Authentication & Authorization

Who are you and what can you do

Authentication & Authorization

Authentication

* Authentication refers to establishing an actor’s identity sufficiently
* Driver’s license
* University CatCard
 Username and Password

* Only establishes Identity

» Can be satisfied within the service, or through an external ldentity Provider

Authentication & Authorization

Authorization

* Authorization refers to establishing what actions a verified actor can perform
 Depends on Authentication

 Many strategies
 Groups
* Roles

* Usually dependent on the service / application to determine

Authentication

Methods and Use Cases

* There are usually different strategies for Authentication depending on if you
are Authenticating a person, or some sort of other actor, like application code.

 When you log in to D2L we use a different strategy (NetID+Password+DUO)
than if you were authenticating to make certain API calls (Access Keys or
Certificates

Authentication

Person Authentication

Memorized Passwords

Password Manager

Password + MFA

Security Keys

Passkeys

Easy to use

Always with you

Widely used

Security Level

Recoverable

Phishing resistant

Doesn’t require shared
secrets

0000 0o

Authentication
HTTP Requests

Password Path Query String
Username /

http://uéer:paSS@example.com:80/path?iﬁéfy;yéé#fragment

LECRE SN A A LA AT S S ol S PSS e ARt o e S WE R A A J

\ /|

Scheme Host Port Fragment

Authentication
HTTP Basic Authentication

 The username:password portion of a URL is translated into Basic
Authentication by user agents (browsers, curl, etc)

http://user:pass@example.com/1ndex.html

GET /index.html HTTP/1.1
Host: example.com
Authentication: Basic dXNLcjpwYXNz

Authentication
HTTP Basic Authentication

 Basic Auth must only ever be used with TLS encrypted connections: HTTPS

http://user:pass mg ~om/1ndex.html

https://user:pass@example.com/1ndex.html

Authentication
HTTP Basic Authentication

* Not encrypted, just baseb4 encoded

import baseb6d

username "mark"
password "aReallyGr8PasswordNoOneW1illGuess"

authString = f"{username}: {password}"

binaryAuthString = authString.encode ("UTF-8")

bodAuthString = baseo6td4d.bodencode (binaryAuthString) .decode ("UTF-38")
authHeader = f"Authentication: Basic {bo4AuthString}"

print (authHeader)

Prints the following
Authentication: Basic DbWFyazphUmVhbGx5R3T4UGFzc3dvemROb09uZVdpbGxHAWVzcw==

Authentication
HTTP Basic Authentication

* Libraries and tools make this really easy

1mport requests

url = "https://example.com/index.html"

username = "mark"
password = "aReallyGr8PasswordNoOneWillGuess"

response = requests.get(url, auth=(username, password))
headers = "\r\n".join(f"{k}: {v}" for k, v in response.request.headers.items|())

print (headers)

*
*
*
>
>
>
>
>
>

11

S curl -v —--user "mark:aReallyGr8PasswordNoOneWillGuess" https://example.com/index.html

Authentication
HTTP Basic Authentication

* Libraries and tools make this really easy

Trying 93.184.216.34:443...
Connected to example.com (93.184.216.34) port 443 (#0)
Server auth using Basic with user 'mark'
GET /index.html HTTP/2

Host: example.com
authorilization: Basic bWEFyazphUmVhbGxOR3T4UGFzc3dvcecmROb0O9uzZVdpbGxHAWVzcw==

user—agent:

accept:

/

curl/7.79.1

Authentication
HTTP Basic Authentication

* Libraries and tools make this really easy

o
00 Home Workspaces v Explore (Q Search Postman & 3 Signin Create Account

] GET https://example.com/ir ® + 90 No Environment et G
O . |
ole https://example.com/index.html &) Save v (/]
GET v https://example.com/index.html
=
Params Authorization @ Headers (6) Body Pre-request Script Tests Settings Cookies
Ar
@ Type Basic Auth v @ Heads up! These parameters hold sensitive data. To keep this data secure while working in a collaborative environment, X

we recommend using variables. variables 7

The authorization header will be

automatically generated when you send the

request. Learn more about authorization 7 Username mark

Password aReallyGr8PasswordNoOneWillGuess

Show Password

13

Authentication

Storing Usernames and Passwords

» How do you securely store passwords®?

 Naive way Is to just store the plaintext username and password in a data store.
When someone logs in, you compare the password they entered with the one you
stored.

* Advantages:
* You can see their passwords if they need to recover them
* Disadvantages:

* |f you can see their passwords, so can the baddies (there are so many baddies)

14

Authentication

Storing Usernames and Passwords

» Better way Is to use a strong hash algorithm with a salt

 Hashes are one-way transformation. Easy to transform an input into an
output, but very very difficult to go the other way around.

o Store the hashed value in your data store
 Re-hash each password attempt, and compare the hashes

* |f a baddie steals your data store hashes, your passwords are still relatively
protected

* A salt value helps protect against pre-computed hash tables

Authentication

Storing Usernames and Passwords

import hashlib

username b"mark"
password b"aReallyGr8PasswordNoOneW1llGuess"

hashedPass = hashlib.sha3 512 (password)
print (hashedPass.hexdigest ())

hashedPass = hashlib.blake’Z2b(password, salt=username)
print (hashedPass.hexdigest ())

16

Authentication

Identity Providers

* Even better is to not get into the authentication business in the first place
 Use someone else’s set of identities

» Social IdPs: Google, Facebook, etc

* Enterprise specific IdPs: University NetlD

» (Gets you off the hook for having to securely store authentication credentials

17

Authentication

Identity Providers

 Authentication Protocols

OAuth2
OpenlD Connect (OIDC)

Security Assertion Markup Language (SAML)
Central Authentication Service (CAS)

18

Authentication
Central Authentication Service (CAS)

 CAS is pretty easy to implement ourselves

e Supported by the University’s Shibboleth Identity Provider

Authentication

Central Authentication Service (CAS)
A WebAuth

B8 Log in with your NetID and Password

O e A WebAuth Login X -~

& C @ https://shibboleth.arizona.edu/idp/profile/SAML2/Redirect/SSO?%... h w [0 & :

3. Request to IdP with service URL

|
4. Authenticate. Generate and store Service Ticket
Redirect back to App with Service Ticket I E—
Ac Information Technology

5. Request to App with
Service Ticket

2. App responds with
redirect to We.bAuth with
return service URL

/. |dP replies with
validation info

1. Initial Request
to App

6. Backchannel request to validate
Service Ticket

