Authentication & Authorization

Who are you and what can you do



Authentication & Authorization

Authentication

* Authentication refers to establishing an actor’s identity sufficiently
* Driver’s license
* University CatCard
 Username and Password

* Only establishes Identity

» Can be satisfied within the service, or through an external ldentity Provider
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Authorization

* Authorization refers to establishing what actions a verified actor can perform
 Depends on Authentication

 Many strategies
 Groups
* Roles

* Usually dependent on the service / application to determine
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Methods and Use Cases

* There are usually different strategies for Authentication depending on if you
are Authenticating a person, or some sort of other actor, like application code.

 When you log in to D2L we use a different strategy (NetID+Password+DUO)
than if you were authenticating to make certain API calls (Access Keys or
Certificates
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Person Authentication

Memorized Passwords

Password Manager

Password + MFA

Security Keys

Passkeys

Easy to use

Always with you

Widely used

Security Level

Recoverable

Phishing resistant

Doesn’t require shared
secrets
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HTTP Requests

Password Path Query String
Username /

http://uéer:paSS@example.com:80/path?iﬁéfy;yéé#fragment
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Scheme Host Port Fragment
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HTTP Basic Authentication

 The username:password portion of a URL is translated into Basic
Authentication by user agents (browsers, curl, etc)

http://user:pass@example.com/1ndex.html

GET /index.html HTTP/1.1
Host: example.com
Authentication: Basic dXNLcjpwYXNz
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HTTP Basic Authentication

 Basic Auth must only ever be used with TLS encrypted connections: HTTPS

http://user:pass mg ~om/1ndex.html

https://user:pass@example.com/1ndex.html
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HTTP Basic Authentication

* Not encrypted, just baseb4 encoded

import baseb6d

username "mark"
password "aReallyGr8PasswordNoOneW1illGuess"

authString = f"{username}: {password}"

binaryAuthString = authString.encode ("UTF-8")

bodAuthString = baseo6td4d.bodencode (binaryAuthString) .decode ("UTF-38")
authHeader = f"Authentication: Basic {bo4AuthString}"

print (authHeader)

# Prints the following
# Authentication: Basic DbWFyazphUmVhbGx5R3T4UGFzc3dvemROb09uZVdpbGxHAWVzcw==
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HTTP Basic Authentication

* Libraries and tools make this really easy

1mport requests

url = "https://example.com/index.html"

username = "mark"
password = "aReallyGr8PasswordNoOneWillGuess"

response = requests.get(url, auth=(username, password))
headers = "\r\n".join(f"{k}: {v}" for k, v in response.request.headers.items|())

print (headers)
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S curl -v —--user "mark:aReallyGr8PasswordNoOneWillGuess" https://example.com/index.html

Authentication
HTTP Basic Authentication

* Libraries and tools make this really easy

Trying 93.184.216.34:443...
Connected to example.com (93.184.216.34) port 443 (#0)
Server auth using Basic with user 'mark'
GET /index.html HTTP/2

Host: example.com
authorilization: Basic bWEFyazphUmVhbGxOR3T4UGFzc3dvcecmROb0O9uzZVdpbGxHAWVzcw==

user—agent:

accept:

*/*

curl/7.79.1
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HTTP Basic Authentication

* Libraries and tools make this really easy

o
00 Home Workspaces v  Explore (Q Search Postman & 3 Signin Create Account

] GET https://example.com/ir ® + 90 No Environment et G
O . |
ole https://example.com/index.html &) Save v (/]
GET v https://example.com/index.html
=
Params Authorization @ Headers (6) Body Pre-request Script Tests Settings Cookies
Ar
@ Type Basic Auth v @ Heads up! These parameters hold sensitive data. To keep this data secure while working in a collaborative environment, X

we recommend using variables. variables 7

The authorization header will be

automatically generated when you send the

request. Learn more about authorization 7 Username mark

Password aReallyGr8PasswordNoOneWillGuess

Show Password
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Authentication

Storing Usernames and Passwords

» How do you securely store passwords®?

 Naive way Is to just store the plaintext username and password in a data store.
When someone logs in, you compare the password they entered with the one you
stored.

* Advantages:
* You can see their passwords if they need to recover them
* Disadvantages:

* |f you can see their passwords, so can the baddies (there are so many baddies)
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Authentication

Storing Usernames and Passwords

» Better way Is to use a strong hash algorithm with a salt

 Hashes are one-way transformation. Easy to transform an input into an
output, but very very difficult to go the other way around.

o Store the hashed value in your data store
 Re-hash each password attempt, and compare the hashes

* |f a baddie steals your data store hashes, your passwords are still relatively
protected

* A salt value helps protect against pre-computed hash tables
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Storing Usernames and Passwords

import hashlib

username b"mark"
password b"aReallyGr8PasswordNoOneW1llGuess"

hashedPass = hashlib.sha3 512 (password)
print (hashedPass.hexdigest () )

hashedPass = hashlib.blake’Z2b(password, salt=username)
print (hashedPass.hexdigest () )
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Authentication

Identity Providers

* Even better is to not get into the authentication business in the first place
 Use someone else’s set of identities

» Social IdPs: Google, Facebook, etc

* Enterprise specific IdPs: University NetlD

» (Gets you off the hook for having to securely store authentication credentials
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Authentication

Identity Providers

 Authentication Protocols

OAuth2
OpenlD Connect (OIDC)

Security Assertion Markup Language (SAML)
Central Authentication Service (CAS)
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Authentication
Central Authentication Service (CAS)

 CAS is pretty easy to implement ourselves

e Supported by the University’s Shibboleth Identity Provider
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Central Authentication Service (CAS)
A WebAuth

B8 Log in with your NetID and Password

O e A WebAuth Login X -~

& C @ https://shibboleth.arizona.edu/idp/profile/SAML2/Redirect/SSO?%... h w [0 & :

3. Request to IdP with service URL

|
4. Authenticate. Generate and store Service Ticket
Redirect back to App with Service Ticket I E—
Ac Information Technology

5. Request to App with
Service Ticket

2. App responds with
redirect to We.bAuth with
return service URL

/. |dP replies with
validation info

1. Initial Request
to App

6. Backchannel request to validate
Service Ticket






