
Page 1

CSc 372, Fall 2006

Assignment 3

Due: Thursday, October 5 at 23:59:59

Problem 1. (7 points) longest.rb

Write a Ruby program that reads lines from standard input and upon end of file writes the longest line to
standard output.  If there are ties for the longest line, longest writes out all the lines that tie.  If there is
no input, longest produces no output.

Don't overlook the restrictions below.

Examples:

% cat lg.1
a test
for
the program
here
% ruby longest.rb < lg.1
the program
%
% cat lg.2
xx
a
yy
b
zz
% ruby longest.rb < lg.2
xx
yy
zz
% grep ^o /usr/share/dict/words | ruby longest.rb
overindividualistically
overintellectualization
% ruby longest.rb < /dev/null
% ruby longest.rb < /dev/null | wc -c
0
%

Restrictions:
• No comparisons, such as <, ==, !=, <=>, and String#casecmp may be used.

• No arithmetic operations, such as addition and subtraction, may be used.
• The only datatypes you may are use are integers and strings.  In particular, you may not use

arrays.

You are permitted to employ the comparison that's implicit in control structures.  For example, statements
like

while x do ... # OK
if f(x) then ... # OK

are permitted.



Page 2

However, a statement such as

while x > 1 do # NOT PERMITTED!

is not permitted—it contains a comparison (x > 1).

Problem 2. (7 points) seqwords.rb

For this problem you are to write a Ruby program that reads a series of words from standard input, one per
line, and then prints lines with the words sequenced according to a series of specifications, also one per line
and read from standard input.

Don't overlook the restrictions below.

Here is an example with four words and three specifications:

% cat sw.1
one
two
three
four
.
1
2
3
.
3
2
1
1
2
3
.
4
1
% ruby seqwords.rb < sw.1
one two three
three two one one two three
four one
%

Note that lines containing only a period (.) end the word list and also separate specifications.  For output,
words are separated with a single blank.  Here's another example:

% cat sw.2
tick
.
1
.
1
1
% ruby seqwords.rb < sw.2
tick
tick tick
%



Page 3

Assume that there is at least one word and at least one sequencing specification.  Assume that each
sequencing specification has at least one number.  Assume that all entries in the sequencing specifications
are integers and in range for the list of words.  Assume that words are between 1 and 1000 characters in
length, inclusive.  Because periods separate specifications, the input will never end with a period.

Restriction: The only types you may are use are integer and string.  In particular, you may not use
arrays.

Problem 3. (12 points) minmax.rb

Write a Ruby program that reads lines from standard input and determines which line(s) are the longest and
shortest lines in the file.   The minimum and maximum lengths are output along with the line numbers of
the line(s) having that length.

% cat mm.1
just a
test
right here
x
% ruby minmax.rb < mm.1
Min length: 1 (4)
Max length: 10 (3)
%

The output indicates that the shortest line is line 4; it is one character in length.  The longest line is line 3; it
is ten characters in length.

Another example:

% cat mm.2
xxx
XX
yyy
yy
zzz
qqq
% ruby minmax.rb < mm.2
Min length: 2 (2, 4)
Max length: 3 (1, 3, 5, 6)
%

In this case, lines 2 and 4 are tied for being the shortest line.  Likewise, several lines are tied for maximum
length.

If the input file is empty, the program should output a single line that states "Empty file":

% ruby minmax.rb < /dev/null
Empty file
%



Page 4

A final example, run on lectura:

% ruby minmax.rb < /usr/share/dict/words
Min length: 1 (9, 38, 40, 31876, 31878, 57049, 57051, 97101, 97103,
120349, 120351, 137529, 137530, 153807, 153809, 168908, 168909,
188220, 188221, 203658, 203660, 208077, 208079, 214569, 214571,
229273, 229277, 255473, 255475, 272147, 272151, 287461, 287463,
329584, 329586, 332857, 332859, 354559, 354561, 406354, 406355,
432266, 432268, 456211, 456213, 463230, 463232, 475253, 475254,
475885, 475887, 477707, 477708)
Max length: 45 (308762)
% ruby minmax.rb < /usr/share/dict/words | wc -l
2
%

Although output is shown wrapped across several lines, the first invocation above produces only two lines
of output, as shown when the output is piped into wc -l.

