
Infrastructure as Code
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Infrastructure as Code
Doing the same thing over and over again

• So far what we’ve done in AWS has been done “by hand”


• This is fine for development and experimentation


• Once you have things figured out however, you want to codify your infrastructure


• AWS CLI


• CloudFormation


• Python SDK (boto3)


• TerraForm
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Infrastructure as Code
aws-cli

• On your EC2 instance, the AWS CLI is pre-installed


• You can install it on your laptop too


• https://docs.aws.amazon.com/cli/latest/userguide/getting-started-
install.html
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https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html


Infrastructure as Code
aws-cli

• You need IAM credentials from your AWS account to use the CLI


• Log in to AWS Academy


• https://awsacademy.instructure.com/login/canvas


• Start your AWS environment
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Infrastructure as Code
aws-cli

• Under AWS Details


• Click on the “Show” button 
for AWS CLI
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Infrastructure as Code
aws-cli

• Copy the contents of the 
expanded box in to a new file 
in your user’s home directory, 
inside the hidden ~/.aws/ 
folder named credentials.


• See lecture slides 07-aws for 
walkthrough of setting up 
credentials in VS Code
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https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html


Infrastructure as Code
aws-cli
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Infrastructure as Code
Who are you?
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• Get some basic 
info about your 
credentials and 
make sure 
everything is 
working aws sts get-caller-identity



Infrastructure as Code
Who are you?
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• Default output is 
JSON


• Can change to 
text or table

aws sts get-caller-identity --output table



Infrastructure as Code
aws-cli

• The aws-cli is a command line interface to the core AWS API


• Everything you can do with the Web Console, you can do with the API and 
CLI
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Infrastructure as Code
aws-cli

• If you’ve already created an EC2 instance, you have a security group already 
configured. Let’s find it’s ID
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aws ec2 describe-security-groups --region us-east-1



Infrastructure as Code
aws-cli
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Infrastructure as Code
aws-cli

• Looking up information is fine, but can we make things?


• Let’s deploy a new EC2 instance from the command line.
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Infrastructure as Code
aws-cli
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Infrastructure as Code
aws-cli
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CloudFormation
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AWS CloudFormation
Amazon’s first party Infrastructure as Code service

• Refers to both the templating syntax as well as the AWS service


• Create text file templates which can be repeatedly deployed


• A deployment is called a “stack”
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AWS CloudFormation
Amazon’s first party Infrastructure as Code service

• Templates can be JSON or YAML 
formatted text files


• Top level sections: Parameters, 
Resources, Outputs and others


• Most data is basic key/value pairs


• YAML doesn’t require you to quote 
every string
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--- 
# EC2 Basic CloudFormation Deployment 
# ----------------------------------------- 
#  
# This CloudFormation template will deploy a single EC2 instance with  
# its own security group. 

AWSTemplateFormatVersion: "2010-09-09" 

Parameters: 
  HostName: 
    Type: String 
    Description: "Enter the name of the host or service, ie 'Civil Engineering Structures App', or 'UITS Cloud Services Testing', etc." 

Resources: 
  Ec2Instance: 
    Type: "AWS::EC2::Instance" 
    Properties: 
      ImageId: !Ref AmazonLinuxAmi 
      KeyName: !Ref KeyName 
      InstanceType: !Ref InstanceType 
      IamInstanceProfile: !Ref InstanceProfile 

  InstanceSecurityGroup: 
    Type: "AWS::EC2::SecurityGroup" 
    Properties: 
      GroupDescription: "Allow ssh to client host" 
      VpcId: !Ref VPCID 
      SecurityGroupIngress: 
        - IpProtocol: tcp 
          FromPort: 22 
          ToPort: 22 
          CidrIp: "0.0.0.0/0" 

Outputs: 
  InstancePublicIP: 
    Condition: AssignPublicIPCondition 
    Description: "The Public IP address of the instance" 
    Value: !GetAtt Ec2Instance.PublicIp



AWS CloudFormation
Infrastructure as Code service

• Templates can be uploaded to the 
AWS web console and deployed
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AWS CloudFormation
Infrastructure as Code service
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• Stack changes can be previewed 
before deployment to see what 
resources will be created or 
modified



AWS CloudFormation
Infrastructure as Code service
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• Can watch the progress of the 
stack deployment


• If anything fails, CloudFormation 
can either leave things in place and 
broken so you can examine things, 
or it can roll back all your changes



AWS CloudFormation
Infrastructure as Code service
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• Stacks can be updated over time


• Stacks can be completely deleted 
when you’re finished with it



AWS Python SDK - boto3
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AWS Language SDKs
Software Development Kit

• AWS Provides many ways to interact with its API


• RAW REST API


• AWS Web Console


• AWS CLI


• Programming Language SDKs
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AWS Language SDKs
Programming Language SDKs

