
Infrastructure as Code

1

Infrastructure as Code
Doing the same thing over and over again

• So far what we’ve done in AWS has been done “by hand”

• This is fine for development and experimentation

• Once you have things figured out however, you want to codify your infrastructure

• AWS CLI

• CloudFormation

• Python SDK (boto3)

• TerraForm

2

Infrastructure as Code
aws-cli

• On your EC2 instance, the AWS CLI is pre-installed

• You can install it on your laptop too

• https://docs.aws.amazon.com/cli/latest/userguide/getting-started-
install.html

3

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Infrastructure as Code
aws-cli

• You need IAM credentials from your AWS account to use the CLI

• Log in to AWS Academy

• https://awsacademy.instructure.com/login/canvas

• Start your AWS environment

4

Infrastructure as Code
aws-cli

• Under AWS Details

• Click on the “Show” button
for AWS CLI

5

Infrastructure as Code
aws-cli

• Copy the contents of the
expanded box in to a new file
in your user’s home directory,
inside the hidden ~/.aws/
folder named credentials.

• See lecture slides 07-aws for
walkthrough of setting up
credentials in VS Code

6

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

Infrastructure as Code
aws-cli

7

Infrastructure as Code
Who are you?

8

• Get some basic
info about your
credentials and
make sure
everything is
working aws sts get-caller-identity

Infrastructure as Code
Who are you?

9

• Default output is
JSON

• Can change to
text or table

aws sts get-caller-identity --output table

Infrastructure as Code
aws-cli

• The aws-cli is a command line interface to the core AWS API

• Everything you can do with the Web Console, you can do with the API and
CLI

10

Infrastructure as Code
aws-cli

• If you’ve already created an EC2 instance, you have a security group already
configured. Let’s find it’s ID

11

aws ec2 describe-security-groups --region us-east-1

Infrastructure as Code
aws-cli

12

Infrastructure as Code
aws-cli

• Looking up information is fine, but can we make things?

• Let’s deploy a new EC2 instance from the command line.

13

Infrastructure as Code
aws-cli

14

Infrastructure as Code
aws-cli

15

CloudFormation

16

AWS CloudFormation
Amazon’s first party Infrastructure as Code service

• Refers to both the templating syntax as well as the AWS service

• Create text file templates which can be repeatedly deployed

• A deployment is called a “stack”

17

AWS CloudFormation
Amazon’s first party Infrastructure as Code service

• Templates can be JSON or YAML
formatted text files

• Top level sections: Parameters,
Resources, Outputs and others

• Most data is basic key/value pairs

• YAML doesn’t require you to quote
every string

18

EC2 Basic CloudFormation Deployment

This CloudFormation template will deploy a single EC2 instance with
its own security group.

AWSTemplateFormatVersion: "2010-09-09"

Parameters:
 HostName:
 Type: String
 Description: "Enter the name of the host or service, ie 'Civil Engineering Structures App', or 'UITS Cloud Services Testing', etc."

Resources:
 Ec2Instance:
 Type: "AWS::EC2::Instance"
 Properties:
 ImageId: !Ref AmazonLinuxAmi
 KeyName: !Ref KeyName
 InstanceType: !Ref InstanceType
 IamInstanceProfile: !Ref InstanceProfile

 InstanceSecurityGroup:
 Type: "AWS::EC2::SecurityGroup"
 Properties:
 GroupDescription: "Allow ssh to client host"
 VpcId: !Ref VPCID
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: "0.0.0.0/0"

Outputs:
 InstancePublicIP:
 Condition: AssignPublicIPCondition
 Description: "The Public IP address of the instance"
 Value: !GetAtt Ec2Instance.PublicIp

AWS CloudFormation
Infrastructure as Code service

• Templates can be uploaded to the
AWS web console and deployed

19

AWS CloudFormation
Infrastructure as Code service

20

• Stack changes can be previewed
before deployment to see what
resources will be created or
modified

AWS CloudFormation
Infrastructure as Code service

21

• Can watch the progress of the
stack deployment

• If anything fails, CloudFormation
can either leave things in place and
broken so you can examine things,
or it can roll back all your changes

AWS CloudFormation
Infrastructure as Code service

22

• Stacks can be updated over time

• Stacks can be completely deleted
when you’re finished with it

AWS Python SDK - boto3

23

AWS Language SDKs
Software Development Kit

• AWS Provides many ways to interact with its API

• RAW REST API

• AWS Web Console

• AWS CLI

• Programming Language SDKs

24

AWS Language SDKs
Programming Language SDKs

• Python

• JavaScript

• Node.js

• Java

• Go

• C++

• .NET

• Ruby

• Rust

• Swift
25

https://aws.amazon.com/developer/tools/

https://aws.amazon.com/developer/tools/

Python SDK - boto3
Authentication

• Just like the aws-cli, if you’re making AWS API calls from outside of an
AWS account, you need credentials

