
CSc352 Summer03 Homework Assignment 2

Start: 06/16/0306/16/0306/16/0306/16/03

Due: 06/23/03 (9:00pm)06/23/03 (9:00pm)06/23/03 (9:00pm)06/23/03 (9:00pm)

Turnin ID: cs352_assg2cs352_assg2cs352_assg2cs352_assg2

In this assignment, you need to turn in 2 C source program files mitsubishi.c and
numio.c using the following command:

turnin cs352_assg2 mitsubishi.c numio.c

You need to compile both programs using gcc with –Wall option. In order to encourage
high-quality codes, compile-time warning will result in points off, so you need to make
sure your program can be compiled by “gcc –Wall” cleanly. For example, when
compiling numio.c, use command:

gcc –Wall numio.c

If there are any syntax errors or warnings, get rid all of them by modifying the source
code.

1. Text Art - Mitsubishi Logo:

Write a C program (named mitsubishi.c) that takes an integer n (of type int) from the
stdin and print the Mitsubishi Logo (formed by “*”) to the stdout according to size n. n
can be read from the stdin by the statement:

scanf("%d", &n);

You may assume the input n will always be an integer. However, right after reading the n
from the stdin, you need to check if n is in the range [2, 30]. If not, give out an error
message “Out of boundry” and then exit the program by the statement:

exit(1);

The definition of size n is shown in the following sample output. To make the grading
easier, you should print star (“*”), space (“ “) and newline (“\n”) in the exact same way
as the sample output shown below .

In the sample output below, the picture on the left is the actual output on the screen. The
other colorful picture on the right is decorated by me to show you the exact characters
and location to print. You don’t need to print the grid and different colors!! Can you? ☺

From the picture on the right, you need to pay attention to the following things:

(1) The most left star (“*”) of the logo must be printed in column one (I numbered the
columns on the picture). In another word, the logo must touch the left side of the screen.
(2) Don’t add blank lines on top or under bottom of the logo. If the logo consists of m
lines of characters, you should only print m newlines (shown with pink cells in the
picture), each of which should follow one line of the logo.

Anyway, an executable will be provided to you to get rid of any possible confusion in the
write-up. Whenever you are not sure about something, you could always run the provided
executable to see what is supposed to be in the result output.

In order to make sure your output is in the correct printing format. You may run your
program and the provided executable with the same input n. Direct each result to a file.
Then compare the 2 files. Your output should be exactly the same as the one produced by
the provided executable. (You may want to use the tool diff to compare the 2 output files.)

2 High resolution calculations – Huge integer representation:

In C, even the integer type "long long int" can only handle numbers of size up to 8 bytes.
Thus 2^64 = 18446744073709551615 is the biggest integer that can be represented by
integer types in C. This number ONLY has 20 digits. What if we want to add two
integers with 250 digits each? There are no integer types in C that we can use directly!

In this problem, you are to implement a C program named numio.c that can input, store
and output huge integers of size at most MAX_DIGITS digits (here MAX_DIGITS is a
constant defined by “#define MAX_DIGITS 250” in the provided header file numio.h).
In later assignments, we will extend this program to do the +, -, * and / operations on
those huge integers.

(1) We will use a char array to store a huge integer. Each element of the array holds one

digit. The 0th element (the one with subscript 0), contains the number of digits in the
huge integer. The 1st element contains the least significant digit of the huge integer.
The 2nd element contains the 2nd least significant digit, and so on.

For example, denote the char array as num. An integer 23456 is stored in “char
num[MAX_DIGITS+1]” as the following:

num[0] = 5 // number of digits in 23456
num[1] = 6 // the least significant digit
num[2] = 5
num[3] = 4
num[4] = 3
num[5] = 2

Why we define num as “char num[MAX_DIGITS+1]” instead of “char
num[MAX_DIGITS]”? Think about it, but you don’t have to answer it. However, if
you have difficulty in answering it, please come to our office hours.

(2) You need to write a function to read a huge integer from the stdin and store it in a

char array. The prototype of the function is:

int read_num(unsigned char *num);

num is the pointer to the char array.

Since huge integers will cause the overflow of C integer types, you need to read the
huge integer from the stdin as a string (actually char arrary in C). Every element of
the string is a character ‘0’, ‘1’, ‘2’, …, ‘9’. You need to transform each of them into
an integer 0, 1, 2, …, 9 and store them in the char array num in the format we
discussed above in (1). (Notice that ‘1’ is different from 1. When a char variable
stores the character ‘1’, its actually integer value is 49. Please refer to the ASCII table
http://www.asciitable.com)

If the number of digits in the input huge integer is less than 1 or greater than
MAX_DIGITS, immediately return an error code CERR_LEN_ILLEGAL. If any
digit in the input is some character other than ‘0’, ‘1’, ‘2’, …, ‘9’, return error code
CERR_DIG_ILLEGAL. If everything is correct, return CERR_OK, telling the

caller that the work is done correctly. All those error codes are also defined in a
provided header file numio.h.

(3) You need to write a function to print a huge integer to the stdout. The prototype of

the function is:

int print_num(unsigned char *num);

It should simply print the huge integer represented by the char array num to the
stdout without any prefix or suffix like space, newline, etc. In this assignment, you
can assume the argument num passed into this function is always correct (it is in the
correct length range, all the digits stored in it is between 0 and 9, etc.). The later
assignment, we will add more error handling.

For example, the huge integer “23456” will be printed just like:

23456

Yes, the output is exactly the same as the input. However, if your program just print
out the input string without any transformation mentioned above, you may get
nothing in your grade. An executable will be provided to help you to check your
output in the way described in problem 1.

(4) Finally write a main() function, in which you need to the following things:

(a) Declare a char array to store huge integers;
(b) Call function read_num() to read an huge integer into the char array declared
above;
(c) If the return value from read_num() is not CERR_OK, return 0;
(d) Call function print_num() to print the huge integer in the char array declared
above;
(e) Print an ending newline with “printf(“\n”);”

(5) All the function prototypes and useful constants (e.g. the max number of digits
allowed, all return codes, etc.) are defined in the header file numio.h. You are to copy
numio.h to the same directory where your numio.c is stored. Then include it at the
beginning of your numio.c file. Do NOT modify the numio.h file.

In numio.c you write, you need to implement at least 3 functions: read_num(),
print_num() and main(). read_num()and print_num()must be defined
according to the prototype give above (and also available in the given numio.h file).
If you need to define other helper functions called in read_num(),
print_num() and main(), please define them as static functions, which are
only accessible in the file numio.c.

All the header files and executables are in the cs352 home directory
/home/cs352/summer03/assignments/hw2

