
CSc 372, Fall 2006 Icon Slide 1
W. H. Mitchell (whm@msweng.com)

A little history

Icon is a descendent of SNOBOL4 and SL5.

Icon was designed at the University of Arizona in the late 1970s by a team lead by Ralph
Griswold. The first implementation was in Ratfor, to facilitate porting Icon to a variety of
machines. It was later reimplemented in C.

The last major upheaval in the language itself was in 1982, but a variety of minor elements
have been added in the years since.

Idol, an object-oriented derivative was developed in 1988 by Clint Jeffery.

Graphics extensions evolved from 1990 through 1994.

Unicon (Unified Extended Icon) evolved from 1997 through 1999 and incremental change
continues. Unicon has support for object-oriented programming, systems programming, and
programming-in-the-large.

The origin of the name "Icon" is clouded. Some have suggested it comes from "iconoclast".

The development of Icon was supported by about a decade of funding by the National
Science Foundation.

CSc 372, Fall 2006 Icon Slide 2
W. H. Mitchell (whm@msweng.com)

Efficiency by virtue of limited resources

Compared to today computing resources were very limited when Icon was developed.

The FORTRAN implementation of Icon was developed on PDP-10 mainframe with perhaps
1.5 MIPS and maybe a megabyte or two of virtual address space. However, that was a
timesharing system that supported users campus-wide and was quite slow at times.

The UNIX implementation of Icon was developed on a PDP-11/70 owned by the CS
department. It limited programs to 64k bytes of program code and 64k bytes of data. Its
speed was perhaps 1 MIP.

Due to these limits Icon's implementation was required to be small and efficient.

CSc 372, Fall 2006 Icon Slide 3
W. H. Mitchell (whm@msweng.com)

A little Icon by observation

% /home/cs372/fall06/ie
Icon Evaluator, Version 1.1, ? for help
][3+4
 r := 7 (integer)

]["abc" || (3 + 4 * 5.6) || center("test", 10, "-")
 r := "abc25.4---test---" (string)

][types := [type(center), type(type(center)), *type("type")]
 r := L1:["procedure","string",6] (list)

][x := [1,["two"], 'three'] ||| [repl(&digits, 3 > 2)]
 r := L1:[1,L2:["two"],'ehrt',"01234567890123456789"] (list)

][x := ""; every(x ||:= !reverse(&lcase))
Failure

][x[3:-3]
 r := "xwvutsrqponmlkjihgfed" (string)

CSc 372, Fall 2006 Icon Slide 4
W. H. Mitchell (whm@msweng.com)

High-altitude view of Icon

Icon is a high-level, general-purpose imperative language with all the characteristics
generally associated with a scripting language.

Icon has...

Dynamic typing with automatic conversion between types in some cases.

A large set of built-in types: integer, real, string, cset, file, procedure, list, table, set,
record, and co-expression.

A large set of operators with an emphasis on polymorphism.

A unique expression evaluation mechanism that provides for expressions producing
zero, one, or many results.

A string analysis mechanism fully integrated with the rest of the language.

A small "mental footprint".

Icon itself is not object-oriented but Unicon is.

CSc 372, Fall 2006 Icon Slide 5
W. H. Mitchell (whm@msweng.com)

Icon vs. Ruby: Strings

A string literal in Icon is specified by enclosing characters in double quotes. Unlike Ruby,
that is the only way to create a string literal.

][s := "toolkit"
 r := "toolkit" (string)

Because Icon is not object-oriented there are no string "methods". String operations are
provided via operators and functions. Examples:

][*s
 r := 7 (integer)

][?s
 r := "o" (string)

][reverse(s)
 r := "tikloot" (string)

][find("it", "test it!")
 r := 6 (integer)

CSc 372, Fall 2006 Icon Slide 6
W. H. Mitchell (whm@msweng.com)

Strings, continued

In Icon, positions in a string are between characters and run in both directions:

 1 2 3 4 5 6 7 8
 | | | | | | | |
 t o o l k i t
 | | | | | | | |
 -7 -6 -5 -4 -3 -2 -1 0

Several forms of subscripting are provided:

][s[2:4]
 r := "oo" (string)

][s[1+:4]
 r := "tool" (string)

][s[0-:3]
 r := "kit" (string)

][s[1]
 r := "t" (string)

Icon has no "character" type. Single characters are represented by strings of length one.

