
CSc352 HW-3

Page 1 of 6

 CSc 352 Summer03 Assignment 3

Start: 06/23/03
Due: 06/30/03 (9:00pm)
Turnin ID: cs352_assg3

In this assignment, you are going to turn in the following files using turnin command:

numio.c numcalc.c numerr.c calculator.c det.c hanoi.c

0. Background readings:

Please read the information about the following C standard functions from the
textbook, man page, online documents on the class website or other online materials
searched on google.

� fgets()
� getchar()
� scanf()
� printf()
� exit()

1. High resolution calculation:

This problem is an extension of problem 2 in assignment 2.

In this problem, you are to implement a C program that can do +, -, *, / and !
operations on huge integers you stored in the previous assignment.

(1) First, you need to modify your code (numio.c) from the previous assignment to
enhance the error handling capability. The possible error codes are defined in the
header file (numio.h).

You should return the corresponding error code whenever an error is encountered.
This time, in functions like read_num() and print_num(), you should NOT assume
the input from the user or the parameters passed into the functions are all legal. (i.e.
the num parameter passed to print_num() may be a NULL pointer, which is
regarded as an error.) Also the input from the stdin may be longer than
MAX_DIGITS digits, and that should be handled and shouldn’t cause memory
violation. You may need to use some other function other than scanf() to get the input
from stdin.

You also need to delete the main() function in file numio.c you implemented in the
previous assignment.

(2) To facilitate the error handling, you need to write a function:
void print_errmsg(int ret, char *msg);

CSc352 HW-3

Page 2 of 6

This prototype is in file numio.h. The first parameter ret for this function is an status
code returned from read_num(), print_num(), or any new functions we are going to
implement in this assignment. The second parameter msg is a user specified message
string. print_errmsg() will print out the application error message according to the
parameter ret followed by the user’s message string msg into the stderr! The
application error message and the user message are concatenated by a character “:”.
For example, if the application error message is “OK” (corresponds to error code
CERR_OK) and the user message msg is “I am working fine.”, your function call is
print_errmsg(ret, “I am working fine”), where ret has the value
CERR_OK. Then you need to print out:

OK:I am working fine.
We will have a table of all the error code and their corresponding application error
messages at the end of the specification of this problem. You need to use the exact
error message listed in the table. Otherwise, your output will be different from
expected. You can make sure all your output is correct by comparing with the output
produced by the provided executable.

This print_errmsg() function is implemented in a file numerr.c.

(3) Write a function for each of the 5 operations +, -, *, / and !. Prototypes:

int op_plus(unsigned char *num1, unsigned char *num2,
unsigned char *result);

int op_minus(unsigned char *num1, unsigned char *num2,
unsigned char *result);

int op_mult(unsigned char *num1, unsigned char *num2,
unsigned char *result);

int op_div(unsigned char *num1, unsigned char *num2,
unsigned char *result);

int op_fact(unsigned char *num1, unsigned char *result);

All these prototypes are provided in a given header file numcalc.h. You are going to
implement all these function in a file numcalc.c.

For all the operations, if the input huge integers num1 or num2 contain errors
identified by, CERR_DIG_ILLEGAL or CERR_LEN_ILLEGAL, return the
corresponding error code without doing anything. If the parameter result is a NULL
pointer, return CERR_NUM_NULL without doing anything. The result of the
operation should be filled in the char array pointed by result.

fact operation here means the factorial operation. n! = n*(n-1)*(n-2)*(n-3)*…*2*1

For plus, fact and mult operations, if the result contains more than MAX_DIGITS
digits, return error code CERR_OUTOF_BOUND.

CSc352 HW-3

Page 3 of 6

For minus operation, if the num1 is less than num2, return error code
CERR_OUTOF_BOUND, because we don’t handle negative huge integers in this
assignment.

For div operation, we discard the reminder part in dividing operation. For example:
for a calculation “10 / 3”, the result should just be “3” and the reminder 1 is discarded.

(4) Write the main User Interface (UI) part of the high-resolution calculator in file
calculator.c now. Your main() function will be in this file. The UI is just an infinite
loop: read the operator from the stdin, read the operands for the operator (for “!”
operation, there is only one operand) from the stdin, call the specific op_xxx()
function to do the calculation and print out the result or error message. Repeat this
sequence of actions until the user specify “@” as the operator. “@” as an operator
will make the program terminate by returning 0 in the main() function. You may
assume all the operators you got from stdin are one of +, -, *, /, ! or @.

In this infinite loop, whenever a function call returns status (for example, we store the
return value in an int variable ret) not equal to CERR_OK, print the error message
by calling print_errmsg(ret, “my msg”), then execute statement “continue;” to start
over instead of exiting the whole program. (You may notice, here we fixed the user
message for the second parameter of print_errmsg() function to be constant “my
msg”. I just design the API like this to show in many real world C projects, the error
message facility usually provide a way of adding the users’ own message in the
diagnostic output. We fix it here as “my msg” just for the convenience of grading.)

(5) Finally, arrange all your files for this project in the same directory and compile
then into one program. You have the files showed in the table below. And for each
file, I list the functions you have to implement in that file. Besides the required
functions in each file, you can also define and implement your local helper functions,
which should be defined as static.

