
Public Key Cryptography
Some crypto is actually really useful!

1

Hashing for Fun and Security
Hash Functions

• A hash function is a mathematical function that turns a very large input into
smaller integer. It must be fast to compute. (most of the time, see passwords)

• Example: SHA256 turns any file (of any size) to a 256-bit number

2

~/CSC346/demo/pubkey $ ls -l
total 1112
-rw-r--r--@ 1 fischerm staff 566695 Nov 20 16:45 x-wing.jpg

~/CSC346/demo/pubkey $ cat x-wing.jpg | shasum -a 256
5f120902fbb711c3976aacd36a0dcc4f7d9652ae535305e751b169ad0f775a53 -
~/CSC346/demo/pubkey $

Hashing for Fun and Security
Hash Functions

• The best hash functions are irreversible, meaning that there is no known way
to find a file, if you are given the hash

• Always possible to do a brute-force search, but if the output is very large, it is
impossible to complete in time

• 256 bits = 2256 possible hash 
 = more than the atoms in the universe

3

• Suppose you have a file, which you hope is the right version, but you worry
that an attacker has corrupted it.

Trusted Source

Hashing for Fun and Security
Verification

4

Original
File

Internet
Danger!

You

Valid
Copy?

• If you can get the hash of the file (in a trusted way), then you can use that to
confirm you have the right file.

Trusted Source

Hashing for Fun and Security
Verification

5

Original
File

Internet
Danger!

You

Valid
Copy?

SHA256: 5f120902fbb711c3976aacd36… SHA256: 5f120902fbb711c3976aacd36…

• Using hashes for verification is very common

• Distribute a file through an untrusted source (shared distro site, BitTorrent,
etc.)

• Display the hash on a trusted website

• Remember Password Authentication?

• Compare login password hash to stored hash value

• Having “slow” hashes for passwords is actually a security feature! Helps
mitigate brute force attacks

Hashing for Fun and Security
Verification

• A symmetric cipher is an encryption algorithm where the encoder and
decoder use the same key

• Often fast

• Only option until a few decades ago

• Examples:

• Substitution ciphers

• WW2 “Enigma” machines

Symmetric Cryptography

• Since the endpoints have to share keys, there are several problems:

• Have to communicate the key beforehand, safely (hard to do on the
Internet!)

• Have to create different keys for each (a,b) pair

• Every computer would have to store 1000s of keys (one for each partner)

Symmetric Cryptography

• Public key encryption algorithms require two different keys to encrypt &
decrypt a message.

• If you attempt to decrypt using the same key as you encrypted, you get
garbage

• These algorithms work in both directions:

• A will decrypt data encoded by B, and

• B will decrypt data encoded by A

Public Key Infrastructure to the Rescue
Big Brains

• In any key pair, we designate one as public, and one as private.

• We assume that the public key is accessible to anyone, anywhere

• “Even my worst enemy”

• The private key must be absolutely private, not shared with anyone

Public Key Infrastructure
Public & Private Keys

• It’s easy to generate new key pairs. You probably have one for:

• Each web browser you use (each browser on your computer will have a
different key pair)

• Each library that supports https

• Connecting to servers via ssh

• Each https server you create

• and many more...

Public Key Infrastructure
Public & Private Keys

• However, we assume that each endpoint in a communication has the same
key pair, so long as the communication is ongoing.

• Not normally necessary to re-generate key pairs unless they’re stolen; you
can use the same one for a very long time.

• SSH Key-Pairs are usually very long lived

• TLS certificates expire in a year these days, but the underlying Key-Pair can
be used again to generate a new certificate.

Public Key Infrastructure
Public & Private Keys

• The public/private key pair can be used in two directions:

• Encrypt with public, decrypt with private

• Gives privacy

• Encrypt with private, decrypt with public

• Gives authentication

Public Key Infrastructure
Two Tricks

Public Key Infrastructure
Trick One - Privacy

• A wants to send a message to
B, but wants to make sure that
the attacker cannot read it.

A

B

Public Key Infrastructure
Trick One - Privacy

B’s Public Key

B’s Private Key

B’s Public Key

• B has made a public-private
key-pair and disseminated the
public key, well, publicly.