CSc 372, Fall 2006 Icon Slide 7
W. H. Mitchell (whm@msweng.com)

Strings, continued

Assignment of string values does not cause sharing of data:

][s1 := "Knuckles"
 r := "Knuckles" (string)

][s2 := s1
 r := "Knuckles" (string)

][s1[1:1] := "Fish "
 r := "Fish " (string)

][s1
 r := "Fish Knuckles" (string)

][s2
 r := "Knuckles" (string)

In other words, strings use value semantics.

Any substring can be the target of an assignment.

CSc 372, Fall 2006 Icon Slide 8
W. H. Mitchell (whm@msweng.com)

Icon vs. Ruby: lists and tables

Icon's list type corresponds very closely to Ruby's Array class but there are some

differences. Two examples:

Sublists can't be assigned to. Something like L[2:4] := [1,2,3] is not permitted

in Icon.

The core language does not support comparison of lists. (In contrast, Ruby does support
comparison of lists but blows up when comparing cyclic lists.)

Icon's table type is very similar to Ruby's Hash class but again there are differences. A

couple of them:

Icon doesn't provide anything like h = {"a", 1, "b", 2} for initialization of a

table.

Any value can be used as a table key in Icon but that's not the case with Ruby.

CSc 372, Fall 2006 Icon Slide 9
W. H. Mitchell (whm@msweng.com)

Keywords

Icon provides "keywords" to reference a number of commonly-used values. For example,
&null represents the null value, which is the initial value of every variable. Here are

examples of several keywords:

][xyz
 r := &null (null)

][&date
 r := "2006/11/29" (string)

][&lcase || &ucase
 r := "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
(string)

][&input
 r := &input (file)

][&phi
 r := 1.618033988749895 (real)

Do keywords provide an advantage versus functions of the same names? (E.g., date(),

lcase(), etc.)

CSc 372, Fall 2006 Icon Slide 10
W. H. Mitchell (whm@msweng.com)

Failure

A key design feature of Icon is that an expression can fail to produce a result. A simple
example of an expression that fails is an out of bounds string subscript:

][s := "testing";
 r := "testing" (string)

][s[5];
 r := "i" (string)

][s[50];
Failure

It is said that "s[50] fails"—it produces no value.

If an expression produces a value it is said to have succeeded.

When an expression is evaluated it either succeeds or fails.

CSc 372, Fall 2006 Icon Slide 11
W. H. Mitchell (whm@msweng.com)

Failure, continued

An important rule:
An operation is performed only if a value is present for all operands. If due to failure a
value is not present for all operands, the operation fails.

Another way to say it:
If evaluation of an operand fails, the operation fails.

Examples:

][s := "testing";
 r := "testing" (string)

]["x" || s[50];
Failure

][reverse("x" || s[50]);
Failure

][s := reverse("x" || s[50]); # s is still "testing"
Failure

Note that failure propagates.

CSc 372, Fall 2006 Icon Slide 12
W. H. Mitchell (whm@msweng.com)

Failure, continued

Another example of an expression that fails is a comparison whose condition does not hold:

][1 = 0;
Failure

][4 < 3;
Failure

][10 >= 20;
Failure

A comparison that succeeds produces the value of the right hand operand as the result of the
comparison:

][1 < 2;
 r := 2 (integer)

][1 = 1;
 r := 1 (integer)

][10 ~= 20;
 r := 20 (integer)

CSc 372, Fall 2006 Icon Slide 13
W. H. Mitchell (whm@msweng.com)

Failure, continued

What do these expressions do?

max := max < n

x := (1 + 2) < (3 * 4) > 5

write(a < b)

f(a < b, x = y, 0 ~= *s)

How do Java exceptions compare to Icon's failure mechanism?

