
CSc 372, Fall 2001, Final Examination; page 1 of 17

Name:_______________________________________ Seat row and number: __________

CSc 372, Fall 2001
Final Examination
December 14, 2001

READ THIS FIRST

Fill in your name and seat row/number above.

Do not turn this page until you are told to begin.

DO NOT use your own paper. DO NOT write on the opposite side of the paper. If you need extra
sheets, ask for them.

If you have a question that can be safely resolved by making an assumption, simply write down that
assumption and proceed.

If you have a question you wish to ask, raise your hand and the instructor or teaching assistant will
come to you. DO NOT leave your seat.

For the problems that ask you to write Emacs Lisp or Icon code, you may use all elements of the
language and libraries, whether or not they were covered in class. For the ML and Prolog problems
you may use only the elements of the language and libraries that were studied in class.

It is tedious to properly match parentheses when writing Lisp code on paper. You may draw brackets
to indicate the intended grouping of your Lisp code.

Aside from problem 7, there are no deductions for poor style. Anything that works and meets all
restrictions will be worth full credit, but try to keep your solutions brief to save time.

You need not include any explanation in an answer if you are confident it is correct. However, if an
answer is incorrect, any accompanying explanation may help you earn partial credit.

This is a 110 minute exam with a total of 100 points and nine possible points of extra credit. There
are twelve regular problems and an extra credit section with six problems.

When you have completed the exam, enter your name on the exam sign-out log and then hand your
exam to the instructor or the teaching assistant.

When told to begin, double-check that your name and seat/row are recorded at the top of this page
then put your initials in the lower right-hand corner of each page, being sure to check that you have
all the pages.

CSc 372, Fall 2001, Final Examination; page 2 of 17

Quick reference for some possibly useful Emacs Lisp functions
(You may tear this page out)

(char-after N) Returns the character after the Nth position in the buffer.

(delete-char N) Deletes N characters following the point.

(delete-region B E) Deletes text between buffer positions B and E.

(eobp) Tests whether the point is at the end of the buffer.

(forward-line N) Moves to the beginning of the Nth line relative to the current line. N may
be zero or negative.

(get-empty-buffer B) Creates an empty buffer named B.

(goto-char N) Sets the point to position N.

(int-to-string N) Converts the integer N to a string.

(not E) Returns t if E is nil; returns nil otherwise.

(sit-for 0 N) Pauses for N milliseconds.

(switch-to-buffer B) Switches to the buffer named B.

(window-height) Returns the height of the current window.

(window-width) Returns the width of the current window.

CSc 372, Fall 2001, Final Examination; page 3 of 17

Problem 1: (7 points)

Write an Emacs Lisp function change that changes every letter in the current buffer to "x", and
every decimal digit to "#" . You may assume the presence of a function letterp that returns t if
the function's argument is a letter and nil otherwise. For example, (letterp ?A) returns t.
Assume a similar function, digitp, to test if a character is a decimal digit.

These buffer contents:

On February 14, 1912, Arizona became
the 48th state.

would be changed to this:

xx xxxxxxxx ##, ####, xxxxxxx xxxxxx
xxx ##xx xxxxx.

CSc 372, Fall 2001, Final Examination; page 4 of 17

IMPORTANT: Select and solve two of the next three
problems (problems 2, 3, and 4). If you do all three, the first
two will be graded. Problem 2 carries a three point extra
credit bonus.

Problem 2: (15 points, plus 3 of extra credit—do only two of problems 2, 3, and 4)

When editing text it is sometimes useful to know the column in which certain text appears. In this
problem you are to write an Emacs Lisp function named ruler, bound to ESC-R, that inserts a
"ruler" before the current line. The ruler disappears when the user strikes any key and the position of
the point is restored to what it was initially.

For example, consider the following buffer contents and imagine that the cursor is positioned on the
"e" in "while".

 (goto-char 1)
 (while (not (= (point) (point-max)))
 (setq char (char-after (point)))

The user then types ESC-R and a two-line ruler with column positions is inserted in the text before the
current line:

 (goto-char 1)
 1 2 3 4 5 6
12345678901234567890123456789012345678901234567890123456789012345
 (while (not (= (point) (point-max)))
 (setq char (char-after (point)))

We can see that the "w" is in column six and the last parenthesis is in column forty. The ruler should

be as wide as the window, which can be assumed to be less than 100 characters in width.

