Dictionary ADT and Hash Tables

• Read CLRS § 11.1-4 or Shaffer § 5.4, chap 9.

• Goals:
 − Know the key operations of the Dictionary ADT, and can name its principal implementations.
 − Recognize situations when a Dictionary is required.
 − Able to describe a hash table implementation using *chaining* or *closed hashing*.
Scenario: grocery checkout

Requirements:

- Scanners need to map UPC bar code to name and price (look-up).
- Management adds and removes stock numbers.
Scenario: Wi-fi network manager

- OS always listening for nearby SSIDs
- New network names often added or removed.
- If you select a new network, OS must look up its info.
Scenario: login to FaceSpace

- Users of website have a username and password they supply to get access.
- Server **checks** for match with each login.
- Valid usernames frequently **added** and **removed**.
Dictionary Abstract Data Type

• Common themes?
Dictionary Abstract Data Type

Common themes:

- Container of records (keys and satellite data)
- **Add** new keys (would duplicates be ok?)
- **Remove** obsolete keys
- **Look up** info about possible keys (or just test for presence).
One more Container ADT: Dictionary
One more Container ADT: Dictionary

Stack
Queue
Priority Queue (max queue)
Dictionary

Sequence
Heap (max heap)

Linked List

Array

(Linked) Tree

Create
Insert
Remove
Find
(others)
One more Container ADT: Dictionary
Dictionary ADT

- Three typical implementations:
 - Some kind of tree (binary search tree or other)
 - Hash table
 - Sequence (if just a few keys)

- Are duplicate keys allowed? It depends.
 - Often, no. Depends on the application.
 - Not allowed by `java.util.Map` interface

- Are keys stored in sorted order? It depends.
 - `java.util.HashMap`: no
 - `java.util.TreeMap`: yes.
Hash Table (chained)

• Store records in a big, semi-empty array (the **hash table**), denoted $H[0 \ldots M - 1]$

• Key k maps to an array location (**slot**) via a **hash function** h. Record is stored in slot $h(k)$

• Each slot consists of a linked list, storing a chain of zero or more records

• Typically the hash table is 25% to 50% empty
Hash Table (chained)

- Grocery store example: each product has a UPC key (a ten-digit integer product ID), and satellite data such as _____, _____.
Hash Table (chained)

- Grocery store example: each product has a UPC key (a ten-digit integer product ID), and satellite data such as name, price.
 - 1111068309, “Paprika,” $4.69
 - 2446306116, “Sriracha,” $1.89
 - 1111091444, “Raisins,” $2.25
- Ideally, we could store records in a $M=1000000000$ element array, then index the location by UPC key value.
Hash Table (chained)

- But a 10000000000 element array is too big to be practical.
- Also it is overkill. Store probably stocks only a couple thousand products, tops.
- Instead we will set a reasonable table size of, say, $M=4099$, and define a matching hash function $h(k) = k \mod M$.
- This hash function forces all positive integer keys to map to valid hash table indexes.
Hash Table (chained)

• Examples (for Insert, Find, Delete):
 - $H[h(2446306116)] = H[2421] \rightarrow (\text{“Sriracha,”$1.89)}$
 - $H[h(1111068309)] = H[1567] \rightarrow (\text{“Paprika,”$4.69)}$
 - $H[h(1111091444)] = H[108] \rightarrow (\text{“Raisins,”$2.25)}$

• If you do this long enough, you are bound to map two different keys to the same slot (a collision).
 - UPC code 1111076507 maps to slot 1567 also.
Hash Table (chained)

- Inserting items, size $M = 4099$.
 - Hash table is initially empty: each chain has length zero.
Hash Table (chained)

- Inserting items, size $M = 4099$.
 - Insert record for Sriracha, UPC = 2446306116, cost 1.89.
 - We use UPC code as the key, so $k = 2446306116$.
 - To insert the record into the table, compute the hash value of the key, $h(k)$.
 - We use $h(k) = k \mod M = 2446306116 \mod 4099$.

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>108</td>
<td>...</td>
<td>1567</td>
<td>...</td>
<td>2421</td>
<td>...</td>
<td>4098</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hash Table (chained)

- Inserting items, size $M = 4099$.
 - Insert record for Sriracha, UPC = 2446306116, cost 1.89, into table location 2421.

| 0 | 1 | 2 | … | 108 | … | 1567 | … | 2421 | … | 4098 |

UPC 2446306116
Sriracha, 1.89
Hash Table (chained)

- Inserting items, size $M = 4099$.
 - Insert record for Paprika, UPC = 1111068309, cost 4.69, into table location 1567,
 - ... because $h(k) = 1111068309 \mod 4099 = 1567$.
Hash Table (chained)

• Inserting items, size $M = 4099$.
 - Insert record for Raisins, UPC = 1111091444, cost 4.69, into table location 108,
 - . . . because $h(1111091444) = 108$.
Hash Table (chained)

- Inserting items, size $M = 4099.$
 - Insert record for Styling Gel, UPC = 1111076507, cost $2.99 into location $h(1111076507) = 1567.$
 - Scan the chain,
 - Add to chain.
Hash Table (chained)

- In a chained hash table, when collisions occur, you just add the records to the chain.
- Pseudocode for Insert, Remove, Find?
- With a good hash function, average time per Insertion, Removal, Find operations will be $\Theta(1+n/M)$, where n is the number of records.
- Chained hash tables work well for primary memory and can be very efficient.
Keys and Hash functions

- A hash function must always map key k to the same location $h(k)$, or else Find (etc.) won't work.
 - It must be perfectly repeatable (not random).
- An ideal hash function is likely to distribute any two distinct keys k_1, k_2 to different slots, even if the keys are close in value.
 - We want it to spread the records evenly across the table (“randomly”).
- All kinds of keys (strings, reals) can be hashed.
Hash Tables

- One common setup is to choose a table of prime size M, and hash integers modulo M.
 - Many more variations on good choices of hash function and table size.