CSc 372, Fall 2006 Icon Slide 14
W. H. Mitchell (whm@msweng.com)

Failure, continued

From the mid-term:

Write a Ruby method extract(s, m, n) that extracts a portion of a string that

represents a hierarchical data structure. m is a major index and n is a minor index.
Major sections of the string are delimited by slashes and are composed of minor
sections separated by colons. Here is a sample string:

/a:b/apple:orange/10:2:4/xyz/

The solution in Icon:

procedure extract(s,m,n)
 return split(split(s, '/')[m], ':')[n]
end

It takes advantage of the propagation of failure and doesn't bother to check whether the first
split succeeds.

CSc 372, Fall 2006 Icon Slide 15
W. H. Mitchell (whm@msweng.com)

A little I/O

The built-in function write prints a string representation of each of its arguments and

appends a final newline.

][write(r, " is the value of r");
1 is the value of r
 r := " is the value of r" (string)

][write(1,2,3,"four","five","six");
123fourfivesix
 r := "six" (string)

The built-in function read() reads one line from standard input.

][line := read();

Here is some input (typed by user)
 r := "Here is some input" (string)

When end of file is reached, read() fails.

CSc 372, Fall 2006 Icon Slide 16
W. H. Mitchell (whm@msweng.com)

The while expression

Icon has several traditionally-named control structures, but they are driven by success and
failure.

The general form of the while expression is:

while expr1 do
expr2

If expr1 succeeds, expr2 is evaluated. This continues until expr1 fails.

Here is a loop that reads lines and prints them:

while line := read() do
 write(line)

If no body is needed, the do clause can be omitted:

while write(read())

What causes termination of the loop immediately above?

CSc 372, Fall 2006 Icon Slide 17
W. H. Mitchell (whm@msweng.com)

if-then-else

The general form of the if-then-else expression is

if expr1 then expr2 else expr3

If expr1 succeeds the result of the if-then-else expression is the result of expr2. If expr1 fails,
the result is the result of expr3.

][if 1 < 2 then 3 else 4;
 r := 3 (integer)

][if 1 > 2 then 3 else 4;
 r := 4 (integer)

][if 1 < 2 then 2 < 3 else 4 < 5;
 r := 3 (integer)

Explain this expression:

label := if min < x < max then
"in range"

 else
"out of bounds"

CSc 372, Fall 2006 Icon Slide 18
W. H. Mitchell (whm@msweng.com)

if-then-else, continued

There is also an if-then expression:

if expr1 then expr2

If expr1 succeeds, the result of the if-then expression is the result of expr2. If expr1

fails, the if-then fails.

Examples:

][if 1 < 2 then 3;
 r := 3 (integer)

][if 1 > 2 then 3;
Failure

What is the result of this expression?

x := 5 + if 1 > 2 then 3

CSc 372, Fall 2006 Icon Slide 19
W. H. Mitchell (whm@msweng.com)

The break and next expressions

The break and next expressions are similar to break and continue in Java.

This is a loop that reads lines from standard input, terminating on end of file or when a line
beginning with a period is read. Each line is printed unless the line begins with a # symbol.

while line := read() do {
if line[1] == "." then

break

if line[1] == "#" then
next

write(line)
}

The operator == tests equality of two strings.

CSc 372, Fall 2006 Icon Slide 20
W. H. Mitchell (whm@msweng.com)

The & operator

The general form of the & operator:

expr1 & expr2

expr1 is evaluated first. If expr1 succeeds, expr2 is evaluated. If expr2 succeeds, the

entire expression succeeds and produces the result of expr2. If either expr1 or expr2

fails, the entire expression fails.

Examples:

r > 3 & write("r = ", r)

while line := read() & line[1] ~== "." do write(line)

Here is pseudo-code for the implementation of &:

Value andOp(Value expr1, Value expr2)
{

return expr2
}

How does it work?

CSc 372, Fall 2006 Icon Slide 21
W. H. Mitchell (whm@msweng.com)

Procedures

All executable code in an Icon program is contained in procedures. A procedure may take
arguments and it may return a value of interest.

Execution begins by calling the procedure main.

