! Tries - intro

Alon Efrat
Computer Science Department
University of Arizona

i A data-structure for a set of words

All Words over the alphabet {a,b,..z}.

In the slides, let say that the alphabet is only {a,b,c,d}
S — set of words ={a,aba, a, aca, addd}

Need to support the operations

. insert(w) — add a new word w to S.
. delete(w) — delete the word w from S.
. find(w) iswin S ?

*The time for each operation should be O(k), where k is
the number of letters in w.

*Usually each word is associated with addition info —
not discussed here.

i Trie (Tree+Retrive) for S

= A tree where each node is a struct consits

= struct node {
= Struct node * ar[4] ;
= char flag ; /* 1if a word ends at this node. Otherwise 0 */

}

ar

a b c d flag

i A trie - example
parfb-a]

The label of an edge is the label of

.\ a b¥ d the cell from which the edge exits
0
a b d
abcd abc d1 abcd
b This node correspond.
to db (not in S, since
flag=0)
S={a,b,dbb} abcd
0
b
abcd

EEE Corresponding to dbb 4




p=root; /=0

While(1){

» If 5/ij == \0’ then return the flag of p;

= If the entry of p correspond to s///is NULL
return false;

= Set pto be the node pointed by this entry,

and set /++;
H

= Try to perform find. If runs into NULL
pointers, create new nodes along the way.

= The flag fields of all new nodes is 0.

= Set to 1 the flag of the node corresponding
tos.

= Find the node p corresponding to s.
= Set the flag field of pto 0.

= if pis dead (I.e. flag==0 and all pointers
are NULL ) then free(p), set p=parent(p)
and repeat this check.