• Python


• JavaScript


• Node.js


• Java


• Go


• C++


• .NET


• Ruby


• Rust


• Swift
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https://aws.amazon.com/developer/tools/

https://aws.amazon.com/developer/tools/


Python SDK - boto3 
Authentication

• Just like the aws-cli, if you’re making AWS API calls from outside of an 
AWS account, you need credentials


• The boto3 SDK knows to look for your [default] credentials from your 
~/.aws/credentials file


• If you got the aws-cli working, then running python code from your laptop 
will also work


• If you want to run your python code inside of a container, you need to get 
credentials in to the container
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Python SDK - boto3 
Create an EC2 Instance

• The SDK documentation is essential
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https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html


Python SDK - boto3 
Two SDK Models

• Each Service in the boto3 library presents two different interface models


• client model


• Closely maps directly to the AWS API itself / aws-cli 


• Returns dictionary mappings of the raw JSON responses


• resource model


• More object oriented


• Returns python objects
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Python SDK - boto3 
Create an EC2 Instance

• We want the boto3.client for 
EC2 to start


• Documentation provides a 
comprehensive list of all the 
properties and methods available


• Many examples


• I almost always start here first, then 
go off to more broad searches if I 
need to
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Python SDK - boto3 
Create an EC2 Instance

• Client version is run_instances  


• Mostly matches the aws-cli but 
you can see similarities to the 
CloudFormation version as well


• Region is defined when creating 
the client object


• Requires more details for things 
like NetworkInerfaces and 
Counts
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import boto3 
from botocore.config import Config 

conf = Config(region_name="us-east-1") 
ec2 = boto3.client("ec2", config=conf) 

call_result = ec2.run_instances( 
    ImageId="ami-026b57f3c383c2eec", 
    InstanceType=“t3.micro", 
    MinCount=1, 
    MaxCount=1, 
    KeyName="vockey", 
    NetworkInterfaces=[ 
        { 
            "DeviceIndex": 0, 
            "SubnetId": "subnet-0cea5865199d0595c", 
            "Groups": ["sg-07f090fb54ae76532"], 
            "AssociatePublicIpAddress": True, 
        } 
    ], 
) 

print(call_result)



Python SDK - boto3 
Create an EC2 Instance

• Response is a generic python 
dictionary with key/value pairs


• Useful if you only need cursory 
interaction with the resource after 
you create it
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{'Groups': [], 'Instances': [{'AmiLaunchIndex': 0, 'ImageId': 
'ami-026b57f3c383c2eec', 'InstanceId': 'i-0aafad17c8d49bf7a', 
'InstanceType': 't2.micro', 'KeyName': 'vockey', 'LaunchTime': 
datetime.datetime(2022, 10, 23, 20, 45, 33, tzinfo=tzutc()), 
'Monitoring': {'State': 'disabled'}, 'Placement': 
{'AvailabilityZone': 'us-east-1e', 'GroupName': '', 'Tenancy': 
'default'}, 'PrivateDnsName': 'ip-172-31-63-12.ec2.internal', 
'PrivateIpAddress': '172.31.63.12', 'ProductCodes': [], 
'PublicDnsName': '', 'State': {'Code': 0, 'Name': 'pending'}, 
'StateTransitionReason': '', 'SubnetId': 'subnet-0cea5865199d0595c', 
'VpcId': 'vpc-0b1989c3c4cd0263a', 'Architecture': 'x86_64', 
'BlockDeviceMappings': [], 'ClientToken': 'c259d26c-0056-41bb-96ec-
a5b3cb42857d', 'EbsOptimized': False, 'EnaSupport': True, 
'Hypervisor': 'xen', 'NetworkInterfaces': [{'Attachment': 
{'AttachTime': datetime.datetime(2022, 10, 23, 20, 45, 33, 
tzinfo=tzutc()), 'AttachmentId': 'eni-attach-0d2727e02df2c2ea0', 
'DeleteOnTermination': True, 'DeviceIndex': 0, 'Status': 'attaching', 
'NetworkCardIndex': 0}, 'Description': '', 'Groups': [{'GroupName': 
'launch-wizard-1', 'GroupId': 'sg-07f090fb54ae76532'}], 
'Ipv6Addresses': [], 'MacAddress': '06:3d:1a:e8:79:37', 
'NetworkInterfaceId': 'eni-0a8b52f5531047feb', 'OwnerId': 
'561707296892', 'PrivateDnsName': 'ip-172-31-63-12.ec2.internal', 
'PrivateIpAddress': '172.31.63.12', 'PrivateIpAddresses': 
[{'Primary': True, 'PrivateDnsName': 'ip-172-31-63-12.ec2.internal', 
'PrivateIpAddress': '172.31.63.12'}], 'SourceDestCheck': True, 
'Status': 'in-use', 'SubnetId': 'subnet-0cea5865199d0595c', 'VpcId': 
'vpc-0b1989c3c4cd0263a', 'InterfaceType': 'interface'}], 
'RootDeviceName': '/dev/xvda', 'RootDeviceType': 'ebs', 
'SecurityGroups': [{'GroupName': 'launch-wizard-1', 'GroupId': 
'sg-07f090fb54ae76532'}], 'SourceDestCheck': True, 'StateReason': 
{'Code': 'pending', 'Message': 'pending'}, 'VirtualizationType': 
'hvm', 'CpuOptions': {'CoreCount': 1, 'ThreadsPerCore': 1}, 
'CapacityReservationSpecification': {'CapacityReservationPreference': 
'open'}, 'MetadataOptions': {'State': 'pending', 'HttpTokens': 
'optional', 'HttpPutResponseHopLimit': 1, 'HttpEndpoint': 'enabled', 

call_result["InstanceId"]



