
1

Stanley Yao
Computer Science Department

University of Arizona

Make / Makefile

Csc352-Summer03, Stanley Yao 2

Difficulty

� A large C project
� 30 source directories
� 50 files in each directory on average

� Difficulty 1: Please compile all the files in all the
directory and then link all object files into an
executable

� Difficulty 2: I change only 10 files scattered in 5
directories. Then re-compile the files and re-link
the object files.

� Difficulty 3: Change a .h file. Only the .c files that
includes the .h file needs to be re-compiled and re-
linking is also needed.

Csc352-Summer03, Stanley Yao 3

Difficulty (cont.)

� Difficulty 4: Installing a big software requires
copying 30 files of different categories (executables,
libraries, header files, man pages, docs, etc.) into
several different locations

� Difficulty 5: After installing, you suddenly want to
install the software to a different location in the file
system.

� Difficulty 6: Uninstalling a big software requires
deleting lots of files in different locations too.

� Etc.
�� We need to make all these automatic!!!We need to make all these automatic!!!

Csc352-Summer03, Stanley Yao 4

make

� Control the build of large projects automatically
� Minimize the set of files to be compiled
� With the aid of make, you can handle compile, link,

install, uninstall, test, etc.

makeMakefile

make command line

All the files of the project

Csc352-Summer03, Stanley Yao 5

Basic construct of Makefile

� Makefile consists of a collection of
make rules:
target: src1 src2 ...

<tab>command1

<tab>command2

...

� If any of the files “src1”, “src2”, ... are
updated more recently than the current
“target”, “target” will be rebuilt by the
“command1”, “command2”, ...

Csc352-Summer03, Stanley Yao 6

Basic make command

� make target
� Only build target defined in the Makefile

� make target1 target2 …
� Build target1, target2, … defined in the Makefile

� make
� Build the first target defined in the Makefile
� We usually write a helper “all” target as the first target depending on

a set of targets we really want to build when calling “make”
� make –n [target list]

� No execution mode.
� make –f file

� Specify the makfile explicitly

2

Csc352-Summer03, Stanley Yao 7

Variables

� No need to declare variables, assignment
does the declaration

� Assignment
� CC = gcc

� Reference
� $(CC) hello.c

Csc352-Summer03, Stanley Yao 8

Variables (cont.)

� Built-in Variables
� $@: current target
� $<: first prereq
� $^: all prereq

� Variable Substitution
� SRCS = $(OBJS:.o=.c)

Csc352-Summer03, Stanley Yao 9

Old-fashioned Suffix Rules

.c.o:
$(CC) -c $(CFLAGS) -o $@ $<

� Suffix Rules are obsolete because pattern
rules are more general and clearer .

Csc352-Summer03, Stanley Yao 10

Pattern

� Pattern
%.o : %.c

$(CC) -c $(CFLAGS) $< -o $@

� Build-in Rules: predefined in make
%.o : %.c

$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

� Variables Used by Built-in Rules
� CC: Program for compiling C programs; default `cc'.
� AR: Archive-maintaining program; default `ar'.

� Additional Variables Used by Built-in Rules
� CFLAGS: Extra flags to give to the C compiler.

Csc352-Summer03, Stanley Yao 11

How Patterns Match

� A Pattern: prefix+%+suffix (where both
prefix and suffix may be empty)

� Pattern matching is similar to wildcard
matching (% is like wilecard *)

� The text between prefix and suffix is called
stem. (e.g. test.o matchs %.o pattern, test
is stem)

� Prereq’s are transformed by substituting the
stem for %

Csc352-Summer03, Stanley Yao 12

How Patterns Match (cont.)
%.o : %.c

$(CC) -c $(CFLAGS) $< -o $@

mod1.o : %.c
$(CC) -c $(CFLAGS) $< -o $@

mod1.o : mod1.c
$(CC) -c $(CFLAGS) mod1.c -o mod1.o

3

Csc352-Summer03, Stanley Yao 13

Calculating Dependencies

� Include files
� Large number of includes
� Nested includes

� “makedepend” is a program that calculates
the header file dependencies for the
specified .c files, and appends them to the
end of the Makefile.

Csc352-Summer03, Stanley Yao 14

Further Automation

Type commands:
gcc –c foo.c

“make” tool

automake & autoconf
automake: creates the template Makefile.

autoconf: creates a program called
configure that the user runs, and which
creates a tailored Makefile from a
template according to the environment,
platform and user configuration options.

Csc352-Summer03, Stanley Yao 15

Acknowledgement

� John H. Hartman, Classnotes for Csc352-
Spring03, CS Dept., University of Arizona,
2003

� Free Software Foundation, GNU make
Manual (version 3.80), December 25, 2002
http://www.gnu.org/manual/make-3.80/

� Brian W. Kernighan, Dennis M. Ritchie, The
C Programming Language (2nd Ed.), Prentice
Hall, 1988