- If the table fills up too much (if it holds n records, with $n/M > 0.5$), you might need to enlarge the table, and re-insert all records.
Closed Hashing

• Another way to set up a hash table is to store records directly in the table, instead of chains.

• What to do about collisions? Good question.
Closed Hashing Example

- Initially empty table
- “Empty” sentinel value

<table>
<thead>
<tr>
<th>0</th>
<th>UPC = -1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>2</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>108</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1567</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>1568</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2421</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>4098</td>
<td>UPC = -1</td>
</tr>
</tbody>
</table>
Closed Hashing Example

- Insert Sriracha:

 \(k = 2446306116, \)

 \(h(k) = 2421. \)

 That cell was empty, so, copy record into \(H[2421]. \)
Closed Hashing Example

- Insert Paprika:
 \[k = 1111068309, \]
 \[h(k) = 1567. \]
 That cell was empty, so,
 copy record into \[H[1567]. \]
Closed Hashing Example

- Insert Raisins:
 \[k = 1111091444, \]
 \[h(k) = 108. \]
 That cell was empty, so, copy record into \(H[108] \).
Closed Hashing Example

• Insert Styling Gel:
 \[k = 1111076507, \]
 \[h(k) = 1567. \]
 That cell is not empty!

• What to do??

<table>
<thead>
<tr>
<th></th>
<th>UPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>1</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>2</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>108</td>
<td>UPC 1111091444 Raisins, $2.25</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1567</td>
<td>UPC 1111068309 Paprika, $4.69</td>
</tr>
<tr>
<td>1568</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2421</td>
<td>UPC 2446306116 Sriracha, $1.89</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>4098</td>
<td>UPC = -1</td>
</tr>
</tbody>
</table>
Closed Hashing Example

• Insert Styling Gel:
 \[k = 1111076507, \]
 \[h(k) = 1567. \]
 That cell is not empty!

• What to do?
 – Most basic strategy:
 – “Linear probing,” i.e.,
 – find next empty spot.

<table>
<thead>
<tr>
<th>UPC</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>1</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>2</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>108</td>
<td>UPC 1111091444\n Raisins, $2.25</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>1567</td>
<td>UPC 1111068309\n Paprika, $4.69</td>
</tr>
<tr>
<td>1568</td>
<td>UPC = -1</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>2421</td>
<td>UPC 2446306116\n Sriracha, $1.89</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>4098</td>
<td>UPC = -1</td>
</tr>
</tbody>
</table>
Closed Hashing Example

- Insert Styling Gel:

 \[k = 1111076507, \]
 \[h(k) = 1567. \]
 That cell is not empty!

- What to do?
 - Most basic strategy:
 - “Linear probing,” i.e.,
 - find next empty spot.

<table>
<thead>
<tr>
<th>UPC</th>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UPC = -1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>UPC = -1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>UPC = -1</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>UPC 1111091444</td>
<td>Raisins, $2.25</td>
</tr>
<tr>
<td>1567</td>
<td>UPC 1111068309</td>
<td>Paprika, $4.69</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1568</td>
<td>UPC 1111076507</td>
<td>Styling Gel, $2.99</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2421</td>
<td>UPC 2446306116</td>
<td>Sriracha, $1.89</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>4098</td>
<td>UPC = -1</td>
<td></td>
</tr>
</tbody>
</table>
Closed Hashing

- Another way to set up a hash table is to store records directly in the table, instead of chains.

- What to do about collisions?
 - *Linear probing*: search for the next empty slot.
 - Leads to *primary clustering* (a large, growing blob of full slots), which can hurt performance.
 - In general, can create a fancy *probe function* \(p(k,i) \) that guides you where to try on the \(i \)-th probe. Example: quadratic function \(p(k,i) = i^2 \).
Closed Hashing and Deletion

• Your Dictionary application might need to perform deletion.

• What could go wrong if you just erase the record from a closed hash table, making the slot empty again?
Closed Hashing and Deletion

- Your Dictionary application might need to perform deletion.
- What could go wrong if you just erase the record from a closed hash table, making the slot empty again?
 - An empty slot marks the end of a probe sequence.
 - You might break a probe sequence that leads to some other record. That would make other records inaccessible.
 - Example: if you delete Paprika, you can't find the Gel.
Closed Hashing and Deletion

• Solution?
Closed Hashing and Deletion

• Solution?
 – When we delete a record, we mark the slot with a “tombstone” status.
 – Each slot has status in \{empty, busy, tombstone\}.
 – Find operation should not stop on a tombstone.
 – Insert operation can reuse a tombstone slot.

• Only guaranteed way to get rid of them is to restructure the table.
Hashing Summary

• Fast way to implement dictionaries in memory (chaining) or on disk (closed hashing).
 - Nearly constant-time operations, if all is well.
 - If the table gets too full, performance gets worse.

• Records are not stored in any particular order.

• Needs some engineering judgment, to choose proper size and a good hash function.