php
{

session_start();

if (lisset(S_SESSION["blog_owner_id"])) {
header("Location: index.php"); exit();

}
return S_SESSION["blog_owner_id"];
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entry table, for blog entries

A table for blog entries was shown on slide 31. It now has an owner _id
column:

create table entry (

id bigint not null auto_increment primary key,
owner_id bigint not null,
title varchar(100) not null,
posted date,
text varchar(2000) not null );
Some data:
mysgl> select * from entry;
Fom - o fom o ———
| id | owner id | title | posted | text
fom - o fom - t—— -
|1 | 1 | I've started a blog! | 2013-08-28 | Line 1
| 2 | 1 | Phone trouble... | 2013-09-19 | First (a
| 3 | 2 | My new blog | 2013-08-26 | Donec
| 4 | 3 | New pictures! | 2013-08-28 | Convallis...
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load_entries(Sowner id)

load_entries(...) uses a where clause to select only entries by a specific owner:

function load_entries(Sowner_id)

{

Sconn = getconn();
Sentries = array();

Sstmt = Sconn->prepare(

"select id, posted, title, text from entry where owner_id=:0id");
Sstmt->bindParam(':oid', Sowner_id);
Sstmt->execute();

foreach (Sstmt->fetchAll(PDO::FETCH_ASSOC) as Srow) {
Sdate = Srow["posted"];
...get others, too...
Sentries[] =
array("title" => Stitle, "date" => Sdate, ...);

return Sentries;
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blog.php—display blog entries
session_start(); // With PHP 5.3 must precede other output

write_header();

if (isset(S_GET["who"])) // anybody can hit .../blog?who=owner-name
show_blog(S_GET["who"]);

else
die("How'd you get here?!");

function show_blog(Sowner)

{
Sowner_id =sql_id_for_owner(S_GET["who"]);

if (ISowner_id)
die("Somebody gave you a bum blog!");

echo "<div id=main>\n";
if (isset(S_SESSION["blog_owner_id"])) { // Add B.C. link if blog owner

echo "<div ...><a class=bwlink href=control.php>Blog Control</a></div>";

}

Sentries = load_entries(Sowner_id);
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sql_id for owner(Sowner)

Here's one way to write sqgl_id_for_owner:

function sqgl_id_for_owner0(Sowner)

{

Sconn = getconn();

Sstmt = Sconn->prepare(

"select id from owner where owner=:owner");
Sstmt->bindParam(':owner', Sowner);
Sresult = Sstmt->execute();

if (1Sresult) pdo_die(Sstmt);
Sresult = Sstmt->fetchAll();

assert(count(Sresult) <= 1); // We expect one row or no rows.
if (count(Sresult) == 1)
return Sresult[0]["id"];
else
return null;
}

What will sql_owner_for_id(Sid) look like?
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sgl _col for_entity(...)

Lets write a function that will do that sort of lookup for any column of any
table:

function sql_col _for_entity(Scolumn, Stable, Seqcolumn, Svalue) {...}

We'll use it like this:

function sql_id for_owner(Sowner)

{ n n

return sql_col_for_entity("id", "owner", "owner", Sowner);

}

function sql_id_for tag(Stag)

{
return sql_col_for_entity("id", "tag", "tag", Stag);

}

function sgl_owner_for_id(Sid)

{

return sql_col_for_entity("owner", "owner", "id", Sid);

}
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Here's the generalized function: sql_col_for_entity(...)

function sqgl_col_for_entity(Scolumn, Stable, Seqcolumn, Svalue)

{

Sconn = getconn();

Sstmt = Sconn->prepare(

"select Scolumn from Stable where Seqcolumn=:value");
Sstmt->bindParam(':value', Svalue);
Sresult = Sstmt->execute();

if (ISresult)
pdo_die(Sstmt);

Sresult = Sstmt->fetchAll();

assert(count(Sresult) <= 1);
if (count(Sresult) !=0)
return Sresult[0][Scolumn];
else
return null;
}

We can't use prepared statement tokens for Stable and Seqcolumn so we need

to be sure that no user-supplied value can end up in those variables!
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The trouble with tags
A principle of RDBMS normalization is that at each row/
column intersection there should be an "atomic" value.