• Only B has the private key

Public Key Infrastructure
Trick One - Privacy

B’s Public Key

B’s Private Key

B’s Public Key

• A composes a message to send
to B

Public Key Infrastructure
Trick One - Privacy

B’s Public Key

B’s Private Key

B’s Public Key

• A uses the public key of B to
encrypt the message

01001010
10100101
01010110
10110110

Public Key Infrastructure
Trick One - Privacy

B’s Public Key

B’s Private Key

B’s Public Key

• A sends the message to B

• The attacker also steals a copy
of the message

01001010
10100101
01010110
10110110

01001010
10100101
01010110
10110110

Public Key Infrastructure
Trick One - Privacy

B’s Public Key

B’s Private Key

B’s Public Key

• B can decrypt the message with
the private key

• The attacker gets only gibberish
when trying to decrypt with B’s
public key

01001010
10100101
01010110
10110110

Public Key Infrastructure
Trick Two - Authentication

B’s Public Key

B’s Private Key

B’s Public Key

• B wants to send a reply to A,
but the attacker wants to send a
fake reply to A

A

B

Public Key Infrastructure
Trick Two - Authentication

B’s Public Key

B’s Private Key

B’s Public Key

• B wants to send a reply to A,
but the attacker wants to send a
fake reply to A

01001010
10100101
01010110
10110110

Public Key Infrastructure
Trick Two - Authentication

B’s Public Key

B’s Private Key

B’s Public Key

• B can encrypt the message with
B’s private key

• The attacker does not have B’s
private key, so tries to encrypt it
with B’s public key

01001010
10100101
01010110
10110110

Public Key Infrastructure
Trick Two - Authentication

B’s Public Key

B’s Private Key

B’s Public Key

• Both messages are sent to A

01001010
10100101
01010110
10110110

01001010
10100101
01010110
10110110

Public Key Infrastructure
Trick Two - Authentication

B’s Public Key

B’s Private Key

B’s Public Key

• Both message are sent to A

• A uses B’s public key to decrypt
each message

• Only the authentic message can
be decrypted

01001010
10100101
01010110
10110110

Public Key Infrastructure
Trick Two - Authentication

B’s Public Key

B’s Private Key

B’s Public Key

• How do we know that the
message is garbled?

• The message includes a HASH of
the message

• If the hash included matches a
hash of the “message” that was
decrypted, then you know the
message is authentic.

01001010
10100101
01010110
10110110

Public Key Infrastructure
Bi-Directional Communication?

B’s Public Key

B’s Private Key

B’s Public Key

• How do we communicate
securely in both directions?

• A and B each have their own
key-pair

• Public Keys are exchanged

A’s Public Key

A’s Private Key

A’s Public Key

Public Key Infrastructure
Bi-Directional Communication?

B’s Public Key

B’s Private Key

B’s Public Key

• A and B can communicate
securely through a careful
exchange of messages
encrypted with the other’s
public key

• Attacker is grumpy and goes
looking for easier targets

A’s Public Key

A’s Private Key

A’s Public Key

01001010
10100101
01010110
10110110

01001010
10100101
01010110
10110110

01001010
10100101
01010110
10110110

01001010
10100101
01010110
10110110

01001010
10100101
01010110
10110110

• How do we get everyone’s Public Keys?

• Too many servers and clients to just assume everyone has everyone’s public
keys

Public Key Infrastructure
Key Exchange

• How do we get everyone’s Public Keys?

• If the client has the host’s public key, you can use that to send the public key
of the client to the host as part of the message.

Public Key Infrastructure
Key Exchange

Website’s Public Key Website’s Private Key

Client’s Private Key

Client’s
Public Key

• Encrypt the client’s public key with the public key of the Website

Public Key Infrastructure
Key Exchange

Website’s Public Key Website’s Private Key

Client’s Private Key

01001010
10100101
01010110
10110110

• Encrypt the client’s public key with the public key of the Website

Public Key Infrastructure
Key Exchange

Website’s Public Key Website’s Private Key

Client’s Private Key

01001010
10100101
01010110
10110110

• Website can decrypt the message with it’s private key

• Now the website has the client’s public key and secure bi-directional
communication can take place

Public Key Infrastructure
Key Exchange

Website’s Public Key Website’s Private Key

Client’s Private Key

Client’s
Public Key

• But how does the client get the Website’s public key in the first place?