• The boto3 SDK knows to look for your [default] credentials from your
~/.aws/credentials file

• If you got the aws-cli working, then running python code from your laptop
will also work

• If you want to run your python code inside of a container, you need to get
credentials in to the container

26

Python SDK - boto3
Create an EC2 Instance

• The SDK documentation is essential

27

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

Python SDK - boto3
Two SDK Models

• Each Service in the boto3 library presents two different interface models

• client model

• Closely maps directly to the AWS API itself / aws-cli

• Returns dictionary mappings of the raw JSON responses

• resource model

• More object oriented

• Returns python objects
28

Python SDK - boto3
Create an EC2 Instance

• We want the boto3.client for
EC2 to start

• Documentation provides a
comprehensive list of all the
properties and methods available

• Many examples

• I almost always start here first, then
go off to more broad searches if I
need to

29

Python SDK - boto3
Create an EC2 Instance

• Client version is run_instances

• Mostly matches the aws-cli but
you can see similarities to the
CloudFormation version as well

• Region is defined when creating
the client object

• Requires more details for things
like NetworkInerfaces and
Counts

30

import boto3
from botocore.config import Config

conf = Config(region_name="us-east-1")
ec2 = boto3.client("ec2", config=conf)

call_result = ec2.run_instances(
 ImageId="ami-026b57f3c383c2eec",
 InstanceType=“t3.micro",
 MinCount=1,
 MaxCount=1,
 KeyName="vockey",
 NetworkInterfaces=[
 {
 "DeviceIndex": 0,
 "SubnetId": "subnet-0cea5865199d0595c",
 "Groups": ["sg-07f090fb54ae76532"],
 "AssociatePublicIpAddress": True,
 }
],
)

print(call_result)

Python SDK - boto3
Create an EC2 Instance

• Response is a generic python
dictionary with key/value pairs

• Useful if you only need cursory
interaction with the resource after
you create it

31

{'Groups': [], 'Instances': [{'AmiLaunchIndex': 0, 'ImageId':
'ami-026b57f3c383c2eec', 'InstanceId': 'i-0aafad17c8d49bf7a',
'InstanceType': 't2.micro', 'KeyName': 'vockey', 'LaunchTime':
datetime.datetime(2022, 10, 23, 20, 45, 33, tzinfo=tzutc()),
'Monitoring': {'State': 'disabled'}, 'Placement':
{'AvailabilityZone': 'us-east-1e', 'GroupName': '', 'Tenancy':
'default'}, 'PrivateDnsName': 'ip-172-31-63-12.ec2.internal',
'PrivateIpAddress': '172.31.63.12', 'ProductCodes': [],
'PublicDnsName': '', 'State': {'Code': 0, 'Name': 'pending'},
'StateTransitionReason': '', 'SubnetId': 'subnet-0cea5865199d0595c',
'VpcId': 'vpc-0b1989c3c4cd0263a', 'Architecture': 'x86_64',
'BlockDeviceMappings': [], 'ClientToken': 'c259d26c-0056-41bb-96ec-
a5b3cb42857d', 'EbsOptimized': False, 'EnaSupport': True,
'Hypervisor': 'xen', 'NetworkInterfaces': [{'Attachment':
{'AttachTime': datetime.datetime(2022, 10, 23, 20, 45, 33,
tzinfo=tzutc()), 'AttachmentId': 'eni-attach-0d2727e02df2c2ea0',
'DeleteOnTermination': True, 'DeviceIndex': 0, 'Status': 'attaching',
'NetworkCardIndex': 0}, 'Description': '', 'Groups': [{'GroupName':
'launch-wizard-1', 'GroupId': 'sg-07f090fb54ae76532'}],
'Ipv6Addresses': [], 'MacAddress': '06:3d:1a:e8:79:37',
'NetworkInterfaceId': 'eni-0a8b52f5531047feb', 'OwnerId':
'561707296892', 'PrivateDnsName': 'ip-172-31-63-12.ec2.internal',
'PrivateIpAddress': '172.31.63.12', 'PrivateIpAddresses':
[{'Primary': True, 'PrivateDnsName': 'ip-172-31-63-12.ec2.internal',
'PrivateIpAddress': '172.31.63.12'}], 'SourceDestCheck': True,
'Status': 'in-use', 'SubnetId': 'subnet-0cea5865199d0595c', 'VpcId':
'vpc-0b1989c3c4cd0263a', 'InterfaceType': 'interface'}],
'RootDeviceName': '/dev/xvda', 'RootDeviceType': 'ebs',
'SecurityGroups': [{'GroupName': 'launch-wizard-1', 'GroupId':
'sg-07f090fb54ae76532'}], 'SourceDestCheck': True, 'StateReason':
{'Code': 'pending', 'Message': 'pending'}, 'VirtualizationType':
'hvm', 'CpuOptions': {'CoreCount': 1, 'ThreadsPerCore': 1},
'CapacityReservationSpecification': {'CapacityReservationPreference':
'open'}, 'MetadataOptions': {'State': 'pending', 'HttpTokens':
'optional', 'HttpPutResponseHopLimit': 1, 'HttpEndpoint': 'enabled',