A simple program with two procedures:

procedure main()
 while n := read() do
 write(n, " doubled is ", double(n))
end

procedure double(n)
 return 2 * n
end

CSc 372, Fall 2006 Icon Slide 22
W. H. Mitchell (whm@msweng.com)

Procedures, continued

A procedure may produce a result or it may fail. Here is a more flexible version of double:

procedure double(x)
 if type(x) == "string" then
 return x || x
 else if numeric(x) then
 return 2 * x
 else
 fail
end

Usage:

][double(5);
 r := 10 (integer)

][double("xyz");
 r := "xyzxyz" (string)

][double([1,2]);
Failure

CSc 372, Fall 2006 Icon Slide 23
W. H. Mitchell (whm@msweng.com)

Procedures—call tracing

One of Icon's debugging facilities is call tracing.
Tracing is activated by setting the keyword &trace

or the TRACE environment variable.

% setenv TRACE -1
% sum
 : main()
sum.icn : 2 | sum(3)
sum.icn : 7 | | sum(2)
sum.icn : 7 | | | sum(1)
sum.icn : 7 | | | | sum(0)
sum.icn : 6 | | | | sum returned 0
sum.icn : 6 | | | sum returned 1
sum.icn : 6 | | sum returned 3
sum.icn : 6 | sum returned 6
6
sum.icn : 3 main failed
%

% cat -n sum.icn
1 procedure main()
2 write(sum(3))
3 end
4
5 procedure sum(n)
6 return if n = 0 then 0
7 else n + sum(n-1)
8 end

CSc 372, Fall 2006 Icon Slide 24
W. H. Mitchell (whm@msweng.com)

Generator basics

In most languages, evaluation of an expression always produces one result. In Icon, an
expression can produce zero, one, or many results.

Consider the following program. The procedure Gen is said to be a generator.

procedure Gen()
 write("Gen: Starting up...")
 suspend 3

 write("Gen: More computing...")
 suspend 7

 write("Gen: Out of gas...")
 fail # not really needed
end

procedure main()
 every i := Gen() do
 write("Result = ", i)
end

The result sequence of Gen is {3, 7}.

Execution:
Gen: Starting up...
Result = 3
Gen: More computing...
Result = 7
Gen: Out of gas...

CSc 372, Fall 2006 Icon Slide 25
W. H. Mitchell (whm@msweng.com)

Generator basics, continued

The suspend control structure is like return, but the procedure remains active with all

state intact and ready to continue execution if it is resumed.

Program output with call tracing active:

 : main()
gen.icn : 13 | Gen()

Gen: Starting up...
gen.icn : 3 | Gen suspended 3

Result = 3
gen.icn : 14 | Gen resumed

Gen: More computing...
gen.icn : 6 | Gen suspended 7

Result = 7
gen.icn : 14 | Gen resumed

Gen: Out of gas...
gen.icn : 9 | Gen failed
gen.icn : 15 main failed

CSc 372, Fall 2006 Icon Slide 26
W. H. Mitchell (whm@msweng.com)

Generator basics, continued

Recall the every loop:

every i := Gen() do
 write("Result = ", i)

every is a control structure that looks similar to while, but its behavior is very different.

every evaluates the control expression and if a result is produced, the body of the loop is

executed. Then, the control expression is resumed and if another result is produced, the loop
body is executed again. This continues until the control expression fails.

Anthropomorphically speaking, every is never satisfied with the result of the control

expression.

CSc 372, Fall 2006 Icon Slide 27
W. H. Mitchell (whm@msweng.com)

Generator basics, continued

For reference:

every i := Gen() do
 write("Result = ", i)

It is said that every drives a generator to failure.

Here is another way to drive a generator to failure:

write("Result = " || Gen()) & 1 = 0

Output:

Gen: Starting up...
Result = 3
Gen: More computing...
Result = 7
Gen: Out of gas...

Note: The preferred way to cause failure in an expression is to use the &fail keyword:
write("Result = " || Gen()) & 1 = 0

CSc 372, Fall 2006 Icon Slide 28
W. H. Mitchell (whm@msweng.com)

Generator basics, continued

If an expression involving a suspended generator fails the generator is resumed in hopes of it
producing a value that will cause the expression to succeed.

