
CSc 372, Spring 1997, Mid-term Examination Solutions; page 1

CSc 372, Spring 1997
Mid-term Examination Solutions

Problem 1: (1 points each; 4 points total)

State the type of each of the following expressions, or if the expression is not valid, state
why. For example, the type of the expression 3+4 is int.

([1, 2], [3.0, 4.0])

int list * real list

(map size) (explode "abcd")

int list

("x", (2, "y"), ([3, "z"]))

Invalid: [3, "z"] attempts to form a heterogeneous list

(length, [size, length o explode])

('a list -> int) * (string -> int) list

Problem 2: (2 points)

Consider this ML function definition: fun f(x) = [x 1, 2] What type will be
deduced for f?

(int -> int) -> int list

Problem 3: (1 point each; 5 points total)

Consider these two ML function definitions:

fun f(_) = 1
fun g(a,b,c) = if a = f(c) then b else [c,a]

State the type that will be deduced for each of the following:

a: int
b: int list
c: int
The return type of f: int
The return type of g: int list

CSc 372, Spring 1997, Mid-term Examination Solutions; page 2

Problem 4: (3 points)

Write a function f that has the type int -> int list -> bool.

fun f 1 [1] = true

Problem 5: (9 points)

Write a function tossbig(L,N) of type string list * int -> string list that
produces a list consisting of the elements in L that have a size less than N.

fun tossbig([], _) = []
 | tossbig(s::ss, n) =
 if size(s) < n then s::tossbig(ss, n)
 else tossbig(ss,n)

Or, a non-recursive solution using filter from the slides:

fun tossbig([], _) = []
 | tossbig(L, n) = filter(fn(s) => size(s) < n, L)

Problem 6: (9 points)

Write a function samesums of type (int * int) list -> bool that produces true if
adding the two elements of each tuple in turn produce the same sum.

fun samesums [] = true
 | samesums [_] = true
 | samesums ((a,b)::(c,d:int)::ts) =

a+b = c+d andalso samesums((c,d)::ts)

Problem 7: (12 points)

Write a function block(w,h) of type int * int -> unit that prints a block of x's
having a width of w and height of h. You may assume that w and h are greater than or equal
to 1. Your solution must be NON-RECURSIVE in nature.

When this problem was written, an answer like this was envisioned:

fun block(w,h) =
 let
 fun row _ =

implode (map (fn(x) => "x") (m_to_n(1,w))) ^ "\n"
 in
 print(implode ((map row) (m_to_n(1,h))))
 end

However, some persons observed that the solution could be simplified with repl, from the
second assignment:

fun block(w, h) = print(repl(repl("x", w) ^ "\n", h))

If I had considered that repl might be used, I would have specifically excluded it, but I

CSc 372, Spring 1997, Mid-term Examination Solutions; page 3

since I did not, I considered solutions using repl to be perfectly acceptable, even though
that essentially side-stepped the purpose of the problem.

Problem 8: (6 points)

Write a function c_block of type int -> int -> unit that behaves like block, but
that allows partial application. You may use block in your solution.

fun c_block w h = block(w,h)

Problem 9: (30 points)

In this problem you are to implement a C++ class that models a television set that has a list
of favorite channels, each with a preferred volume. ...

class TV {
 ...
 private:
 int itsFavs[84];
 int itsCurChan;
 int itsCurVol;
 };

TV::TV()
 : itsCurChan(2), itsCurVol(5)
{
 for (int i = 2; i < 84; i++)
 itsFavs[i] = -1;
}

int ckRange(int low, int high, int val)
{
 if (val < low || val > high)
 return 0;
 else
 return 1;
}

void TV::SetVol(int vol)
{
 if (!ckRange(0, 10, vol))
 return;

 itsCurVol = vol;
}

void TV::SetChan(int chan)
{
 if (!ckRange(2, 83, chan))
 return;

 itsCurChan = chan;
}

void TV::SetFav()
{

CSc 372, Spring 1997, Mid-term Examination Solutions; page 4

 itsFavs[itsCurChan] = itsCurVol;
}

void TV::SetFav(int vol)
{
 if (!ckRange(0, 10, vol))
 return;

 itsFavs[itsCurChan] = vol;
}

void TV::NextFav()
{
 int i;
 for (i = itsCurChan+1; i <= 83; i++)
 if (itsFavs[i] != -1) {
 SetVol(itsFavs[i]);
 SetChan(i);
 return;
 }

 for (i = 2; i < itsCurChan; i++)
 if (itsFavs[i] != -1) {
 SetVol(itsFavs[i]);
 SetChan(i);
 return;
 }
}

void TV::Status()
{
 cout << "Channel is " << itsCurChan << ", volume is "

 << itsCurVol << endl;
}

Problem 10: (5 points)

With our String class in mind, overload the % operator so that an expression such as s %
c produces an int that is the zero-based position of the first occurrence of the character c in
the String s.

int operator%(const String& s, char c)
{
 char *p = strchr(s.GetPtr(), c);

 if (p == 0)
 return -1;
 else
 return p - s.GetPtr();
}

Problem 11: (2 points each; 6 points total)

Briefly answer each of the following questions related to object-oriented programming in
general and C++ in particular.

CSc 372, Spring 1997, Mid-term Examination Solutions; page 5

(a) What is the difference between a class and an object?

An object is an instance of a class.

(b) As you know, the destructor for a class X is a method named ~X. The rationale for this
choice of name is that "destruction is the complement of construction". However, the
instructor has contended on several occasions that the relationship between constructors and
destructors is in fact somewhat asymmetrical. Describe that asymmetry.

The responsibility of a constructor is to initialize an object. The destructor's
responsibility is to surrender resources acquired during the lifetime of the object.

(c) What is the key benefit provided by in-line functions in C++?

In-line functions provide access that is just as fast as directly referencing data
members, but without loss of encapsulation.

Problem 12: (9 points)

In this problem you are to implement a class called Ring that is a subclass of the Shape
class described in the slides.

class Ring: public Shape {
 public:
 Ring(double inner, double outer)
 : itsInner(inner), itsOuter(outer) {}

 double Area() {
 return itsOuter.Area() - itsInner.Area();
 }

 double Perimeter() {
 return itsOuter.Perimeter();
 }

 void Print(ostream& o) {
 o << "Ring; area = " << Area() << ", perim = "
 << Perimeter() << endl;
 }

 private:
 Circle itsInner, itsOuter;
 };

No changes are required in SumOfAreas or Biggest.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