When the user types any character, the text of the ruler is removed and the buffer is restored to its
original state, with the cursor positioned on the "e" in "while":

 (goto-char 1)
 (while (not (= (point) (point-max)))
 (setq char (char-after (point)))

Note that the ruler is created by inserting text in the buffer. (read-char) is then called to read a
character of input and when read-char returns, the inserted text is deleted.

A blank page follows.

CSc 372, Fall 2001, Final Examination; page 5 of 17

(Space for solution for problem 2)

For reference:

 1 2 3 4 5 6
12345678901234567890123456789012345678901234567890123456789012345

CSc 372, Fall 2001, Final Examination; page 6 of 17

Problem 3: (15 points—do only two of problems 2, 3, and 4)

Write an Emacs Lisp function longest that positions the cursor at the beginning of the longest line
in the current buffer. If there are ties for the longest line, choose the first one.

CSc 372, Fall 2001, Final Examination; page 7 of 17

Problem 4: (15 points—do only two of problems 2, 3, and 4)

Write an Emacs Lisp function marquee that displays a horizontally scrolling line of text. (There is a
standard Windows screen saver having the same name.) The user is prompted for the text to display
with Text?. The text is displayed at the left side of the center line of the window. Every 70
milliseconds, the leftmost character is removed and put at the right end of the string. This creates a
perception of the text moving from right to left. The text is displayed in a buffer named "*m*".

For the text "CSc 372 Final Examination..." the line being displayed would first be this:

CSc 372 Final Examination...

then this:

Sc 372 Final Examination...C

then this:

c 372 Final Examination...CS

then this:

 372 Final Examination...CSc

and so forth.

marquee never terminates on its own. It runs until the user terminates it.

A blank page follows.

CSc 372, Fall 2001, Final Examination; page 8 of 17

(Space for solution for problem 4)

CSc 372, Fall 2001, Final Examination; page 9 of 17

Problem 5: (9 points)

Background: In Icon, built-in functions supply default values for omitted arguments when there's a
reasonable default. Emacs Lisp is very inconsistent in this regard. For example, the count for
forward-line is optional but the count for delete-char is required. The instructor believes
that consistent use of reasonable defaults would be an improvement for Emacs Lisp.

Problem: Identify two more elements from ML, Icon, Prolog, and/or Java that would be
improvements for Emacs Lisp. Briefly describe how Emacs Lisp would benefit from their inclusion.
The elements may be from the same language or from different languages.

CSc 372, Fall 2001, Final Examination; page 10 of 17

Problem 6: (6 points)

Write an ML function rm_prefix(P, L) that ASSUMES that P is a prefix of the list L and returns
a copy of L with P removed.

- rm_prefix([1,2],[1,2,3,4]);
val it = [3,4] : int list

- rm_prefix([], [5,10,20]);
val it = [5,10,20] : int list

- rm_prefix(explode "test", explode "testing");
val it = [#"i",#"n",#"g"] : char list

- implode(rm_prefix(explode "test", explode "testing"));
val it = "ing" : string

Be sure to keep in mind that rm_prefix ASSUMES that P is a prefix of L:

- rm_prefix([1,2], [3,4,5]);
val it = [5] : int list

- rm_prefix([1,2,3], explode "testing");
val it = [#"t",#"i",#"n",#"g"] : char list

- rm_prefix([1.0,2.0],[5,4,3,2,1]);
val it = [3,2,1] : int list

CSc 372, Fall 2001, Final Examination; page 11 of 17

Problem 7: (2 points)

Write an ML function listeq(L1, L2) that returns true if the lists L1 and L2 are identical and
returns false otherwise. Style does matter on this problem.

- listeq;
val it = fn : ''a * ''a -> bool

- listeq([1,2,3],[1,2,3]);
val it = true : bool

- listeq(explode "testing", explode "test");
val it = false : bool

- listeq([[],[],[]], [[],[],[]]);
val it = true : bool

Problem 8: (8 points)

Write an Icon procedure extsort(L) that accepts a list of file names and sorts them by their
extension.

][extsort(["x.icn","test.c","b.java","a.c","a.java"]);
 r := ["a.c","test.c","x.icn","a.java","b.java"] (list)

You may assume that file names contain exactly one dot. Files with the same extension may appear
in any order. (In the above, for example, it would be acceptable for "test.c" to precede "a.c".)