A different main program to exercise Gen:

procedure main()
 while writes("Value? ") & n := integer(read()) do {
 if n = Gen() then
 write("Found ", n)
 else
 write(n, " not found")
 }
end

This is an example of goal directed evaluation (GDE).
In this case the goal is to see if the value entered by
the user is one of the results of Gen.

Value? 3
Gen: Starting up...
Found 3
Value? 10
Gen: Starting up...
Gen: More computing...
Gen: Out of gas...
10 not found
Value? 7
Gen: Starting up...
Gen: More computing...
Found 7

CSc 372, Fall 2006 Icon Slide 29
W. H. Mitchell (whm@msweng.com)

Generator basics, continued

A generator can be used in any context that an ordinary expression can be used in:

][write(Gen())
Gen: Starting up...
3

][write(15 < Gen() + 10)
Gen: Starting up...
Gen: More computing...
17

][every write(repl("abc",Gen()))
Gen: Starting up...
abcabcabc
Gen: More computing...
abcabcabcabcabcabcabc
Gen: Out of gas...
Failure

The ability for a generator to appear in any expression is a hallmark of Icon.

CSc 372, Fall 2006 Icon Slide 30
W. H. Mitchell (whm@msweng.com)

The generator to-by

Icon has many built-in generators. One is the to-by operator, which generates a sequence

of integers. Examples:

][every i := 3 to 7 do
 write(i)
3
4
5
6
7
Failure

][every write(10 to 1 by -3)
10
7
4
1
Failure

][8 < (1 to 10)
 r := 9 (integer)

CSc 372, Fall 2006 Icon Slide 31
W. H. Mitchell (whm@msweng.com)

Bounded expressions

Here is one way to print the odd integers between 1 and 100:

i := 1 to 100 & i % 2 = 1 & write(i) & &fail

This expression exhibits backtracking, just like Prolog.

In some cases backtracking is desirable and in some cases it is not.

Expressions appearing as certain elements of control structures are bounded. A bounded
expression can produce at most one result, thus limiting backtracking.

CSc 372, Fall 2006 Icon Slide 32
W. H. Mitchell (whm@msweng.com)

Bounded expressions, continued

The mechanism of expression bounding is this: if a bounded expression produces a result,
generators in the expression are discarded.

In while expr1 do expr2, both expressions are bounded.

In every expr1 do expr2, only expr2 is bounded.

Consider

every i := 1 to 10 do write(i)

and

while i := 1 to 10 do write(i)

The latter is an infinite loop!

In an if-then-else, only the control expression is bounded:

if expr1 then expr2 else expr3

CSc 372, Fall 2006 Icon Slide 33
W. H. Mitchell (whm@msweng.com)

The generator "bang" (!)

Another built-in generator is the unary exclamation mark, called "bang".

It is polymorphic, as is the size operator (*). For character strings it generates the characters

in the string one at a time.

][every write(!"abc");
a
b
c
Failure

The result sequence of !"abc" is {"a", "b", "c"}.

A program to count vowels appearing on standard input:

procedure main()
 vowels := 0
 while line := read() do
 every c := !line do
 if c == !"aeiouAEIOU" then vowels +:= 1
 write(vowels, " vowels")
end

CSc 372, Fall 2006 Icon Slide 34
W. H. Mitchell (whm@msweng.com)

The generator "bang" (!), continued

Speculate: What does the following program do?

procedure main()

 lines := []

every push(lines, !&input)

every write(!lines)

end

CSc 372, Fall 2006 Icon Slide 35
W. H. Mitchell (whm@msweng.com)

Multiple generators

An expression may contain any number of generators:

][every write(!"ab", !"+-", !"cd");
a+c
a+d
a-c
a-d
b+c
b+d
b-c
b-d
Failure

Generators are resumed in a LIFO manner: the generator that most recently produced a result
is the first one resumed.

Problem: Write an expression that succeeds if strings s1 and s2 have any characters in

common.

