
CSc352 HW-7 

Page 1 of 3 

CSc352 (Summer 03) Homework 7 
Start: 08/01/03 
Due: 08/08/03 (9am) 
Turnin ID: cs352_assg7 
 
Turnin file list: backup, regtest and factors 
 

0. Background Readings 
� “date” command man page 
� “diff” command man page 

1. Backup Utility 
You are to write a C Shell script named backup. It helps you to backup files 
or directories. The command line syntax of the utility is like this: 

backup pathname 
“pathname” is the name of the file or directory you want to backup. 
It will tar and gzip the file or directory (specified by pathname) into a 
single file named pathname-mmddyy-hhnn.tar.gz, where mm, dd, yy, hh 
and nn are the current month, day, year, hour and minute. Then the .tar.gz 
file is moved into a backup directory ~/BACKUP. For example, at 20:35 on 
Aug. 01, 2003, you run the command “backup hw6” (assuming you have a 
subdirectory named hw6 in the current directory), the hw6 subdirectory is 
packed into a file named hw6-080103-2035.tar.gz and stored in 
~/BACKUP. 
 
You are supposed to handle all valid UNIX pathname as the command line 
parameter, for example: 

backup mydoc 
backup mydoc/ 
backup /home/mike/mydoc 
backup /home/mike/mydoc/ 

The first 2 commands above do the same thing – backup the directory 
“mydoc” under the current working directory. 
The last 2 commands above do the same thing – backup the directory 
“mydoc” under “/home/mike” by the following tar command for example: 

tar cf mydoc-xxxxxx-xxxx.tar /home/mike/mydoc 
Notice that the filename of the resulting tar file begins with “mydoc”, which 
is the name of the directory you are actually backing-up instead of the full 
pathname. 
 
To make it more convenient to do the compare during grading, you need to 
use the exact version of the tar and gzip utility: /usr/local/bin/tar and 



CSc352 HW-7 

Page 2 of 3 

/usr/local/bin/gzip. 
 
You may assume all the command line arguments are valid. So no error 
checking is necessary. 

2. Regression Test Utility 
You are to implement a regression test utility to help with your program test. 
The command line syntax of the utility is like this: 

regtest prg testcase_dir num 
“prg” is the name of the program you are testing. 
“testcase_dir” is the directory where all testcases are stored. 
“num” is the number of testcases we are going to test. 
 
We have the following assumptions: 
� the program you are testing is in the current working directory 
� the program you are testing always reads the input from stdin and gives 

out the result by printing into stdout 
� we have at most 99 test cases and they are all named testXX, where XX 

is the number of the testcases. The numbers are always assigned in the 
lower end of whole numbering space. (For example, if we have 8 
testcases, their names are test01, test02, …, test08, no numbers greater 
than 08 will be used) 

� for each testcase testXX, the expected output of the testcase is in a file 
named testXX.out (also in directory testcase_dir). 

 
Basically what you do in the regtest script is to run the program against 
each of the testcase in testcase_dir and redirect the output into a temporary 
file and diff it with the expected output of the testcase. If no difference is 
reported by diff, your script keeps silent (without printing anything), 
otherwise print out the number of the testcase failed. The numbers are 
separated by spaces. Only when all testcases pass, you return 0 from the 
script; otherwise return 1 showing the failure of the regression test. 
 
You may assume all the command line arguments are valid. So no error 
checking is necessary. 

3. Prime Factors 
You are to write a C Shell script named factors. The command line syntax 
is like this: 

factors num 
“num” is an integer. If it is less than 2, you should print out nothing, 
otherwise print out the prime factors (print only one when there are more 
than one occurrence of the factor) each per line in ascending order. For 
example, “factors 405” will produce the following result: 



CSc352 HW-7 

Page 3 of 3 

3 
5 
In the above example, 405 = 3*3*3*3*5, but we only print “3” once. 
You may assume all the command line arguments are valid. So no error 
checking is necessary. 

PS: 
For detailed information of the output format, please refer to some sample 
testcases and expected results in /home/cs352/summer03/assignments/hw7. 