Python SDK - boto3 
Terminate an EC2 Instance

• The resource model allows us to 
manipulate objects


• Here we first create an EC2 
instance object in our code


• Because it is a python object, we 
can easily inspect attributes and 
call methods
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import boto3 
from botocore.config import Config 

conf = Config(region_name="us-east-1") 
ec2 = boto3.resource("ec2", config=conf) 
instance = ec2.Instance("i-0aafad17c8d49bf7a") 

print(instance.state) 
instance.terminate() 
instance.wait_until_terminated() 
print(instance.state)

$ python3 ec2-terminate.py  
{'Code': 16, 'Name': 'running'} 
{'Code': 48, 'Name': 'terminated'} 
$ 



Terraform
Open-Source Multi-Provider Templating System
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Terraform
Create an EC2 Instance

• Open-source tool spooned by 
HashiCorp


• Supports multiple cloud providers


• Has its own language that is 
similar to JSON, but supports 
comments, and built-in references 
and functions


• Install the terraform CLI tool
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terraform { 
  required_providers { 
    aws = { 
      source  = "hashicorp/aws" 
      version = "~> 4.16" 
    } 
  } 

  required_version = ">= 1.2.0" 
} 

provider "aws" { 
  region = "us-east-1" 
} 

# Create a basic EC2 Instance 
resource "aws_instance" "app_server" { 
  ami                         = "ami-026b57f3c383c2eec" 
  instance_type               = "t2.micro" 
  associate_public_ip_address = true 
  subnet_id                   = "subnet-0cea5865199d0595c" 
  security_groups             = ["sg-07f090fb54ae76532"] 
  key_name                    = "vockey" 
}

https://www.terraform.io/downloads

https://www.terraform.io/downloads


Comparison
So what should you use?

• “It depends”


• Each method presented here has advantages and disadvantages


• Significant overlap between tools


• Can always start simple with a shell script running aws-cli commands. As that 
becomes cumbersome move to either boto3 or CloudFormation/Terraform 
depending on needs
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Version Control Systems
Basically git 
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Version Control Systems
It’s just git these days

• A version control system aims to keep track of all the changes made to any of 
your project files


• Mostly focused on text files


• Binary files can be versioned, but they are harder to look at differences


• If you’re dealing with text files that might change, you should probably use a 
version control system

37



Version Control Systems
It’s just git these days

• Years ago there used to be several competing version control systems


• These days the industry has basically settled on git  


• Originally developed to manage the Linux kernel. 


• Designed as a distributed version control system with direct peer-to-peer 
capabilities


• Very rarely used in practice


• Hub & spoke model of older version control systems gave rise to GitHub


• GitHub ≠ git! 
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The git Version Control System

• A git repository is basically a folder with a hidden .git directory in it which 
contains state and history


• Files added to the folder can then be added to change sets and committed to 
the repository


• All of this can happen locally on your computer without needing a server


• If you want to use a service like GitHub, your local repository can be pushed 
to a remote repository hosted on GitHub.
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git basics
Setup

• https://git-scm.com/downloads


• Many platforms have git installed by default


• macOS has git as part of Xcode 


• Windows installer


• Linux package managers

40

https://git-scm.com/downloads


git basics
Setup

• Initial setup 
commands


• Set your default 
branch name


• Set your user.name


• Set your user.email
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git basics
Setup

• Create some files


• git init to initialize 
your current folder as 
a repository
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git basics
Setup

• Use git status to 
show what changes 
are not in your 
repository
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git basics
Setup

• Use git add to 
stage new or changed 
files

44



git basics
Setup

• Use git commit to 
commit all staged 
changes to the 
repository along with 
a change log message


• Message can be 
provided inline with 
the -m option, or with 
a CLI text editor like 
vim 
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git basics
Setup

• Tools like VS Code 
have built-in support 
for git 


• Add and commit 
changed files directly 
in VS Code GUI
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git basics
Setup

• Committing changes 
to files that are 
already tracked can 
be done with the -a 
option on the  
git commit 
command
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git basics
Setup

• VS Code also has 
built-in support for 
showing differences 
between files as you 
work
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git basics
Setup

• Can see a history of 
commits with the  
git log command


• Also shows up in the 
VS Code Timeline 
pane
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