CSc 372, Fall 2001, Final Examination; page 12 of 17

Problem 9: (8 points)

Write a Prolog predicate find(+N, [-A,-B,-C]) that produces all combinations of integers
between 1 and N inclusive such that N = A * B - C. You may assume that you have a predicate
iota(+N,-L) that instantiates L to a list of the integers from 1 through N.

Examples:

| ?- find(5,R).
R = [2,3,1] ? ;
R = [2,4,3] ? ;
R = [3,2,1] ? ;
R = [4,2,3] ? ;
no

| ?- find(4,R).
no

| ?- find(100,R).
R = [2,52,4] ? ;
R = [2,53,6] ? ;
R = [2,54,8] ? ;
...lots more...

Important: Each integer may appear only once in a given result. There should never be a result like
R = [5,5,5] or R = [7,1,7].

Hint: This is the instructor's second and final attempt (no pun intended) to get everybody to use
getone(X, L, R) on a test.

CSc 372, Fall 2001, Final Examination; page 13 of 17

Problem 10: (10 points)

Pick one interesting element from any of the languages we have studied and, in the style of an e-mail
note, describe that element to a colleague familiar only with Java programming. Be sure to talk about
the syntactic form, the operation, and describe a practical usage of the element.

CSc 372, Fall 2001, Final Examination; page 14 of 17

Problem 11: (10 points)

There have been two notable attempts to produce a single language to meet the needs of the majority
of programmers. In the 1960s, the language PL/I was created to serve both the business and scientific
programming communities. In the 1970s, the Department of Defense sponsored the development of
the Ada programming language, which was to be used for DoD software systems whenever possible.

Present an argument either for or against the prospect of a single language becoming dominant for the
majority of software development. Here are some points to possibly consider: What major elements
would a dominant language need to have? How might such a language come into existence? What
are forces that would work in opposition to a language becoming dominant?

CSc 372, Fall 2001, Final Examination; page 15 of 17

Problem 12: (10 points)

For five points each, answer TWO of the following questions. If more than two questions are
answered, only the first answers on the paper will be graded.

(A) In languages like Java, C++, and ML, words like "if", "fun", and "class" are called reserved
words—they can't be used for variable or routine names. The PL/I language has no reserved words.
One can write statements like if = while + then(else). What are some advantages and/or
disadvantages to having no reserved words? Disregard issues related to compiling languages with no
reserved words.

(B) Icon has several polymorphic operators and functions. For example, the unary * operator returns
the number of elements in an object. The delete function removes elements from sets and tables.
What are some tradeoffs that a language designer must take into account when considering inclusion
of a polymorphic operation in a language?

(C) Imagine a language that has heterogeneous lists like Prolog, Icon, and Lisp, but that also has a
tuple type that is very similar to ML. Present an argument either for or against the claim that if a
language has heterogeneous lists, tuples provide no additional benefit.

(D) What do Java's exception handling mechanism and Icon's failure mechanism have in common?

(E) The instructor said that "every programmer should have a language like Icon in their toolbox".
What are the characteristics of Icon, and similar languages, that make it worthwhile to know such a
language in addition to mainstream languages like Java and C++? (Or, argue that knowing a single
language like Java or C++, and knowing it well, is all that's needed.)

(F) A language implemented in C, such as Emacs Lisp, typically has some library functions coded in
C and the balance coded in the language itself. What factors influence whether a function is
implemented in the language itself?

A blank page follows.

CSc 372, Fall 2001, Final Examination; page 16 of 17

(Space for answers for problem 12)

CSc 372, Fall 2001, Final Examination; page 17 of 17

EXTRA CREDIT SECTION (one point each)

(a) What's the difference between a hack and programming technique?

(b) Order these languages from oldest to youngest: Icon, Java, Lisp, ML, Prolog.

(c) Write an expression that is valid in three of the languages we studied but with a notably different
interpretation in each.

(d) As of midnight on December 12, how many messages have been sent to the CSc 372 mailing list?
(Your answer must be within 10%.)

(e) The instructor has immediate plans to rewrite the Icon assignments in another language to see how
that language compares to Icon. What's the language?

(f) What is the type of rm_prefix (problem 6)?

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17