IMPORTANT: DO NOT assume any maximum length for input lines.

Extra credit: (5 points) You might be inclined to have some repetitious code in your minmax.rb, such as
an if-then-else that handles minimum lengths and a nearly identical if-then-else that handles maximum
lengths.  If your solution contains no repetitious code, you'll earn a bonus of five points.

To request inspection for this bonus, include this comment:

# Look! No repetition!

Even something like the following, albeit short, will be considered repetitious:

mins = [1]
maxs = [1]

(No, don't say mins = maxs = [1].  Both variables will reference the same list—a change in one will
be seen in the other.)



Page 5

Problem 4. (18 points) xfield.rb

For this problem you are to write a Ruby program that extracts columns of data from standard input. 
Command line arguments specify characters that delimit columns, the columns to extract, and strings to
separate extracted columns in the final output.

Here is an input file:

% cat xf.1
one     1   1.0
two     2   2.0
three   3   3.0
four    4   4.0
twenty  20  20.0
%

By default, fields are considered to be delimited by one or more spaces.  The English text and the real
numbers could extracted like this:

% ruby xfield.rb 1 3 < xf.1
one     1.0
two     2.0
three   3.0
four    4.0
twenty  20.0
%

Note that field numbering is 1-based—the first field is 1, not 0.

xfield can be used to reorder fields:

% ruby xfield.rb 3 2 1 < xf.1
1.0     1       one
2.0     2       two
3.0     3       three
4.0     4       four
20.0    20      twenty
%

xfield supports negative indexing, just like Ruby arrays:

% ruby xfield.rb -1 1 < xf.1
1.0     one
2.0     two
3.0     three
4.0     four
20.0    twenty
% ruby xfield.rb -1 1 2 -2 < xf.1
1.0     one     1       1
2.0     two     2       2
3.0     three   3       3
4.0     four    4       4
20.0    twenty  20      20
%



Page 6

If a field reference is out of bounds, the string "<NONE>" is used:

% ruby xfield.rb 1 10 2 < xf.1
one     <NONE>  1
two     <NONE>  2
three   <NONE>  3
four    <NONE>  4
twenty  <NONE>  20
%

By default, output fields are separated by a single tab.  (Use "\t".)  This default separator can be
overridden with the -s flag.  The separator must be at least one character in length.

% ruby xfield.rb -s... 1 3 1 <xf.1
one...1.0...one
two...2.0...two
three...3.0...three
four...4.0...four
twenty...20.0...twenty
%

An delimiter other than space can be specified with the -d option.  To extract login ids and real names
from /etc/passwd, one might use this:

% ruby xfield.rb -d: 1 5 < /etc/passwd | head
root    root
rootcsh Csh root on lectura
root    Root on Lectura
...lots more..

Note that the -s and -d options are single arguments—there's no space between -s/-d and the following
string.  The behavior of something like xfield -s ... -d = 1 is undefined.

Non-numeric arguments other than the -s and -d flags are considered to be text to be included in each
output line.  If a textual argument (not a number) falls between two field specifications (two numbers), that
text is used instead of the separator:

% ruby xfield.rb int= 2 ", real=" 3 ", english=" 1 < xf.1
int=1, real=1.0, english=one
int=2, real=2.0, english=two
int=3, real=3.0, english=three
int=4, real=4.0, english=four
int=20, real=20.0, english=twenty
%

Note the use of quotation marks to form an argument that contains blanks.  The shell strips off the
quotation marks so that the resulting arguments passed to the program do not have quotes.  See the
Implementation notes for xfield section below for more on this.

Here's that rule again:

If a textual argument (not a number) falls between two field specifications (two numbers), that text is
used instead of the separator:

Below are some more examples showing the rule in action.  A blank line has been inserted in this write-up



Page 7

after the output of each command.