CSc 372, Fall 2006 Icon Slide 36
W. H. Mitchell (whm@msweng.com)

Multiple generators, continued

Recall this vowel counter:

procedure main()
 vowels := 0
 while line := read() do
 every c := !line do
 if c == !"aeiouAEIOU" then vowels +:= 1
 write(vowels, " vowels")
end

Here is a more concise version, using multiple generators:

procedure main()
 vowels := 0
 every !!&input == !"aeiouAEIOU" do

 vowels +:= 1
 write(vowels, " vowels")
end

Ruby: print(STDIN.read.count("aeiouAEIOU"), " vowels\n")

Which is better?

CSc 372, Fall 2006 Icon Slide 37
W. H. Mitchell (whm@msweng.com)

Multiple generators, continued

A program to show the distribution of the sum of three dice:

procedure main()
 every N := 1 to 18 do {
 writes(right(N,2), " ")
 every (1 to 6) + (1 to 6) + (1 to 6) = N do
 writes("*")
 write()
 }
end

Problem: Generalize the program to any number
of dice.

 1
 2
 3 *
 4 ***
 5 ******
 6 **********
 7 ***************
 8 *********************
 9 *************************
10 ***************************
11 ***************************
12 *************************
13 *********************
14 ***************
15 **********
16 ******
17 ***
18 *

CSc 372, Fall 2006 Icon Slide 38
W. H. Mitchell (whm@msweng.com)

Alternation

The alternation control structure looks like an operator:

expr1 | expr2

This creates a generator whose result sequence is the result sequence of expr1 followed by

the result sequence of expr2.

For example, the expression

3 | 7

has the result sequence {3, 7}—the same as the Gen procedure shown earlier.

The expression

(1 to 5) | (5 to 1 by -1)

has the result sequence {1, 2, 3, 4, 5, 5, 4, 3, 2, 1}.

CSc 372, Fall 2006 Icon Slide 39
W. H. Mitchell (whm@msweng.com)

Alternation, continued

A result sequence may contain values of many types:

][every write(1 | 2 | !"ab" | real(Gen()));
1
2
a
b
Gen: Starting up...
3.0
Gen: More computing...
7.0
Gen: Out of gas...
Failure

Alternation used in goal-directed evaluation:

procedure main()
 while time := (writes("Time? ") & read()) do {
 if time = (10 | 2 | 4) then
 write("It's Dr. Pepper time!")
 }
end

CSc 372, Fall 2006 Icon Slide 40
W. H. Mitchell (whm@msweng.com)

Alternation, continued

A program to read lines from standard input and write out the first twenty characters of each
line:

procedure main()
 while line := read() do
 write(line[1:21])
end

Program output when provided the program itself as input:

 while line := re
 write(line[1

What happened?

Solution:

procedure main()
 while line := read() do
 write(line[1:(21|0)])
end

What is the result sequence of write((3 | (7 to 11) | 13) > 10)?

CSc 372, Fall 2006 Icon Slide 41
W. H. Mitchell (whm@msweng.com)

Example: Word tallying

Here is an Icon version of our word tallying example:

procedure main()
 counts := table(0)

 while line := read() do
 every word := !split(line) do
 counts[word] +:= 1

 pairs := sort(counts, 1)
 every pair := !pairs do
 write(left(pair[1], 12) , pair[2])
end

Execution:

% echo "to be or not to be" | tally
be 2
not 1
or 1
to 2

CSc 372, Fall 2006 Icon Slide 42
W. H. Mitchell (whm@msweng.com)

Example: picklines

Imagine a program picklines that reads lines from standard input and prints ranges of

lines specified by command line arguments. Lines may be referenced from the end of file,
with the last line being -1.

Examples:

picklines 1 2 3 2 1 < somefile

picklines 1..10 30 40 50 < somefile

picklines 1..10 -10..-1 < somefile

CSc 372, Fall 2006 Icon Slide 43
W. H. Mitchell (whm@msweng.com)

picklines—Solution

procedure main(args)
 lines := []
 while put(lines, read())

 picks := []
 every spec := !args do {
 w := split(spec, ".")
 every put(picks, lines[w[1]:w[-1]+1])
 }

 every write(!!picks)
end

CSc 372, Fall 2006 Icon Slide 44
W. H. Mitchell (whm@msweng.com)

String scanning

The SNOBOL4 programming language has a very powerful string pattern matching facility
but it shares a problem with regular expressions in Ruby: you're either doing regular
computation or you're matching a pattern—the operations can't be interleaved smoothly, like
they can be in Prolog.

