Introduction to C
Programming

™

Alon Efrat

Computer Science Department
University of Arizona

&1 Outline

= Background to C

$ Background about C

= Originally developed by Brian Kernighan and
Dennis Ritchie to write UNIX (1973)

= Intended for use by expert programmers to
write complex systems

= Between the low level languages (e.g.
assembly) and high level languages (e.g.
BASIC)

= Powerful, flexible, efficient.

% Standardization & Productization

= 1st C standard was K&R, 1978
= Standardized by ANSI committee in 1989
= Extended features by vendors
= Microsoft C
= Borland C
= POSIX Standards
= Gnu C Library

= Next Step: C++ and OOP

*_ Outline

= How to develop a C program

a Developing C Programs
0

#include <stdio.h>
main
{

printf(“hello world\n");
i

ello.c
Source File

% emacs hello.c

% emacs hello.c
% gcc hello.c

Translator

g

01000110
01110100
10001000
11110010
a.ou
Executable

% emacs hello.c
% gcc hello.c

% a.out

hello

%

§ More Detail in the Translator

=
D
o

C

Remove comments.

Ao Include header files.
P! Apply macros.
3 Ec
i B Transform the C source code into
C Compiler assembly code.
he{'o.s -
I Transform the assembly code into
I@ object files (binary). Almost there!
hello.o Link all the object files and the
E 8 shared libraries needed to form
Linker the final executables. Done!
N B Translator|
a.out

§ Larger C Project

menu c book c checkln _out.c recelpt.c
System compile
Libraries menu 0 book 0 checkln _out.o recelpto

~\

hotel

link

$ Outline

= Basic Concepts

$ Our First C Program

#include <stdio.h>
main()

printf(* hello, world\n");

= Written in a strict syntax; the compiler will check
the syntax error
= A program consists of:
= Global variables, and
= Functions
= Local variables, and

= Statements: specify computing operations to be done
e.g. assignment, loop, function call, etc.

* Syntax & Semantics

= Syntax: how the characters and words of a
program must be put together. It is like the
spelling and grammar of the programming
language.

= Semantics: what the program means, i.e. what it
does.

= “Syntactically correct” does not necessarily mean
“semantically correct”

= Compiler will give messages on syntax errors

= Fixing semantic errors are far more difficult than
fixing syntactic errors

* Line-oriented C Code Format

= Line-oriented: newline = space

= Code 1:
#i nclude <stdio.h> void main(void) { printf(“Hello
Vorldin");}
= Code 2:
#include <stdio.h>
void
main(
void) { printf(
“Hello World\n”
)i}

= Keep a good indentation style: make your life easier!

i C.vs. Java

= Cis procedure based; Java is object-oriented

= A C program is a collection of functions and
global variables; Java wraps everything into
objects

= C doesn’'t have nested function definitions;
Java allow nested class definitions

= C has pointers; Java has handles but
disallow the direct pointer arithmetic

i C .vs. Java (cont.)

= C programs are compiled into machine code;
Java programs are compiled into byte code

= C programs need to be recompiled on
different platforms; Java “compile once, run
everywhere”

Hello.c Hello.java

Hello.class

a.out ‘ JVM

Machine

i Variable

= Store the data that you operate on
= Different types: integer, character, pointer, etc.
= Variable Name
= Made up of: letters (including “_") and digits
= Must begin with a letter
= Can't be C keywords
= Different scope:
= Global variables: defined outside of functions
= Local variables: defined inside of functions
= External variables: known to different modules
= Declaration: i nt a;
= Assignment: a = 10;
= Reference: b = a+1;

i‘ Function

= Usually designed to accomplish a single job
= A function consists of:
= Local variables to store data, and

= Statements specifying the computing operations
to be done

= Building blocks for a whole program

= A special function “main()”, all programs’
execution starts from main(). OS makes this
happen.

$ Function (cont.)

= Function prototype: int mult2(int a);
Specifying the existence of function,
can appear many times.

Function definition: <see next slide>

Function call: b = mult2(a);

Prototype helps the compile-time error checking

= “#include <stdio.h>"is a preprocessor directive,
inserting the file stdio.h in the current place

= stdio.h has the prototypes of standard IO functions.

