Point location and
* Persistent Data structures

Alon Efrat
Computer Science Department
University of Arizona

i First problem

= Given a subdivision of the plane into
triangles, create a data structure, such that
given a query point, we can find in which

triangle it lies.
D
=

Too hard ;-(

AA

i A question that we would solve...

= A simpler problem
Given a set of horizontal
segments, create a data
structure, so that given a

2 query point g, we can answer
1 quickly which segment is
T 3 ;
L answerz . vertlcally above the query
q 5 — = point

°
9 Answer:3
6 @
7 1
o Answer:6
q

i A really really really easy question...

= Same question, but for a set of horizontal segments, all
having the same x-coordinates.

(4,20) (18,20)

(4,16) (18,16)
(4.13) & Answer: 16 (18,13)

[CH) (18,7)

For simplicity, we use
the y-coordinate of a segment
as the "name" of the segment

i Solution: Skip list

Solution: Store the y-coordinates of the segments in a
SkipList.
Once a query point (x,y) is given, perform succ(y)

(4,20) (18,20)

(4,16) (18,16)
)(10,14;*> Answer: 16 (18,13)

4,13

4.7 (18,7)

o (7 () (i) (o)

Different question

n a city, people are born, and die.

= Each person is recognized by its height (no two people
have the same height). We denote height by the letter y,
and (birth/death) date by x.

= Need a DS that would find Find(x,y) - who was the person
that was alive at date x, and her/his height is y (or if not
exists), larger and as close as possible to y.

Height y=6'2 F_c.bq_ .

. 5
y-axis I

x-axis Born date Death date
x1=1/1/1900 x2=10/2/1998 6

Different problem

How to delete an element from the skipList, without destroying it?
Assume we want to delete(71)
Idea #1: Copy the whole SkipList, and delete - too much memory

Idea #2: Copy the path that changes during the deletion, then
modify this path.

Level 3 .
Level 2 .

Level 1 .~.~&

Virtually copying SL

To create the new virtual copy:

Start from 7OP of the old SL, create a new top, named 7op2
Do find(x) /* xis the key to be deleted */

Copy and connect every element along the search path.

Delete x from the SL pointed to by 7opZ2 /*it does not affect
the SL pointed to by 7op1 - only blue pointers change */

» Need to be a bit careful in the deletion (next slide)

| evel 3

@
®
(CHORTKD

Level 2

G
s @@ @-

* Need a little new function

= Follower(SL* sl, int x , int d){
= // Returns a pointer to the smallest cell at level
= // d, with key strickly greater than x

= P=sl->top; int dl=sl -> 1| ;
= while(1) {
= While(p->key <x) p=p->nxt;
w if(dl==d) returnp;

= assert(p->down != NULL) ; //add #include<assert.h>
= p=p->down;
= dl--)

=}

Virtually copying SL

To delete 37 -

We copy as before the search path (brown path)

In each level d at which appear, we delete it using the command
p->nxt = follower(sl, 37, 3)

| evel 3

Level 2

e @@ @-

Something fishy

= But it should not be.

= The new SL (lets call it SL(2)) is a perfectly
legal SL. It has the same keys of SL(1),
excluding 71 that was deleted.

Level 3

Level 2

Level 1 .~.~.~

Inserting a key

How to insert a key into the skipList, without destroying it ?

Same idea: Assume we want to /nsert(75)

= Do search(75).

= Copy every element that the search goes through.
= Let Top2 point to the top of the list.
L]

Insert(72) into the SL pointed to by 7opZ2 - only blue
elements change

| evel 3

Level 2

Level 1 .~Q~Q~

Again - a brandnew SL

= Note - again we obtained a perfectly legal SL.
= We have two SkipLists - one contains 73, the other
one does not contain 73.

= We can now insert/delete elements into/from SL(2)

= Remember: to access a SL, one only need the root
- the top.

e ese

@
@
LX)

How much space

= We saw that the average length of a path is
O(log n), so each insert/delete takes O(log n)
time and space

Back to the birth/death question

= In a city, people are born, and die.

= Each person is recognized by its height (no two people
have the same height). We denote height by the letter y,
and (birth/death) date by x.

= Need a DS that would find Find(x,y) - who was the person
that was alive at date x, and her/his height is y (or if not
exist), larger and as close as possible to y.

Height y=6'2 g 3

5

x-axis Born date Death date
x1=1/1/1900| |x2=10/2/1998 15

* And remembering that this one is easy...

= All births/deaths start at the same date
= Call this problem the same-population problem
(no births no deaths)

(4,20) (18,20)

(4,16) (18,16)
(4.13) & Answer: 16 (18,13)

[CH) (18,7)

Easily solved via standard skip list

i) ())

* We can solve this one by...

= We split the time axis into time-intervals.
{316} 52’3,5} *We split the time at each

birth or death.

*During the same interval,
no birth or death occurs.

*We create the SL of one

6 interval by inserting (birth)
or deleting a segment
(person) from the SL of

» the previous interval

Time axis

* How to access the different SL ?

So we obtain 2n+1 SkipLists,
(one for time intervals).

The roots of all different SL aré

Stored in a new SL (call it dates
SL), sorted by date.
1
3 The SkipLists of the people are
i 4 called People SL, sorted
5 by height.
I
Time-axis

* How to access the different SL ?

Alg: Create an empty people-SL
Create the dates-SL, and insert each
birth/death event.

Scan these event (in increasing dates),

and for each event (date) do
Insert/delete (virtually) into/from the
. - people SL.
2 Link the TOP of the new people-SL
L il 4 with the currant key of the
& dates-SL
Time-axis ‘

19

* Overall data structure

= Dates SL (only lower level shown)

A top pointer

A top pointer

Each cell in the lower level
of the dates SL points to the
People SL of the time interval
ending at this cell

n
»

Time axis

20

* Answering a query

A query point (x,y) - which segment is
vertically above the point (x,y)

Use the people SL to find the
time interval containt x, and the
corresponding people SL (use
successor(x) operation in Dates
SL).

A top pointer

Perfrom successos(y) operation
in this people SL to find the
segment above (X,y).

Time axis 2