A design goal for Icon was to integrate string pattern matching with regular
computation—match a little, compute a little, match a little, compute a little, etc.

The end result was a handful of string scanning functions that can be used in conjunction
with Icon's other facilities to achieve the desired full integration of string pattern matching
with regular computation.

In the end, Icon's string scanning facility turned to be a disappointment. It is small and
powerful but the techniques involved are non-trivial. Too often, the first version of code
using string scanning is not correct. Ditto for the second version.

The following slides provide a very brief look at Icon's string scanning facility. (About 50-
60 slides are required for an in-depth study of the facility.)

CSc 372, Fall 2006 Icon Slide 45
W. H. Mitchell (whm@msweng.com)

String scanning, continued

String scanning is initiated with ?, the scanning operator:

expr1 ? expr2

The value of expr1 is established as the subject of the scan (&subject) and the scanning

position in the subject (&pos) is set to 1. expr2 is then evaluated.

Here is a trivial example:

]["testing" ? { write(&subject); write(&pos) };
testing
1
 r := 1 (integer)

The result of the scanning expression is the result of expr2.

CSc 372, Fall 2006 Icon Slide 46
W. H. Mitchell (whm@msweng.com)

String scanning functions

There are two string scanning functions that change &pos—the current position in

&subject:

move(n) Move forwards or backwards by n characters. (&pos +:= n)

 tab(n) Move to position n. (&pos := n)

Both move and tab return the string between the old and new values of &pos.

There is a group of functions that produce positions to be used in conjunction with tab:

many(cs) produces position after run of characters in cs

upto(cs) generates positions of characters in cs

find(s) generates positions of s

match(s) produces position after s, if s is next

any(cs) produces position after a character in cs

bal(s, cs1, cs2, cs3) similar to upto(cs), but used with "balanced" strings.

There is one other string scanning function:
pos(n) tests if &pos is equivalent to n

The string scanning facility consists of only the above functions, the ? operator, and the

&pos and &subject keywords. Nothing more.

CSc 372, Fall 2006 Icon Slide 47
W. H. Mitchell (whm@msweng.com)

move(n)

Example: segregation of characters in odd and even positions:

][ochars := echars := ""
 r := "" (string)

]["12345678" ? while ochars ||:= move(1) do
 echars ||:= move(1)
Failure

][ochars
 r := "1357" (string)

][echars
 r := "2468" (string)

CSc 372, Fall 2006 Icon Slide 48
W. H. Mitchell (whm@msweng.com)

upto(cs)

The built-in function upto(cs) generates the positions in &subject where a character in

the character set cs occurs.

A program to read lines and print vowels:

procedure main()
 while line := read() do {
 line ? every tab(upto('aeiou')) do
 write(move(1))
 }
end

Usage:

% echo "just testing upto" | upto1
u
e
i
u
o

CSc 372, Fall 2006 Icon Slide 49
W. H. Mitchell (whm@msweng.com)

upto(cs), continued

Consider a program to divide lines like this:

abc=1;xyz=2;pqr=xyz;

into pairs of names and values.

procedure main()
 while line := read() do {
 line ? while name := tab(upto('=')) do {

 move(1)
 value := tab(upto(';'))
 move(1)
 write("Name: ", name, ", Value: ", value)
 }

 write()
 }
end

Sit back and think: Is there a simpler way to perform this computation?

CSc 372, Fall 2006 Icon Slide 50
W. H. Mitchell (whm@msweng.com)

Example: a b cN N N

Here is a program that recognizes lines of the form a b c :N N N

procedure main()
 while writes("Line? ") & line := read() do {
 writes(line)
 line ? {
 as := tab(many('a')) &
 bs := tab(many('b')) &
 cs := tab(many('c')) &
 *as = *bs = *cs & pos(0) & write(": Yes")
 } | write(": No")
 }
end

Usage:

Line? aaabbbccc
aaabbbccc: Yes
Line? aabbc
aabbc: No
Line? abcx
abcx: No

CSc 372, Fall 2006 Icon Slide 51
W. H. Mitchell (whm@msweng.com)