= Including stdio.h here is for function call checking, picking
out the wrong calls during the compile time

§ Function Pefinition

int mult2(int a) eFunction header

{ *Return type
int result; .

«Function name

result = a + a;

return result: *Formal parameters
} *Function body (between { and })
*Variable declarations

«Statements: usually end
with «;”

§ Block

= Braces { and } and the group of declarations
and statements inside the braces form a
compound statement, or block.

= A block is syntactically equivalent to a single
statement.

= Examples:
= Function body
= Blocks in the if, else, while and for statements

&1 Outline

= Study Our First C Program

$ Back to Our First C Program

#include <stdio.h>
main()

printf(* hello, world\n");

= Compile and run the program:
% gcc hello.c

% a. out
hello, world
%

21

$ #include___ <stdio.h>

= During the “Pre-processor” phase, this line
will be replaced by the contents of the file
stdio.h

= “stdio” means “Standard 1/0”

= stdio.h has the declaration of functions like
printf(), getc(), etc.

$ printf(“ h__eIIo, world\n");

= Print the desired information on the standard output
(usually our terminal screen)

= “printf” is the name of the function

= “hello, world\n” is the only parameter (of type character
array) passed to the function, as the control string.

= #include <stdio.h> include the header file, in which the

prototype of the function “printf” is specified (will talk about
prototype in detail later)

23

$ printf examples

= printf(“\nThe sum of %d plus %d is %d\n", 4 9 ,13);
= Output: The sum of 4 plus 9 is 13
= int i=4, j=9

= printf(“\nThe sum of %d plus %d is %d\n", i, j, i+);
= Same output

$ printf()

= %d - decimal number (e.g. 17)

= %f - floating point (e.g. 3.1415)

= %C - single char (e.g. H)

= %s - a string (unlimited length, e.g. “hello world”

= %% - the character %
Specifying width: %3d, %6.2f

25

& Escape Sequence

= Provide a general and extensible mechanism
for representing hard-to-type or invisible
characters. It is a SINGLE character.

= \n: newline character
n \t @
= \b: backspace

= \": double quote
= \\: backslash itself

*\ Outline

= Tasting Some Sample C Programs

27

* More Examples 1 (printf)

/* Multiple printf's give the same result */
#i ncl ude <stdio. h>
mai n()
{
printf(“hello, ");
printf(“world”);
printf(“\n");
}

$ More Examples 2 (loop, functions)

/* Calculate the n"i, where nis 2 and -3, i is fromO to 9 */
#i nclude <stdio.h>

int power(int m int n); /* Prototype */

mai n()

int i;

for (i=0; i<10; ++i /* loop — run fromi=0 to i=10 */
printf(“%d, %d, %d\n", i, power(2, i), power(-3, i));

return 0;

}

int power(int base, int n) /* calculate base*n */

int i, p=1; /* note that | is a local variable */
for (i=1; i<=n; ++i) /* runs

p=p*base;
return p;

}

29

$ Output of this program

~

= 0, 1, 1
= 1, 2, -3
= 2, 4 9
= 3, 8 -27
= 4, 16, 81
= 5 32, -243
= 6, 64, 729
« 7, 128, -2187
= 8, 256, 6561
= 9, 512, -19683

& More Examples 3 (nested loops) $ Output of ex3
/* Calculate the multiplication table */ - | 1| 2| 3| 4| 5| 6| 7| 8
#define MAX 10
#ihclude <stdi 0. h> l| 2| 4| 6| 8|].Ol 12| 14
0 =1 3| 6 9] 12| 15| 18
forf(i=(1;_LvaX:“/A;+f?_{ | = | 4] 8] 12] 16| 20
prlim}({wad",i’*;); = | 5] 10| 15| 20
for (j=0; j<i; j++)
printf(" N8 .l 6| 12| 18
printf("\n"); [] | 7| 14
L -] 8

$ More Examples 4 (branch)

/* Pick the scores that are A's and print themout */

#i ncl ude <stdio. h>
main ()
{
int i, score[]={96, 85, 100, 83, 35, 73};
/*An array initialized to contain these nunbers*/

/*The size of the array is determned by the num
of elements */

for (i=0; i<6; i++)
if (score[i] > 90)
printf(“% --- An", score[i]);

33

