REST and JSON

JSON

JavaScript Object Notation

* Goal: Transfer data

« Between computers / processes

« Between programming languages
« Best for “data” object.

« Key/Value pairs. Dictionaries, Arrays
* Not great for object relationships

 Linked Lists, Graphs, OOP

JSON vs XML

fight!

JSON vs XML

fight!

« XML Strengths

* Plain Text

* Flexible

* Can be defined with formal document definitions

* Excellent validation tools

* Verbose

« “Automatic” ideals never fully realized |2

« Flexibility leads to ambiguous mapping to internal data objects

JSON vs XML

JSON Strengths

* Plain Text

« Literally JavaScript Object Notation

Lighter weight formatting. Simple Key/Value

Arrays explicitly supported. Allows for cleaner mapping to
programming language objects

JSON Drawbacks

* No Comments @
* Validation was an afterthought JSON

+ Can’t encode complex relationships

JSON

Formal Grammar

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/JSON

« Parent construct is either an object or array

e { .. } for Object “net

e [..] forArray ——

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON

JSON

Formal Grammar

* Whitespace is unimportant

* These are all equivalent

"fischerm"

("name": "Mark", "netid"

:"fischerm"}

JSON

Objects
(o
" w. owMark"
+ Objects are defined with curly braces name": "Mark",
"netid": "fischerm"
« Key/Value pairs are separated by a colon }
« Keys are strings
« Values can be strings, numbers, boolean, null,
objects, or arrays (°
" n.on " i "name": "Mark",
e "key": "value" pairs separated by commas hetid": "fischerm®,
« Trailing commas are not allowed t
Objects { o
"name": "Mark",
) "netid": "fischerm"
* Keys must be strings }
+ Double Quotes are required
< [
'name': 'Mark',
'netid': 'fischerm'

JSON

Arrays

« Arrays are defined by square brackets : "one",

« Comma separated list of values ”E;ié "
« Values can be strings, numbers, boolean, null, objects,]

or arrays

JSON

For Humans

* Many code editors will auto-format JSON for
you

« Postman will pretty-print JSON output or
show raw

others render it as an expandable tree

Some browsers display pretty-print JSON,

X Preview Headers Cookies Sizes Timing Securty

“status": "0K”,
“books": [
{

“title": “There and Back Again”,
“author": "Bilbo Baggins"

1
8
e Downfall of the Lord of the
rodo Baggins'
1
1
rblore of the Shire",
feriadoc Brandybuck”
1
1
“ount": 3

X Headers Preview Response Initator Timing
: [{title: “There and Back Again”, af
There and Back Again”, author: "Bilbo
ere and Back Again”, author: "Bilbo Bar

rblore of the Shire", author: "Meriado

status: "0K"

JSON

In JavaScript

« Language level JSON object

« Can't create instances with new, static
methods only

« JavaScript = JSON

"B Baggins"
{
' "The nfall
King",
'author': "Frodo Baggins"
b
]
i

console.log(JSON.stringify(obj))

"There and B.

o}

>

© topY | @ Filter D|

{"books": [{"title":"There and Back Again","author
Baggins"},{"title":"The Downfall of the Lord of

the King","author":"Frodo Baggins"}]

JSON

In JavaScript
* JSON — JavaScript

let jsonString =

Vimeitlen: T

book =
console. log (

parse (jsonString)
book.title)

Again","author":

ICEN] © | Filter

There and Back Again

top ¥

Default levels ¥ No Issues

o

json.html:23

JSON

In JavaScript

« JSON is always valid JavaScript
« JavaScript is NOT always valid JSON

« Example: Trailing commas are fine in
JavaScript, but are invalid in JSON

nfall of

"Frodo

Baggins"

console.log(JSON.stringify(obj))

JSON

In Python

jsonString =
« json module is part of the
Python standard library

print (json.1

C(title

nere and Back Again","aut

ads (jsonString))

« JSON - Python

thon Json_deo. py
: "There and Back Again', 'author': 'Bilbo Baggins'}

[3 Demo — -bash — 72x10

JSON

In Python

"The Downfall of the Lord

* Python — JSON

do Baggins",

print (3son.dumps (ob3))

oo e 1 Demo — -bash — 72x10
~/Demo $ python j

{"books": [{"title": "There and Back Again", "author": "Bilbo Baggins"},
{"title": “The Downfall of the Lord of the Rings, and the Return of the
King", "author": “Frodo Baggins"}]}

~/veno $ |

JSON -

In Python

print (json.dumps (obj, indent=2))
* Python — JSON
« Optional indent argument to
dumps will pretty-print your JSON SISl e tash SSxIC
~/Demo $ python json_demo.py

strings from Python

“books": [
{
ere and Back Again",
i1bo Baggins”

e Downfall of the Lord of the Rings,
rodo Baggins”

REST

Representational State Transfer

REST

Representational State Transfer

* JSON objects = DB records
+ Send & Receive over HTTP
« URLs = object IDs

REST

Fundamentals

* REST is not a protocol, like HTTP, or SOAP

« REST is an architectural style, defined by a few key principles

https://en.wikipedia.org/wiki/Representational state transfer

REST

Client-Server Architecture

* Separation of concerns
» Decouples user interface from data access and persistence

« Allows for many different architectures for client and server

https://en.wikipedia.org/wiki/Representational_state_transfer

REST

Uniform Interface

« Requests should identify resources
« They do so by using a uniform resource identifier (URI)
« Resource manipulation through representations

« When a client holds a representation of a resource, including any metadata
attached, it has enough information to modify or delete the resource's state

« Self-descriptive messages contain metadata about how the client can best use them

« A REST client should then be able to use server-provided links dynamically to
discover all the available resources it needs

REST

Statelessness

Clients can request resources in any order, and every request is stateless or
isolated from other requests

Statelessness refers to a communication method in which the server
completes every client request independently of all previous requests

Implies that the server can completely understand and fulfill the request every
time

REST

Layered System

* A client can connect to other authorized intermediaries between the client and
server, and it will still receive responses from the server

« Design your RESTful web service to run on several servers with multiple
layers such as security, application, and business logic, working together to
fulfill client requests

« These layers remain invisible to the client

REST

Cacheability

As on the World Wide Web, clients and intermediaries can cache responses

Well-managed caching partially or completely eliminates some client-server
interactions, further improving scalability and performance

The cache can be performed at the client machine in memory or browser
cache storage

Additionally cache can be stored in a Content Delivery Network (CDN)

REST

Semantic HTTP Methods

Method Description
GET Get a representation of the target resource's state

POST Let the host process a resource state sent in the request

PUT Create or replace the state of a target resource with the state defined in the request

PATCH Partially update a resource's state

DELETE | Delete the target resource's state

OPTIONS | Describe the available methods

REST

GitHub API

* For example here is the GitHub API call to list basic info about my personal
GitHub account

GitHub API

* Since | requested a single T —
thing, | received a dictionary in .
response

REST

GitHub API

« If | request all of my repositories,
I’ll receive an array response

REST

GitHub API

« Typically all the records in a list
will have the same fields,
although JSON does not enforce
this.

REST

GitHub API

 Typically records will have some
sort of unique identifier

REST

GitHub API

* There are specific URLs for each
individual repository

