
CSC 346 - Cloud Computing
02 - SSH & Creating Docker Images

Docker Images

Docker Images
There are a few ways to make our own images

• Download from a docker image repository

• This is what we’ve done so far with docker run commands.

• Using docker commit to save changes from a container to a new image.

• Run a container, make some changes, then ‘save’ the changes

• Using a Dockerfile and the docker build command.

• Using docker tag to basically ‘clone’ and image and give it a new name.

• This is not really creating a new image, it’s just the same image with a different
name

Docker Images
docker commit

• I’ve mentioned that images are immutable, and if you exit your container you’ll
loose all your changes unless you take special steps.

• The docker commit command is one of those special steps.

• First, let’s make some changes.

ubuntu
Installing software with apt-get

• Run our familiar python container

• See if the vim command exists

• Use apt-get update first to update
the repository sources

root@c2d688cb0a1b:/# vim
bash: vim: command not found

python:3.10 bash

ubuntu
Installing software with apt-get

• Now use apt-get install to install
vim

• Type Y then enter to continue and
install

root@c2d688cb0a1b:/# apt-get install vim

ubuntu
Installing software with apt-get

• After the installer finishes you can
now use the vim command to
create and edit text files.

root@c2d688cb0a1b:/# vim foo.txt

ubuntu
vim basics

i Enter insert mode

esc Exit insert mode

arrow
keys Move the cursor around

:w Save your changes (when not in insert mode)

:wq Save your changes and exit vim (when not in
insert mode)

:q! Force quite vim and discard all changes
(when not in insert mode)

ubuntu
Installing software with apt-get

• After saving changes and exiting
vim the new file created is in our
directory

ubuntu
Installing software with apt-get

• less is also not installed in this
container, let’s install that too

root@c2d688cb0a1b:/# less foo.txt
bash: less: command not found

Docker
Multiple Container Connections

• When you use docker run -it
you’re creating a new container and
making a shell connection to your
container

• You can make more than one.

• You can use docker exec to run a
command inside of an existing
container that is running.

• Must be a running container

3.10

Docker
Multiple Container Connections

3.10

Docker
Multiple Container Connections

• You need to specify the name or ID
of the running container

• You need to specify the command
you want to execute in the new
container

• In most cases, you want a new
bash shell

$ docker exec -it [python] bash

Docker
Multiple Container Connections

• You can exit from this second
connection and it won’t kill the
container

• There’s still the first bash process
running

3.10

Docker
Saving with docker commit

• From the second terminal with the
container still running we can use
the docker commit command so
save the current container to a new
image.

• Container can be running or
stopped.

• All ‘docker …’ are run from outside
of the container.

$ docker commit [container name] my_python:3.10

3.10

3.10

Docker
Saving with docker commit

• Now you can use the docker images
command to see our newly created
image

3.10

3.10

Docker
Saving with docker commit

• With our image “saved” we can now
finally exit our other bash session in
the other terminal, and exit the
container

• Remember we ran the container
with the --rm option, so it will be
removed upon exit

Docker
Saving with docker commit

• We can now run a new container
based off of our new image

• Our foo.txt file is still there.

$ docker run -it my_python:3.10 bash

3.10

Docker
Stopping and Starting a container

• You don’t have to throw away your container when you exit

• Without the --rm option, when you exit the container, it remains in an exited
state

• You can re-start this container

• This is fine for prototyping, but don’t depend on that stopped container. It’s
easy to accidentally remove it.

3.10

3.10

3.10

3.10

3.10

3.10

3.10

3.10

3.10

3.10

3.10

3.10

Docker
Using docker commit
on a stopped container

• You can also use docker
commit on a stopped
container that hasn’t been
removed yet

• You can either give this
commit a new image
name and tag, or you can
overwrite an existing one

3.10
3.10

3.10
3.10

Docker
Moving files into and out of a container

• You can copy files into and out of a running or stopped container.

• Only works with containers, not images.

• Let’s say we want to work with the apache web server image for httpd.

• If we want to modify the default config file from the image, it would be helpful
to copy the default one out of the container and then change it.

Docker
Copying Files

• Run a new container
using the httpd:2.4
image

• Look at the default
directory we start in

• Change to the conf
directory

• Look for the
httpd.conf file

3.10

Docker
Copying Files

• Open a new Terminal

• use the docker cp
command to copy from
inside the container to
the current directory

• The special “.” directory
means “the directory I’m
in”

docker cp [container ID]:[container path] [host path]

Docker
Copying Files

• This works the other way too. You can copy files from your host into a running
or stopped container. Just reverse the order of the arguments

docker cp [host path] [container ID]:[container path]

Docker
Other Container Commands

• You don’t have to just
run a new bash shell
inside of a container.

• We can just run the ls
command

• Or just a cat command.

Docker
Run Errors

• Hmm what happened to cause our error?

• We tried to run a new container with a name of httpd, but we did not remove
the first one

• You can’t have two containers with the same name on a host at the same
time

Docker
Other Container Commands

• After we remove the old
image, you can run the
command successfully.