We might add a tags column to the entry table, but it would
have values like these:

UA, 337
World Series, 337, Panda Express

Those values aren't atomic—they represent multiple values.
A reasonable shortcut for prototypes and 337 projects is to

simply ignore the principle at hand and store values like "UA,
337" in a tags column.

But lets briefly consider the right way to do it.
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Tags, continued
We use two tables. One holds only tags, and an id for each:

create table tag

(

id  bigint not null auto_increment primary key,
tag varchar(50)

);

The other table associates a blog entry id with a tag id:

create table entry tag

(
entry _id bigint not null,

tag id bigint not null
);

Each row in entry_tag indicates that a particular tag appearsin a
particular entry.
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Consider these tables:
mysgl> select * from tag;

o +
| 1d | tag |
o +
| 1 | 337 |
2 | UA |
| 3 | Panda Express |
fom e +

to————————= to—————— +
| entry 1d | tag 1d |
to————————= to——————- +
| 1| 1|
| 1| 2|
| 2| 1|
| 2| 3 |
t-————————= t-——————- +

Which blog entries have which tags?
How many blog entries are there in all?

Tags, continued

CSC 337 Fall 2013, RDBMS Slide 86



Tags, continued

tag

- + , ;
| id | tag | 1've started a blog!
- + : :
| 1| 337 | Line 1 Line 2
2] A |
| 3 | Panda Express |
e —— +

entry tag Phone trouble...:
F—————— - + [ T
| entry id | tag id | First (and last) line
+________I_+______I_+ Panda Express
| | |
| 1 | 2 |
| 2 | 1 |
| 2 | 3 |
Fo———_— F——————— +

To get the tag names for an entry's tags in a single query, we can

1 H 11
use a "join".
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"joins" in SQL

If we specify multiple tables to select from, a cartesian product is formed:

Panda Express

Panda Express

|

_|_

|

|

|

|

|

| Panda Express
|

|

|

|

|

| Panda Express
_I_

12 rows 1in

All combinations of all rows from both tables are present.
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"joins" in SQL, continued

Lets keep only the rows in the cartesian product where entry_id is
2 and tag_id is the id of the tag.

mysgl> select * from entry tag, tag
where entry id=2 and tag id=id;

t—— t—— it e +
| entry id | tag 1i1d | id | tag |
F—— t—— e e et TP +
| 2 | 1 | 1 | 337 |
| 2 | 3 | 3 | Panda Express |
tom t———— fmm +
2 rows 1n set (0.00 sec)

Of course, we don't need all the columns, only the tag itself:

mysqgl> select tag from entry tag, tag
where entry id=2 and tag id=tag.id;

f——————— e ——— +
| tag I
e ———— +
| 337 |
| Panda Express |
f———_———————_————— +

2 rows 1n set (0.00 sec)
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tags for _entry(...

Let's wrap some PHP around that join:

function tags_for_entry(Sentry_id) // in sgl.php
{

Sconn = getconn();

Stags = array();

Sstmt = Sconn->prepare(
"select tag from entry_tag, tag
where entry_id=:eid and tag.id=entry_tag.tag id
order by tag");
Sstmt->bindParam(':eid', Sentry_id);
Sstmt->execute();

foreach (Sstmt->fetchAll(PDO::FETCH_ASSOC) as Srow) {
Stags|] = Srow('tag'l;
}

return Stags;
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"Will this be on the final?"

No, joins in SQL won't be on the final!
Could we have achieved the same result without using a join?

Remember: If you use MySQL for your project, it's fine to take
shortcuts like just storing stuff like tags in a comma-separated

string!

p.S.
Here's a harder problem: When creating a new blog entry we

want to show checkboxes only for tags created by the blog's
owner. A three-table join is needed for that. See if you can
figure it out! (Solution: sql_get tags(Sowner_id) in sql.php.)
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