% cat xf.2
one two three four

% ruby xfield.rb -s. 1 2 3 < xf.2
one.two.three

% ruby xfield.rb -s. A 1 2 3 B C < xf.2
Aone.two.threeBC

% ruby xfield.rb -s. A 1 B C 2 3 D  < xf.2
AoneBCtwo.threeD

% ruby xfield.rb -s. A 1 B C 2 D 3 E  < xf.2
AoneBCtwoDthreeE

Below are some cases that bring all the elements into play.  Trailing blank lines have been added for
readability.

% cat xf.3
xxxxxxxAxxxxxxxxxxBxC
DxExF
xG1xG2
xxxxHIxxxJKxxxLMNxxxOPQRSx

% ruby xfield.rb -dx -s- 1 2 3 < xf.3
A-B-C
D-E-F
G1-G2-<NONE>
HI-JK-LMN

% ruby xfield.rb -dx -s- -1 ... -2 -3 @ < xf.3
C...B-A@
F...E-D@
G2...G1-<NONE>@
OPQRS...LMN-JK@

% ruby xfield.rb -s/ -de 1 2 < xf.1
on/     1   1.0
two     2   2.0/<NONE>
thr/   3   3.0
four    4   4.0/<NONE>
tw/nty  20  20.0

If there are no input lines, xfield produces no output:

% ruby xfield.rb -s/ -d: 1 x 2 3 < /dev/null
%

If no fields are specified, an error is printed and execution terminates

% ruby xfield.rb
xfield: no fields specified
% ruby xfield.rb -d.
xfield: no fields specified
%



Page 8

To terminate execution, use code like this:

if ...no fields found... then
    puts "xfield: no fields specified"
    exit 1
end

The only error handling required for xfield is the "no fields" situation just mentioned.  In all other odd
situations, "the behavior is undefined",  which means any behavior is ok—run-time errors, curious results,
etc. are no problem if the user misuses xfield.

For example, xfield -s -d:, 1, is invalid for two reasons: (1) -s should be immediately followed
by a separator string, like -s, or -s///.  (2) -d should be followed by a single character, not two.

Implementation notes for xfield

gets vs. STDIN.gets

The gets method does a little more than simply reading lines from standard input.  If command line
arguments are specified gets will consider those arguments to be file names.  It will then try to open
those files and produce the lines from each in turn.  That's really handy in some cases but it gets in the
way for xfield. To avoid this behavior, don't use just line = gets to read lines.  Instead, do this:

while line = STDIN.gets do

This limits gets to the contents of standard input.

Delimiter-specific behavior in String#split

It astounds me but the fact is that split behaves differently when the delimiter is a space:

>> " a  b  c ".split(" ")
=> ["a", "b", "c"]

>> ".a..b..c.".split(".")
=> ["", "a", "", "b", "", "c"]

Command line argument handling

The command line arguments specified when a Ruby program is run are made available as strings in
ARGV, an array.  Here is echo.rb, a Ruby program that prints the command line arguments:

printf("%d arguments:\n", ARGV.length)
for i in 0...ARGV.length do # three dots goes to length -1
    printf("argument %d is '%s'\n", i, ARGV[i])
end

Execution:

% ruby echo.rb -s -s2 -abc x y
5 arguments:
argument 0 is '-s'
argument 1 is '-s2'



Page 9

argument 2 is '-abc'
argument 3 is 'x'
argument 4 is 'y'

Quotes and backslashes specified on the command line are processed by the shell.  In the usual case,
the program doesn't "see" them.  Example:

% ruby echo.rb int= 2 ", real=" 3 ", english="
5 arguments:
argument 0 is 'int='
argument 1 is '2'
argument 2 is ', real='
argument 3 is '3'
argument 4 is ', english='
% ruby echo.rb "     "        '  x '   \ \y\  ""
4 arguments:
argument 0 is '     '
argument 1 is '  x '
argument 2 is ' y '
argument 3 is ''
%

The shell does provide some mechanisms to allow quotes and backslashes to be transmitted in arguments:

% ruby echo.rb '"'  \\x\\
2 arguments:
argument 0 is '"'
argument 1 is '\x\'
%

Additionally, the shell intercepts the < and > redirection operators—the program never sees them:

% ruby echo.rb 1 2 3 < lg.1
3 arguments:
argument 0 is '1'
argument 1 is '2'
argument 2 is '3'
% ruby echo.rb 1 2 3 < lg.1 >out
% cat out
3 arguments:
argument 0 is '1'
argument 1 is '2'
argument 2 is '3'
%

The above examples were produced with a UNIX shell but you'll see the same behavior with Windows
Command Prompt.