• By including the --rm
option we can make sure
these ephemeral
commands don’t leave
old exited containers
around

Docker
Other Container Commands

• On macOS, Linux, and
Windows with wsl2
setup, you can use
redirection on the host to
capture the output of
your docker commands

• Gets us the same result
as docker cp in a
different way

docker run -it --name httpd --rm httpd:2.4 cat conf/httpd.conf > ./httpd.conf

Docker
Volume Mounting

• Copying files back and forth from a container is tedious

• Having to commit your changes to an image each time you’re done is error
prone

• We can avoid both of these problems by mounting a directory from your host
computer inside the running container

• This is done with the -v or --volume option to the docker run command

--volume [host path]:[container path]

Docker
Volume Mounting

• The host path must be a full absolute path

• Many times you want to mount your current directory, or something in it

• Can use the $PWD environment variable on macOS, Linux, and WSL2

• Can use the %cd% environment variable in PowerShell

• The following two commands are equivalent

docker run --volume $PWD:/root python:3.9

docker run --volume /Users/mark/Demo:/root python:3.9

3.10

3.10

Docker
Volume Mounting

• Inside the /root
directory in our
container you
can see the
same files from
our host.

• This is a live two
way mapping.
Changes are
available in both
places.

3.10

3.10

Docker
Volume Mounting

• This is really useful

• Lets us get files into a container without having to copy them each time

• Changes made inside the container to those files are reflected on the host

• Note they’re not copied, its the same file in both places. Filesystem magic!

• Changes made outside the container to the files are reflected inside the
container

• Let’s us work on the files in our GUI, but run them inside the container

3.10

Demo

Creating Images
The Dockerfile

• Probably the most common ways we create Docker images for our projects
are with a Dockerfile and the docker build command.

https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/

Creating Images
The Dockerfile

3.10

Creating Images
The Dockerfile

The FROM keyword specifies which
base image we’re building on top of.

3.10

Creating Images
The Dockerfile

The WORKDIR keyword sets the
default directory for the container

3.10

Creating Images
The Dockerfile

The COPY keyword lets us copy a
files from our working directory to
inside the image we’re building

3.10

Creating Images
The Dockerfile

The RUN keyword executes the rest
of the line as a command inside the
build environment

3.10

Creating Images
The Dockerfile

COPY our application files into the
image

3.10

Creating Images
The Dockerfile

The ENV keyword defines an
environment variable which will be
accessible to the running container

3.10

Creating Images
The Dockerfile

The CMD keyword defines the default
command to be executed when this
image is run as a container

3.10

Creating Images
The Dockerfile

• The docker build command is what turns our Dockerfile into an image

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

docker build --tag [image name]:[tag] [location]

docker build --tag my_app:latest .

Creating Images
Getting Started Basics

• When working on any project,
such as an application or
homework assignment, the first
step is often to create a new
directory to hold all the stuff
relating to the project.

• So to start with, figure out where
on your laptop you want to keep
all your work for this class, and
make a new folder in there. I’m
going to call mine hw02.

Creating Images
Getting Started Basics

• Next we need to create a new
empty text file inside our project
folder, and name it Dockerfile

Creating Images
Getting Started Basics

• With our newly created Dockerfile
open in an editor, we can start
with the most basic directive, and
just have a FROM httpd:2.4 line
in our file.

Creating Images
Getting Started Basics

• Don’t forget to save your
Dockefile before you build it!

• Make sure your terminal session
is currently in your project folder.

• Build our new image with the
docker build command:

docker build -t hw02:latest .

Creating Images
Getting Started Basics

• If your image builds successfully,
you won’t see any errors, and
you’ll be returned to your laptop’s
command prompt.

Creating Images
Getting Started Basics

• You can see your newly created
image with the docker images
command on your laptop.

• You may see more or fewer
images depending on when you
last pruned your docker system.

Creating Images
Getting Started Basics

• We can now run our basic image
to make sure everything is
working so far.

• Because this container’s purpose
is to run a web server, we need to
make sure to map our host and
container ports.

docker run -it --rm -p 8080:80 hw02:latest

Creating Images
Getting Started Basics

• If everything worked out, you
should be able to open a new
browser tab and go to  
http://localhost:8080 and
see the default web page served
up by the httpd:2.4 container.

Creating Images
Getting Started Basics

• Remember, everything we did here was done from the host computer (i.e.
your laptop). We aren’t building or running anything from inside of a container.

• With the exception of certain automated build environments you’ll likely never
run any docker … command from inside of a container.

Creating Images
Getting Started Basics

• You can see the logs
from the web server in
your terminal window

• This shows you
exactly what your
browser requested
from the web server

Creating Images
Getting Started Basics

• To exit the container,
press the control
and C key together.

• This is often
abbreviated as just
ctrl-c or ^C

• You can see the ^C in
the screenshot before
the shutdown line

Demo

SSH Basics

Connecting to Remote Hosts
ssh - The Secure Shell

• “Back in my day” we connected to remote unix hosts with the telnet
command

• Plain text network traffic

• No encryption

• It’s horribly insecure!

• Can still be useful, but is often not installed by default anymore

• Did I mention it’s horribly insecure?

Connecting to Remote Hosts
ssh - The Secure Shell

• The ssh program is better

• End-to-end encryption

• Can use passwords or public keys

• ssh + public keys is very secure

ssh [username]@[hostname]

ssh [username]@[IP Address]

Connecting to Remote Hosts
ssh - The Secure Shell

• The ssh program is installed by default on macOS, Linux desktops, recent
version of Windows, and the Windows Subsystem for Linux 2 (WSL2).

• If you prefer GUI apps on Windows, Putty is the default go-to

Connecting to Remote Hosts
Putty

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Connecting to Remote Hosts
Putty

Connecting to Remote Hosts
Putty

Lectura
Shared Computer Science Host

• Our department hosts a shared UNIX server, named lectura.

• Before logging in, create/reset your password:

• https://helpdesk.cs.arizona.edu/selfservice

• Your username will be same as NetID But your password can be different

ssh netid@lectura.cs.arizona.edu

https://helpdesk.cs.arizona.edu/selfservice

next up: The HTTP Protocol and Networking