Public Key Infrastructure
Key Exchange

Website’s Public Key

Website’s Private Key???

• We can’t just ask for it. How could we trust that it’s really the website giving
us the public key?

• Attacker could impersonate the website and we may not know.

Public Key Infrastructure
Key Exchange

Website’s Private KeyWebsite’s Public KeyAttacker’s Private KeyAttacker’s Public Key

• A certificate is a document, signed by a trusted third party – a “certificate
authority” or CA – that tells us what the public key of a server is.

• We use certificates, instead of talking to the CA directly, because the load on
the CA would be immense.

Certificates
Certificate Authority

• While it is not possible for a
client to innately know the
public key for every
conceivable service out there,
it is possible for the client to
have innate knowledge or trust
for a smaller fixed set of keys.

• Your Operating System ships
with an initial set of trusted
keys in the form of root or
intermediary certificates.

Certificates
Certificate Authority

• A and B both trust C, a
certain Certificate Authority.

• When we begin, both A and B
know C’s public key, but they
do not know each other’s.

• We want B to come to know
A’s public key – after which
we can communicate (as
shown earlier).

Certificates
Certificate Authority

B

CA Private

CA Public

CA Public

A Private

A Public CA Public

• A first demonstrates to the
CA that it is who it says it is

• This is usually done through
DNS records

• A can then send it’s Public
Key to the CA

Certificates
Certificate Authority

B

CA Private

CA Public

CA Public

A Private

A Public CA PublicA Public

• Once the CA knows A’s
Public Key, the CA creates a
message that basically says
“As the CA, you can trust that
this is indeed A’s Public Key”

• The CA includes a Hash of
the message in a Certificate
that is signed with the CA’s
Private Key

Certificates
Certificate Authority

B

CA Private

CA Public

CA Public

A Private

A Public CA PublicA Public

From: CA
To: Anyone

A’s Public Key is:

010100101010010101
010010111010100101
010111101010010101
110101010001011011

• The CA then sends this
Certificate back to A

• A can now hold on to this
certificate for a relatively long
time

• Most certificates issued
today are good for a
maximum of one year

Certificates
Certificate Authority

B

CA Private

CA Public

CA Public

A Private

A Public CA PublicA Public

• B can now talk directly to A
and ask for A’s certificate

• A sends it’s certificate to B

• This happens before HTTP
communication, but after
TCP socket connection

Certificates
Certificate Authority

B

CA Private

CA Public

CA Public

A Private

A Public CA PublicA Public

• B can verify the signature of
the certificate by decrypting it
with CA’s Public Key

• B finally knows A’s Public
Key, and can trust that it is
correct, because B trusts CA

Certificates
Certificate Authority

B

CA Private

CA Public

CA Public

A Private

A Public CA PublicA Public

A Public

• This is a very basic example
of the Chain of Trust

• “I can trust this new thing,
because it is signed by
something I already trust”

Certificates
Chain of Trust

B

CA Private

CA Public

CA Public

A Private

A Public CA PublicA Public

A Public

• Compared to the number of
hosts on the internet, there are
only a very small number of Root
Certificate Authorities

• My Laptop knows and trusts 149
Root Certificates in 2024

• In 2022 it was a 163 Root
Certificates. OS vendors take on
the responsibility to maintain this
initial trust list.

• You can add your own if needed.

Certificates
Chain of Trust

• A few hundred Root CAs
cannot deal with Billions of
requests for new certificates

• Therefor there are
Intermediary Certificate
Authorities

• Organizations that the Root
CAs trust to sign certificates
on their behalf

Certificates
Chain of Trust

CA Private

From: CA
To: Anyone

Intermediary CA:

010100101010010101
010010111010100101
010111101010010101
110101010001011011

I-CA Private

From: I-CA
To: Anyone

A’s Public Key is:

01010010101001010101001011101
01001010101111010100101011101

You can trust me:

• The Certificate for our class was
signed by the InCommon RSA
Intermediary CA

• The InCommon RSA CA was in
turn signed by the USERTrust
RSA CA

• The USERTrust RSA CA is one
of the initial Root CAs that
come with most OS installations

• So our browser trusts the
certificate

Certificates
Chain of Trust