BOTTOM LINE: Don't add code to your solution that attempts to process those shell
metacharacters—that's the job of the shell, not your program!

An admonishment/HINT about argument handling

I've seen many students turn command line argument handling into an incredibly complicated mess.  Don't
do that!  Here's an easy way to process arguments in xfield: Iterate over the elements in ARGV, the
variable that references an array of strings that holds the command line arguments.  If the argument starts



Page 10

with "-s" or "-d" then save the rest of the string for later use.  If argument.to_i produces
something other than zero, then add the value (as an integer) to an array that specifies what's to be printed
for each line.  If argument.to_i produces zero, add argument to that same array.  That's about 15
lines of simple code.

If the user specifies multiple -s and/or -d  arguments, just let the last one "win".  For example,

ruby xfield.rb -s1 -d: -d. -s2 -d, -s. 1

is equivalent to

ruby xfield.rb -d, -s. 1

A HINT on handling the textual argument/separator rule

One way to handle the textual argument/separator rule is to simply make a pass over the argument array
and if two consecutive numbers are encountered, put the separator between them, as if the user had done
that in the first place.  For example, if the separator is ".", the specification

1 3 x 4 x -2 1

would be transformed into

1 . 3 x 4 x -2 . 1

A hint in a hint: Think about representing the above specification with this Ruby list:

[0, ".", 2, "x", 3, "x", -2, ".", 0]

Note that there is a combination of integers and strings.

Problem 5. (2 points) answers.txt

Create a text file named answers.txt with answers to the following questions.  DO NOT submit a

Word document, PDF, rich text file, etc.—I want plain text.

     (a) (1 point) Ruby has two sets of logical operators:  &&, ||, !  and lower-precedence equivalents
and, or, not.  Present a brief argument in favor of one set, like most languages, or Ruby's choice
to provide two sets.

(b) (1 point) What's a good reason that Java provides s.charAt(n) instead of simply using s[n]?

(c) (1 point extra credit) Estimate how long it took you to complete this assignment.  Other comments
about the assignment are welcome, too—I appreciate all feedback, good or bad.

Deliverables

The deliverables for this assignment are these files: longest.rb, seqwords.rb, minmax.rb,
xfield.rb and answers.txt.  That list can be found on lectura in
/home/cs372/fall06/a3/delivs.

Use the turnin tag 372_3 to submit your solutions.



Page 11

Corrections and FAQs, late submissions, turnin, retests, etc.

Refer to the write-up for the first assignment for details on these topics and similar ones.

Miscellaneous

The output of your solutions should exactly match the output shown in this write-up.  The data files used in
the examples can be found in /home/cs372/fall06/a3 on lectura.

Keep in mind the point value of each problem; don't invest an inordinate amount of time in a problem
before you ask for help with it.  Remember that the purpose of the assignments is to build understanding of
the course material by applying it to solve problems—assignments are not intended to kill you.  Try to
think in terms of spending no more than seven hours on this assignment.  Seek the help of Poorna and me as
needed to meet your time budget.

As stated in the syllabus, a ten point homework problem corresponds to one point on your final average.

Restrictions not withstanding you can use any elements of Ruby that you desire but the assignment is
written with the intention that it can be completed easily using only the material presented on slides 1-76.

If you wish, you may incorporate code from lectures in your solutions.

Feel free to use comments to document your code as you wish but note that no comments, not even your
name, are required.

Solutions will be scored only on correctness and compliance with the cited restrictions.  If you're worried
about whether a solution complies with the restrictions, mail it to cs372-staff and we'll look it over,

assuming time permits.  (Avoid the last-minute rush!)  BE VERY CAREFUL that you don't get the
addresses mixed up and mail your solution to the whole class.

I hate to have to mention it but keep in mind that I don't give cheaters a second chance to waste everybody's
time.  If you give your code to somebody else and they turn it in, you'll both likely fail the class, and more. 
(See the syllabus for the details.)


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

