
CSc 372, Fall 2001, ML Examination Solutions; page 1

CSc 372, Fall 2001
ML Examination Solutions

Problem 1: (2 points each; 8 points total)

State the type of each of the following expressions, or if the expression is not valid, state
why. For example, the type of the expression 3+4 is int and the type of the expression
length is
'a list -> int.

(1, [2,3], 4.0)

int * int list * real

(reduce op+)

int list -> int

explode o rev o implode

Not valid – implode produces a string but rev requires an 'a list

[[[size]]]

(string -> int) list list list

Problem 2: (3 points each; 15 points total)

State the type of each of the following functions:

fun a (w,h) = w * h * 1

int * int -> int

fun f(x) = f(1) + f(2)

int -> int

fun f(L,(a,b)) = L = (a,b)

(''a * ''b) * (''a * ''b) -> bool

fun f(3,4) = (size,length)

int * int -> (string -> int) * ('a list -> int)

fun x y z = (y z) + z

(int -> int) -> int -> int

CSc 372, Fall 2001, ML Examination Solutions; page 2

Problem 3: (3 points each, 9 points total)

Edit or rewrite the following functions to make better use of the facilities of ML:

fun f(a,b,c) = [a-c, a+c]

fun f(a, _, c) = [a-c, a+c];

fun f(x,y) = x::y::1::2::[]

fun f(x,y) = [x,y,1,2];

fun f(n) = if n = 10 then true else if n = 5 then true else false;

fun f2(10) = true
 | f2(5) = true
 | f2(_) = false

Problem 4: (5 points)

Write the map function. The type of map is ('a -> 'b) -> 'a list -> 'b list

fun map F [] = []
 | map F (x::xs) = F(x)::(map F xs)

Problem 5: (7 points)

Create a function abslist(L) of type real list -> real list that produces a copy
of L with each value in the output list being the absolute value of the corresponding value in
the input list. Assume there is NO function like Java's Math.abs() to compute absolute
value–do the absolute value computation yourself.

fun abslist(L) = map (fn(x) => if x < 0.0 then ~x else x) L

Problem 6: (7 points)

Your instructor suffered the great embarrassment of distributing a version of gather that
has a bug: If called with an empty list it should return [] but in fact it returns [[]].
Example:

- gather([], 10);
val it = [[]] : int list list

Change this:

fun gather(L, limit) =
to this:

fun gather([], _) = []
 | gather(L, limit) =

CSc 372, Fall 2001, ML Examination Solutions; page 3

Problem 7: (15 points)

In this problem you are to create TWO functions, doubler and quadrupler. doubler is
of type string list list -> string list list and "doubles" each letter in the
strings. quadrupler is of the same type, but quadruples each letter.

fun doubler L =
 let
 fun f([]) = []

 | f(c::cs) = c::c::f(cs)
 in
 (map (map (implode o f o explode))) L
 end

val quadrupler = doubler o doubler

Problem 8a: (7 points)

Create a function genlist that takes a list of integers and for each integer N in the list,
produces a list with N instances of the number 1. You may assume that all the values are
non-negative.

val genlist = map ((map (fn(_) => 1)) o iota)

Problem 8b: (7 points)

Create a function genlist_inv that performs the inverse operation of genlist. The only
value appearing in the lists will be the integer 1 (one).

val genlist_inv = map sum

An acceptable answer is to use length instead of sum,

val genlist_inv = map length

but if you try it out with the interpreter, you'll find that you get an error about type variables
not being generalized.

Problem 8c: (2 points)

What is the type of genlist_inv o genlist o genlist_inv ?

int list list -> int list

CSc 372, Fall 2001, ML Examination Solutions; page 4

Problem 9: (18 points)

Create a function tacdel(fname) that reads the file named by fname and prints (using
the print function) the lines in the file in reverse order, and if a line contains the character
"@", the line "<D>" appears in its place.

fun tacdel(fname) =
let

val bytes = read_all_bytes(fname)
fun lmapper(s) =

if member(#"@", explode s) then "<D>" else s
val lines = map lmapper (rev (split #"\n" bytes))

 in
 print(concat(ien(lines, 1, "\n")))
 end

	Page 1
	Page 2
	Page 3
	Page 4

