
WebSockets
Yeah, about that whole “stateless” thing…

1

WebSockets
Sometimes you just need a constant connection

• Recall that the HTTP protocol is stateless.

• Each HTTP request is separate and isolated from any other ones.

• We’ve repeated this more than a few times this semester 🤪

• What are some of the use cases where a stateless network model starts to
fail?

2

Chat
How does our Chat App get new chat messages?

3

4

On Page Load:
Request New Posts Messages

api.csc346.arizona.edu

5

api.csc346.arizona.edu

API Responds with
new post JSON data

6

api.csc346.arizona.edu

7

• Now What?

• If new messages are posted by
someone else, how does this
browser get them?

• Currently you have to reload the page

api.csc346.arizona.edu

8

• A common approach is known as
polling

• The browser checks with the API on
a timer and asks for new chat
messages

Polling

api.csc346.arizona.edu

9

• The setTimeout() function will call
the first argument at an interval
specified in the second argument

• Here the second argument is
10000ms, so every 10 seconds the
loadChats(…) function is called

api.csc346.arizona.edu

setTimeout(() => {
 loadPosts(newestPostTimestamp, null)
},10000)

10

“Got any new posts?”
api.csc346.arizona.edu

11

“Nope”

api.csc346.arizona.edu

12

13

“Got any new posts?”
api.csc346.arizona.edu

14

“Nope”

api.csc346.arizona.edu

15

16

“Got any new posts?”
api.csc346.arizona.edu

17

“Hey I do! Here you go”

api.csc346.arizona.edu

18

api.csc346.arizona.edu

19

• This works OK for small numbers of
infrequent polling

• What happens when there are many
clients?

Polling

api.csc346.arizona.edu

20

api.csc346.arizona.edu

“Got any new posts?”

“Got any new posts?”

“Got any new posts?”

“Got any new posts?”

“Got any new posts?”

“Got any new posts?”

“Got any new posts?”

Polling
Has its downsides

• Polling requires each client to constantly ask the API for new data

• Short polling intervals can overwhelm the API host with incoming requests for
updates

• Long polling intervals can result in significant delay getting new data out to
clients

• The Host may know there’s a new message, but it has to wait for a client to
ask for it

21

WebSockets
All that is old is new again

• What if we could establish a long-lived network connection between the client
and the host?

• This is what WebSockets does

22

WebSockets
• So are WebSockets just regular TCP Sockets?

• Spoiler, No

• Conceptually, WebSockets and TCP Sockets have similar goals

• Support Long-Lived Connections

• Two-Way Communication

• Not Request Based

• However they are not related technologically

• WebSockets are an extension to the HTTP Protocol that runs on top of a TCP
Socket

23

WebSockets
Challenges

• Low-level socket programming is hard

• Many network situations only permit “web” traffic over ports 80 or 443

• Session and state information about web application logins are already using
Cookies, we don’t want a new way of handling state

• Security and encryption are already established for HTTPS communications,
developing an additional model would be anoying

24

WebSockets
Solutions

• Implement a new type of HTTP request

• New request creates a “socket” inside an HTTP request

• Can stay open forever

• Bi-directional comm (not request/response)

• Relatively inexpensive (server memory, network)

• Uses standard HTTP mechanisms for encryption, cookies, etc.

• Uses standard HTTP/HTTPS ports

25

26

api.csc346.arizona.edu

GET /chat HTTP/1.1
Host: chat-api.csc346.arizona.edu
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Version: 13

• A regular HTTP request initiates the
WebSocket handshake

• Additional headers are sent, telling the host
that the client would like to upgrade this
connection to a WebSocket

• Passes along a client key

• This is just an identifier, not a cryptographic
key

27

api.csc346.arizona.edu

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

• If the server supports WebSockets, it
responds with the correct headers

• The Sec-WebSocket-Accept response
header is calculated in a seemingly
overcomplicated way, but exists so that
it's obvious to the client whether the
server supports WebSockets

28

api.csc346.arizona.edu

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

• The Sec-WebSocket-Accept header is important in that the server must derive
it from the Sec-WebSocket-Key that the client sent to it.

• To get it, concatenate the client's Sec-WebSocket-Key and the string
"258EAFA5-E914-47DA-95CA-C5AB0DC85B11" together, take the SHA-1
hash of the result, and return the base64 encoding of that hash.

• You likely will never have to do this unless you want to implement a WebSockets
compliant HTTP server. Still useful to know that it’s part of the handshake.

29

api.csc346.arizona.edu

• From that point on, there is a persistent
connection between the client and host

• Connection remains open until one side
or the other explicitly closes it

• Data can be sent and initiation in either
direction by either the client or the host
at any time

• Data transfer is now a binary format

30

api.csc346.arizona.edu

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers

WebSockets
Using with JavaScript

• Handshake details are handled by the browser

• Presents a JavaScript interface to us: new WebSocket(…)

31

const apiHost = "wss://chat-api.csc346.arizona.edu/chats"
const exampleSocket = new WebSocket(apiHost)

WebSockets
Using with JavaScript

• New Protocol prefix: ws:// and wss://

• ws:// kicks off a handshake over http://

• wss:// kicks off the handshake over https://

32

const apiHost = "wss://chat-api.csc346.arizona.edu/chats"
const exampleSocket = new WebSocket(apiHost)

WebSockets
Sending messages to the server

33

const apiHost = "wss://chat-api.csc346.arizona.edu/chats"
const exampleSocket = new WebSocket(apiHost)

exampleSocket.send("Message to the server")

data = {
 "type": "newchat",
 "message": "Here's a new chat message",
 "user": "fischerm"
}

exampleSocket.send(data)

WebSockets
Listening for incoming messages

34

const apiHost = "wss://chat-api.csc346.arizona.edu/chats"
const exampleSocket = new WebSocket(apiHost)

exampleSocket.addEventListener('message', (event) => {
 console.log('Message from server ', event.data);
});

WebSockets
MTG Card Demo

35

WebSockets
From the Server’s Side

36

WebSockets
Server Responsibilities

• The server side has a few duties

• Accept HTTP Connections and look for the Upgrade: websocket and
Connection: Upgrade headers

• Calculate the correct Sec-WebSocket-Accept response value

• Keep the WebSocket open

• Keep track of all open WebSockets, and allow an API to send messages to
specific clients

37

WebSockets
AWS API Gateway

• Most Cloud Providers have a managed service for WebSockets

• AWS API Gateway supports multiple API specifications

• REST

• Basic HTTP

• WebSockets

38

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api-overview.html

WebSockets
AWS API Gateway

• API Gateway takes care of all the protocol level work associated with
WebSockets

• Accepts and Upgrades WebSocket connections

• Calculates Sec-WebSocket-Accept responses

• Keeps Socket connections open

• Assigns Connection IDs to each open WebSocket and tracks activity

• Sends activity to a backend processor, ie Lambda

39

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api-overview.html

WebSockets
AWS API Gateway

40

LambdaAPI Gateway

Upgrade: websocket
101 Switching Protocols

$connected

Connected response
Connected response

sendstate
sendstate

acknowledge state
acknowledge state

update players

receive state

WebSockets
Server Code Demo

41

