
Authentication & Authorization
Who are you and what can you do

1

Authentication & Authorization
Authentication

• Authentication refers to establishing an actor’s identity sufficiently

• Driver’s license

• University CatCard

• Username and Password

• Only establishes Identity

• Can be satisfied within the service, or through an external Identity Provider

2

Authentication & Authorization
Authorization

• Authorization refers to establishing what actions a verified actor can perform

• Depends on Authentication

• Many strategies

• Groups

• Roles

• Usually dependent on the service / application to determine

3

Authentication
Methods and Use Cases

• There are usually different strategies for Authentication depending on if you
are Authenticating a person, or some sort of other actor, like application code.

• When you log in to D2L we use a different strategy (NetID+Password+DUO)
than if you were authenticating to make certain API calls (Access Keys or
Certificates

4

Authentication
Person Authentication

5

Memorized Passwords Password Manager Password + MFA Security Keys Passkeys

Easy to use
Always with you

Widely used

Security Level

Recoverable

Phishing resistant
Doesn’t require shared

secrets

http://user:pass@example.com:80/path?query=yes#fragment

Scheme

Username
Password

Host Port

Path Query String

Fragment

HTTP Requests
Authentication

Authentication
HTTP Basic Authentication

• The username:password portion of a URL is translated into Basic
Authentication by user agents (browsers, curl, etc)

7

GET /index.html HTTP/1.1
Host: example.com
Authentication: Basic dXNlcjpwYXNz

http://user:pass@example.com/index.html

Authentication
HTTP Basic Authentication

• Basic Auth must only ever be used with TLS encrypted connections: HTTPS

8

http://user:pass@example.com/index.html

https://user:pass@example.com/index.html

Authentication
HTTP Basic Authentication

• Not encrypted, just base64 encoded

9

import base64

username = "mark"
password = "aReallyGr8PasswordNoOneWillGuess"

authString = f"{username}:{password}"
binaryAuthString = authString.encode("UTF-8")
b64AuthString = base64.b64encode(binaryAuthString).decode("UTF-8")
authHeader = f"Authentication: Basic {b64AuthString}"

print(authHeader)

Prints the following
Authentication: Basic bWFyazphUmVhbGx5R3I4UGFzc3dvcmROb09uZVdpbGxHdWVzcw==

Authentication
HTTP Basic Authentication

• Libraries and tools make this really easy

10

import requests

url = "https://example.com/index.html"
username = "mark"
password = "aReallyGr8PasswordNoOneWillGuess"

response = requests.get(url, auth=(username, password))
headers = "\r\n".join(f"{k}: {v}" for k, v in response.request.headers.items())
print(headers)

User-Agent: python-requests/2.28.1
Accept-Encoding: gzip, deflate
Accept: */*
Connection: keep-alive
Authorization: Basic bWFyazphUmVhbGx5R3I4UGFzc3dvcmROb09uZVdpbGxHdWVzcw==

Authentication
HTTP Basic Authentication

• Libraries and tools make this really easy

11

~ $ curl -v --user "mark:aReallyGr8PasswordNoOneWillGuess" https://example.com/index.html
* Trying 93.184.216.34:443...
* Connected to example.com (93.184.216.34) port 443 (#0)
* Server auth using Basic with user 'mark'
> GET /index.html HTTP/2
> Host: example.com
> authorization: Basic bWFyazphUmVhbGx5R3I4UGFzc3dvcmROb09uZVdpbGxHdWVzcw==
> user-agent: curl/7.79.1
> accept: */*
>

Authentication
HTTP Basic Authentication

• Libraries and tools make this really easy

12

Authentication
Storing Usernames and Passwords

• How do you securely store passwords?

• Naive way is to just store the plaintext username and password in a data store.
When someone logs in, you compare the password they entered with the one you
stored.

• Advantages:

• You can see their passwords if they need to recover them

• Disadvantages:

• If you can see their passwords, so can the baddies (there are so many baddies)

13

Authentication
Storing Usernames and Passwords

• Better way is to use a strong hash algorithm with a salt

• Hashes are one-way transformation. Easy to transform an input into an
output, but very very difficult to go the other way around.

• Store the hashed value in your data store

• Re-hash each password attempt, and compare the hashes

• If a baddie steals your data store hashes, your passwords are still relatively
protected

• A salt value helps protect against pre-computed hash tables
14

Authentication
Storing Usernames and Passwords

15

import hashlib

username = b"mark"
password = b"aReallyGr8PasswordNoOneWillGuess"

hashedPass = hashlib.sha3_512(password)
print(hashedPass.hexdigest())

07ef323985718aade0fa0e40e86d6f0cf429f6c8ce55dd4e7ec5f9ee0e3fcf533db...

hashedPass = hashlib.blake2b(password, salt=username)
print(hashedPass.hexdigest())

4fe792736fbc3d1366b3e63f1223e39abacd208de0378db03c1d27c4b3663b74b11c...

Authentication
Identity Providers

• Even better is to not get into the authentication business in the first place

• Use someone else’s set of identities

• Social IdPs: Google, Facebook, etc

• Enterprise specific IdPs: University NetID

• Gets you off the hook for having to securely store authentication credentials

16

Authentication
Identity Providers

• Authentication Protocols

• OAuth2

• OpenID Connect (OIDC)

• Security Assertion Markup Language (SAML)

• Central Authentication Service (CAS)

17

Authentication
Central Authentication Service (CAS)

• CAS is pretty easy to implement ourselves

• Supported by the University’s Shibboleth Identity Provider

18

Authentication
Central Authentication Service (CAS)

19

1. Initial Request

to App

2. App responds with

redirect to WebAuth with

return service URL

3. Request to IdP with service URL

4. Authenticate. Generate and store Service Ticket

Redirect back to App with Service Ticket

5. Request to App with

Service Ticket

6. Backchannel request to validate

Service Ticket

7. IdP replies with

validation info

Demo