Filename Contents in the file
numio.h Constants and function prototypes for integer input and output

related use.
numio.c Definition of integer input and output related functions:

read_num(), print_num().
numerr.c Definition of error handling functions: print_errmsg().
numcalc.h Constants and function prototypes for integer calculation related

use.
numcalc.c Definition of integer calculation related functions: op_plus(),

op_minus(), op_mult(), op_div() and op_fact().
calculator.c UI part, including main() function.

The header file dependence is like this:

CSc352 HW-3

Page 4 of 6

Then compile and link the program by either of the following methods:

Method 1:
gcc –c numio.c numerr.c numcalc.c calculator.c –I/home/cs352/summer03/assignments/hw3
gcc –o calculator numio.o numerr.o numcalc.o calculator.o

Method 2:
gcc –o calculator numio.c numerr.c numcalc.c calculator.c –I/home/cs352/summer03/assignments/hw3

Then you will get an executable “calculator”.
A sample run of this program is as the following:

(6) Error message table:
Error Code Message to be printed

by print_errmsg()
Description about the
error

CERR_OK “OK” The function is executed
correctly.

CERR_NUM_NULL “Null pointer” The variable representing a
char array is a NULL pointer.

CERR_DIG_ILLEGAL “Illegal digit” There is an illegal digit (some
number that is less than 0 or
greater than 9 or a non-digit
character) in the char array
representing the huge integer.

CERR_LEN_ILLEGAL “Illegal number length” The huge integer has illegal
number of digits (either less
than one or greater than
MAX_DIGITS).

CERR_OUTOF_BOUND “Number out of boundary” Either the calculation result
has more than MAX_DIGITS
digits, or an operation is going
to produce a negative result.

Any other value “Unknown error”

numio.h numcalc.h

numio.c numcalc.cnumerr.c calculator.c

% calculator
+ 11111 22222
=33333
* 22a 3333
Illegal digit:my msg
! 10
=3628800
@
%

CSc352 HW-3

Page 5 of 6

2. Determinant of the square matrix:

In this problem, you are going to write a C program in a single file det.c, which
calculate the determinant of a given square matrix (which has the same number of
rows and columns). Please refer to the following webpage for a description about
matrix and matrix determinant:
http://easyweb.easynet.co.uk/~mrmeanie/matrix/matrices.htm (PS: please notice that
in the Determinant section of this webpage, the first example of calculating the

determinant of a 2*2 matrix is wrong. It should be cbad
dc
ba

−=det)

The input is from the stdin and is in the following format:

The leading “2” means this matrix is of size 2 by 2 (2 rows and 2 columns). Then the
following is the matrix. There is a space between every 2 elements. If he size is not in
[1, 50] or if the following matrix is not correct (there are missing or extra rows or
columns), print “Wrong input\n” into stderr and “exit(1)”. You may assume all the
inputs are integers and there won’t be letters, strings or other symbols.

Otherwise, calculate the determinant of the given square matrix and print it out. In the
above example, the output should be like:

After printing the result, “return 0;” from main().

3. Hanoi Tower:

Please refer to the link http://www.cut-the-knot.org/recurrence/hanoi.shtml for a
description of the “Hanoi Tower” game. You are going to write a C program hanoi.c.
It takes a single integer n as input from the stdin. n should be in [1, 64], otherwise
print “Out of boundary\n” into stderr and “exit(1);”. You may assume the input is
always an integer and there won’t be letters, strings or other symbols.

If the input n is correct, we begin the game. Assume there are n plates on pole A and
you are going to print the steps to move all those plates to pole C with the aid of pole
B. For example: n=3, you are going to print:

2
3 2
5 6

8

A C
A B
C B
A C
B A
B C
A C

CSc352 HW-3

Page 6 of 6

In each row, the first letter is the source and the second letter is the target. For
example “A C” means “moving the top plate on pole A to pole C”.

When you test or debug your program, please use small values for n at the very
beginning. Otherwise you will be occupying a large portion of the processor on
lectura, since this program is quite CPU intensive. If that happens, people working on
lectura will be beating you ☺

About compilation:

Read the information about gcc command line options about preprocessor control at
http://gcc.gnu.org/onlinedocs/gcc-3.3/gcc/Preprocessor-Options.html#Preprocessor%20Options

You don’t have to copy the provided header files to your own directory. In stead,
please do the following things:
� Use #include <numio.h> and #include <numcalc.h>, instead of #include

“numio.h” and #include “numcalc.h”.
� When compile with gcc, specify –Ipathname option, where pathname point to

the hw3 directory in the cs352 home where the provided headers are stored. In
this assignment pathname is /home/cs352/summer03/assignments/hw3. With this
–Ipathname option, the pathname is added to the header file search list.

An advantage of doing this is that you will always use the most updated header files.
You don’t have to always copy header files to your own directory. It’s also easy for
us to change constants in the header file when grading. So:
� Always use the constants defined in the provided headers by including the header

files.
� Do NOT use magic numbers in the program if there is a correspondent macro

constant defined in the provided header files.
� For those macro constants we defined in the provided header files, do NOT

redefine them in your own files.

