
WebSockets
Yeah, about that whole “stateless” thing…
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WebSockets
Sometimes you just need a constant connection

• Recall that the HTTP protocol is stateless.


• Each HTTP request is separate and isolated from any other ones.


• We’ve repeated this more than a few times this semester 🤪


• What are some of the use cases where a stateless network model starts to 
fail?
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Chat
How does our Chat App get new chat messages?
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On Page Load: 
Request New Posts Messages 
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API Responds with 
new post JSON data
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• Now What?


• If new messages are posted by 
someone else, how does this 
browser get them?


• Currently you have to reload the page
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• A common approach is known as 
polling


• The browser checks with the API on 
a timer and asks for new chat 
messages

Polling


api.csc346.arizona.edu

9

• The setTimeout() function will call 
the first argument at an interval 
specified in the second argument


• Here the second argument is 
10000ms, so every 10 seconds the 
loadChats(…) function is called
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setTimeout( () => { 
  loadPosts(newestPostTimestamp, null) 
},10000)
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“Got any new posts?” 
api.csc346.arizona.edu
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“Nope”
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“Got any new posts?” 
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“Nope”
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“Got any new posts?” 
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“Hey I do!  Here you go”
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• This works OK for small numbers of 
infrequent polling


• What happens when there are many 
clients?

Polling
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“Got any new posts?”
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“Got any new posts?”

Polling
Has its downsides

• Polling requires each client to constantly ask the API for new data


• Short polling intervals can overwhelm the API host with incoming requests for 
updates


• Long polling intervals can result in significant delay getting new data out to 
clients


• The Host may know there’s a new message, but it has to wait for a client to 
ask for it
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WebSockets
All that is old is new again

• What if we could establish a long-lived network connection between the client 
and the host?


• This is what WebSockets does
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WebSockets
• So are WebSockets just regular TCP Sockets?


• Spoiler, No


• Conceptually, WebSockets and TCP Sockets have similar goals


• Support Long-Lived Connections


• Two-Way Communication


• Not Request Based


• However they are not related technologically


• WebSockets are an extension to the HTTP Protocol that runs on top of a TCP 
Socket
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WebSockets
Challenges

• Low-level socket programming is hard


• Many network situations only permit “web” traffic over ports 80 or 443


• Session and state information about web application logins are already using 
Cookies, we don’t want a new way of handling state


• Security and encryption are already established for HTTPS communications, 
developing an additional model would be anoying
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WebSockets
Solutions

• Implement a new type of HTTP request


• New request creates a “socket” inside an HTTP request


• Can stay open forever


• Bi-directional comm (not request/response)


• Relatively inexpensive (server memory, network)


• Uses standard HTTP mechanisms for encryption, cookies, etc.


• Uses standard HTTP/HTTPS ports
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GET /chat HTTP/1.1 
Host: chat-api.csc346.arizona.edu 
Upgrade: websocket 
Connection: Upgrade 
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ== 
Sec-WebSocket-Version: 13

• A regular HTTP request initiates the 
WebSocket handshake


• Additional headers are sent, telling the host 
that the client would like to upgrade this 
connection to a WebSocket


• Passes along a client key


• This is just an identifier, not a cryptographic 
key
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HTTP/1.1 101 Switching Protocols 
Upgrade: websocket 
Connection: Upgrade 
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

• If the server supports WebSockets, it 
responds with the correct headers


• The Sec-WebSocket-Accept response 
header is calculated in a seemingly 
overcomplicated way, but exists so that 
it's obvious to the client whether the 
server supports WebSockets
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HTTP/1.1 101 Switching Protocols 
Upgrade: websocket 
Connection: Upgrade 
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

• The Sec-WebSocket-Accept header is important in that the server must derive 
it from the Sec-WebSocket-Key that the client sent to it. 


• To get it, concatenate the client's Sec-WebSocket-Key and the string 
"258EAFA5-E914-47DA-95CA-C5AB0DC85B11" together, take the SHA-1 
hash of the result, and return the base64 encoding of that hash.


• You likely will never have to do this unless you want to implement a WebSockets 
compliant HTTP server. Still useful to know that it’s part of the handshake.

29


api.csc346.arizona.edu

• From that point on, there is a persistent 
connection between the client and host


• Connection remains open until one side 
or the other explicitly closes it


• Data can be sent and initiation in either 
direction by either the client or the host 
at any time


• Data transfer is now a binary format
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https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers


WebSockets
Using with JavaScript

• Handshake details are handled by the browser


• Presents a JavaScript interface to us: new WebSocket(…) 
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const apiHost = "wss://chat-api.csc346.arizona.edu/chats" 
const exampleSocket = new WebSocket(apiHost)

WebSockets
Using with JavaScript

• New Protocol prefix:  ws:// and wss:// 


• ws:// kicks off a handshake over http:// 


• wss:// kicks off the handshake over https://  
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const apiHost = "wss://chat-api.csc346.arizona.edu/chats" 
const exampleSocket = new WebSocket(apiHost)

WebSockets
Sending messages to the server
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const apiHost = "wss://chat-api.csc346.arizona.edu/chats" 
const exampleSocket = new WebSocket(apiHost) 

exampleSocket.send("Message to the server") 

data = { 
  "type": "newchat", 
  "message": "Here's a new chat message", 
  "user": "fischerm" 
} 

exampleSocket.send(data)



WebSockets
Listening for incoming messages
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const apiHost = "wss://chat-api.csc346.arizona.edu/chats" 
const exampleSocket = new WebSocket(apiHost) 

exampleSocket.addEventListener('message', (event) => { 
    console.log('Message from server ', event.data); 
});

WebSockets
MTG Card Demo
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WebSockets
From the Server’s Side
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WebSockets
Server Responsibilities

• The server side has a few duties


• Accept HTTP Connections and look for the Upgrade: websocket and 
Connection: Upgrade headers


• Calculate the correct Sec-WebSocket-Accept response value


• Keep the WebSocket open


• Keep track of all open WebSockets, and allow an API to send messages to 
specific clients
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WebSockets
AWS API Gateway

• Most Cloud Providers have a managed service for WebSockets


• AWS API Gateway supports multiple API specifications


• REST


• Basic HTTP


• WebSockets
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https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api-overview.html

WebSockets
AWS API Gateway

• API Gateway takes care of all the protocol level work associated with 
WebSockets


• Accepts and Upgrades WebSocket connections


• Calculates Sec-WebSocket-Accept responses


• Keeps Socket connections open


• Assigns Connection IDs to each open WebSocket and tracks activity


• Sends activity to a backend processor, ie Lambda
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https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api-overview.html


WebSockets
AWS API Gateway
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LambdaAPI Gateway

Upgrade: websocket
101 Switching Protocols

$connected

Connected response
Connected response

sendstate
sendstate

acknowledge state
acknowledge state

update players

receive state

WebSockets
Server Code Demo
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