
1

Alon Efrat
Computer Science Department

University of Arizona

Point location and
Persistent Data structures

2

First problem

� Given a subdivision of the plane into
triangles, create a data structure, such that
given a query point, we can find in which
triangle it lies.

1

2

3

4

5

6

7
8

9

Too hard ;-(

3

A question that we would solve…

� A simpler problem

1

2

3
4

5

6
7

Given a set of horizontal
segments, create a data
structure, so that given a
query point q, we can answer
quickly which segment is
vertically above the query
point

q

q
q

Answer:6

Answer:3

Answer:1

4

A really really really easy question…

� Same question, but for a set of horizontal segments, all
having the same x-coordinates.

For simplicity, we use
the y-coordinate of a segment
as the "name" of the segment

(4,20) (18,20)

(4,16) (18,16)

(4,13) (18,13)

(4,7) (18,7)

Answer: 16

5

Solution: Skip list

(4,20) (18,20)

(4,16) (18,16)

(4,13) (18,13)

(4,7) (18,7)

Answer: 16

Solution: Store the y-coordinates of the segments in a
SkipList.

Once a query point (x,y) is given, perform succ(y)

7 13 16 20 MAXMIN

(10,14)

6

Different question
� In a city, people are born, and die.
� Each person is recognized by its height (no two people

have the same height). We denote height by the letter y,
and (birth/death) date by x.

� Need a DS that would find Find(x,y) - who was the person
that was alive at date x, and her/his height is y (or if not
exists), larger and as close as possible to y.

2

3
4

5

6

Born date
x1=1/1/1900

Death date
x2=10/2/1998

Height y=6'2

x-axis

y-axis

q

2

7

Different problem
How to delete an element from the skipList, without destroying it?
Assume we want to delete(71)
Idea #1: Copy the whole SkipList, and delete - too much memory
Idea #2: Copy the path that changes during the deletion, then

modify this path.

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top

-1

-1

-1 1

1

1-
-1 21 37

37

37

Top 2

8

Virtually copying SL
� To create the new virtual copy:
� Start from TOP of the old SL, create a new top, named Top2
� Do find(x) /* x is the key to be deleted */
� Copy and connect every element along the search path.
� Delete x from the SL pointed to by Top2 /*it does not affect

the SL pointed to by Top1 - only blue pointers change*/
� Need to be a bit careful in the deletion (next slide)

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top1

-1

-1

-1 1

1

1--1 21 37

37

37

Top 2

9

Need a little new function

� Follower(SL* sl, int x , int d){
� // Returns a pointer to the smallest cell at level
� // d, with key strickly greater than x

� P=sl->top; int d1=sl -> l ;
� while(1) {

� while(p->key < x) p = p->nxt ;
� if(d1 == d) return p ;
� assert(p->down != NULL) ; //add #include<assert.h>
� p = p -> down ;
� d1-- ;

� }

10

Virtually copying SL
To delete 37 -
We copy as before the search path (brown path)
In each level d at which appear, we delete it using the command

p->nxt = follower(sl, 37, 3)

7 14 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top1

-1

-1

-1 1

1

1--1 21 37

37

37

Top 2

21

-1

Top 3

11

-1 21 37

37

37

Top 2

Something fishy
� But it should not be.
� The new SL (lets call it SL(2)) is a perfectly

legal SL. It has the same keys of SL(1),
excluding 71 that was deleted.

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top1

-1

-1

-1 1

1

1-

12

Inserting a key
How to insert a key into the skipList, without destroying it ?
Same idea: Assume we want to insert(75)
� Do search(75).
� Copy every element that the search goes through.
� Let Top2 point to the top of the list.
� Insert(72) into the SL pointed to by Top2 - only blue

elements change

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top

-1

-1

-1 1

1

1-

73

-1 21 37

37

71

Top 2

71

3

13

Again - a brandnew SL
� Note - again we obtained a perfectly legal SL.
� We have two SkipLists - one contains 73, the other

one does not contain 73.
� We can now insert/delete elements into/from SL(2)
� Remember: to access a SL, one only need the root

- the top.

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top

-1

-1

-1 1

1

1-
-1 21 37

37

71

Top 2

71

73

14

How much space
� We saw that the average length of a path is

O(log n), so each insert/delete takes O(log n)
time and space

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top

-1

-1

-1 1

1

1-
-1 21 37

37

71

Top 2

71

73

15

Back to the birth/death question
� In a city, people are born, and die.
� Each person is recognized by its height (no two people

have the same height). We denote height by the letter y,
and (birth/death) date by x.

� Need a DS that would find Find(x,y) - who was the person
that was alive at date x, and her/his height is y (or if not
exist), larger and as close as possible to y.

2

3
4

5

6

Born date
x1=1/1/1900

Death date
x2=10/2/1998

Height y=6'2

x-axis

y-axis

q

16

And remembering that this one is easy…

� All births/deaths start at the same date
� Call this problem the same-population problem
(no births no deaths)

Easily solved via standard skip list

(4,20) (18,20)

(4,16) (18,16)

(4,13) (18,13)

(4,7) (18,7)

Answer: 16

7 13 16 20 MAXMIN

17

We can solve this one by…

� We split the time axis into time-intervals.

1

2

3
4

5

6
7

Time axis

•We split the time at each
birth or death.

•During the same interval,
no birth or death occurs.

•We create the SL of one
interval by inserting (birth)
or deleting a segment
(person) from the SL of

the previous interval

{3,6} {2,3,6}

18

How to access the different SL ?

Time axis

So we obtain 2n+1 SkipLists,
(one for time intervals).

The roots of all different SL are
Stored in a new SL (call it dates
SL), sorted by date.

The SkipLists of the people are
called People SL, sorted
by height.

1
2

3
45

6
7

4

19

How to access the different SL ?

Alg: Create an empty people-SL
Create the dates-SL, and insert each
birth/death event.

Scan these event (in increasing dates),
and for each event (date) do

Insert/delete (virtually) into/from the
people SL.

Link the TOP of the new people-SL
with the currant key of the
dates-SL

Time axis

1
2

3
45

6
7

20

Overall data structure

� Dates SL (only lower level shown)

Time axis

1
3

5

7

Each cell in the lower level
of the dates SL points to the
People SL of the time interval
ending at this cell

1b 5b 7b 3b 7d 1d 5d 3d

A top pointerA top pointer

21

Answering a query

A query point (x,y) - which segment is
vertically above the point (x,y)

Time axis

1
3

5

7

Use the people SL to find the
time interval containt x, and the
corresponding people SL (use
successor(x) operation in Dates
SL).

Perfrom successos(y) operation
in this people SL to find the
segment above (x,y).

1b 5b 7b 3b 7d 1d 5d 3d

A top pointer