call_result["InstanceId"]

Python SDK - boto3
Terminate an EC2 Instance

• The resource model allows us to
manipulate objects

• Here we first create an EC2
instance object in our code

• Because it is a python object, we
can easily inspect attributes and
call methods

32

import boto3
from botocore.config import Config

conf = Config(region_name="us-east-1")
ec2 = boto3.resource("ec2", config=conf)
instance = ec2.Instance("i-0aafad17c8d49bf7a")

print(instance.state)
instance.terminate()
instance.wait_until_terminated()
print(instance.state)

$ python3 ec2-terminate.py
{'Code': 16, 'Name': 'running'}
{'Code': 48, 'Name': 'terminated'}
$

Terraform
Open-Source Multi-Provider Templating System

33

Terraform
Create an EC2 Instance

• Open-source tool spooned by
HashiCorp

• Supports multiple cloud providers

• Has its own language that is
similar to JSON, but supports
comments, and built-in references
and functions

• Install the terraform CLI tool

34

terraform {
 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 4.16"
 }
 }

 required_version = ">= 1.2.0"
}

provider "aws" {
 region = "us-east-1"
}

Create a basic EC2 Instance
resource "aws_instance" "app_server" {
 ami = "ami-026b57f3c383c2eec"
 instance_type = "t2.micro"
 associate_public_ip_address = true
 subnet_id = "subnet-0cea5865199d0595c"
 security_groups = ["sg-07f090fb54ae76532"]
 key_name = "vockey"
}

https://www.terraform.io/downloads

https://www.terraform.io/downloads

Comparison
So what should you use?

• “It depends”

• Each method presented here has advantages and disadvantages

• Significant overlap between tools

• Can always start simple with a shell script running aws-cli commands. As that
becomes cumbersome move to either boto3 or CloudFormation/Terraform
depending on needs

35

Version Control Systems
Basically git

36

Version Control Systems
It’s just git these days

• A version control system aims to keep track of all the changes made to any of
your project files

• Mostly focused on text files

• Binary files can be versioned, but they are harder to look at differences

• If you’re dealing with text files that might change, you should probably use a
version control system

37

Version Control Systems
It’s just git these days

• Years ago there used to be several competing version control systems

• These days the industry has basically settled on git

• Originally developed to manage the Linux kernel.

• Designed as a distributed version control system with direct peer-to-peer
capabilities

• Very rarely used in practice

• Hub & spoke model of older version control systems gave rise to GitHub

• GitHub ≠ git!
38

The git Version Control System

• A git repository is basically a folder with a hidden .git directory in it which
contains state and history

• Files added to the folder can then be added to change sets and committed to
the repository

• All of this can happen locally on your computer without needing a server

• If you want to use a service like GitHub, your local repository can be pushed
to a remote repository hosted on GitHub.

39

git basics
Setup

• https://git-scm.com/downloads

• Many platforms have git installed by default

• macOS has git as part of Xcode

• Windows installer

• Linux package managers

40

https://git-scm.com/downloads

git basics
Setup

• Initial setup
commands

• Set your default
branch name

• Set your user.name

• Set your user.email

41

git basics
Setup

• Create some files

• git init to initialize
your current folder as
a repository

42

git basics
Setup

• Use git status to
show what changes
are not in your
repository

43

git basics
Setup

• Use git add to
stage new or changed
files

44

git basics
Setup

• Use git commit to
commit all staged
changes to the
repository along with
a change log message

• Message can be
provided inline with
the -m option, or with
a CLI text editor like
vim

45

git basics
Setup

• Tools like VS Code
have built-in support
for git

• Add and commit
changed files directly
in VS Code GUI

46

git basics
Setup

• Committing changes
to files that are
already tracked can
be done with the -a
option on the  
git commit
command

47

git basics
Setup

• VS Code also has
built-in support for
showing differences
between files as you
work

48

git basics
Setup

• Can see a history of
commits with the  
git log command

• Also shows up in the
VS Code Timeline
pane

49