Example: listsum

Below is a program that sums the integers in lines like this: [1,20,[30,[[40]],6,7],[]]

procedure main()

 while writes("List? ") & line := read() do

 line ?

 if sum := list(line) & pos(0) then

 write(line, ": sum is ", sum)

 else write(line, ": invalid")

end

procedure list()

 ="[]" & suspend 0

 ="[" & sum := values() & ="]" & suspend sum

end

procedure values()

 num := value() & ="," & sum := values() & suspend num + sum

 suspend value()

end

procedure value()

 suspend (list() | tab(many(&digits))) # doesn't handle negatives!

end

It is necessary to consistently use suspend to produce results from each of the procedures

in order for backtracking to work properly.

CSc 372, Fall 2006 Icon Slide 52
W. H. Mitchell (whm@msweng.com)

Graphics in Icon

Facilities for graphical programming in Icon evolved in the period 1990-1994.

A philosophy of Icon is to insulate the programmer from details and place the burden on
the language implementation. The graphics facilities were designed with same
philosophy.

Icon's graphical facilities are built on the X Window System on UNIX machines. On
Microsoft Windows platforms the facilities are built on the Windows API.

CSc 372, Fall 2006 Icon Slide 53
W. H. Mitchell (whm@msweng.com)

Graphics, continued

Here is a program that draws a "crosshair" of dots in a window:

link graphics
procedure main() # g1
 WOpen("size=300,200")

 every x := 0 to 300 by 3 do
 DrawPoint(x, 100) # horizontal

 every y := 0 to 200 by 7 do
 DrawPoint(150, y) # vertical

 WDone() # wait for a "q" to be typed
end

CSc 372, Fall 2006 Icon Slide 54
W. H. Mitchell (whm@msweng.com)

Graphics, continued

Here is a program that randomly draws points.

link graphics

$define Height 300 # symbolic constants
$define Width 500 # via preprocessor

procedure main() # g2
 WOpen("size=" || Width ||","||Height)

 repeat {
 DrawPoint(?Width-1, ?Height-1)
 }
end

Speculate: How long will it take it to black out every single point?

CSc 372, Fall 2006 Icon Slide 55
W. H. Mitchell (whm@msweng.com)

Larger example: target game

This program draws a circular target. If the player clicks inside the target within 800ms, the
radius shrinks by 10%. If not, the radius grows by 10%.

procedure main() # g3

 WOpen("size="||Width||","||Height, "drawop=reverse")

 x := ?Width; y := ?Height; r := 50

 repeat {

 DrawCircle(x, y, r); hit := &null

 every 1 to 80 do { # poll for input every 10ms for 800ms

 WDelay(10)

 while *Pending() > 0 do {

 if Event()=== &lpress then {

 if sqrt((x-&x)^2+(y-&y)^2) < r then {

 FillCircle(x,y, r)

 WDelay(500)

 FillCircle(x,y,r)

 hit := 1

 break break

 }

 }

 }

 }

 DrawCircle(x,y,r)

 if \hit then r *:= .9 else r *:= 1.10

 x := ?Width; y := ?Height

 }

end

CSc 372, Fall 2006 Icon Slide 56
W. H. Mitchell (whm@msweng.com)

Smaller example: curve editor

Steve Kobes wrote this very elegant curve editor in 2003:

procedure main()
 WOpen("height=500", "width=700", "label=Curve Editor")
 pts := []
 repeat case Event() of {
 &lpress:
 if not(i := nearpt(&x, &y, pts)) then {

pts |||:= [&x, &y]; draw(pts)}
 &ldrag: if \i then {

pts[i] := &x; pts[i + 1] := &y; draw(pts)}
 !"Qq": break
 }
end
procedure draw(pts)
 EraseArea()
 DrawCurve!(pts ||| [pts[1], pts[2]])
 every i := 1 to *pts by 2 do
 FillCircle(pts[i], pts[i + 1], 3)
end
procedure nearpt(x, y, pts)
 every i := 1 to *pts by 2 do
 if abs(x - pts[i]) < 4 & abs(y - pts[i + 1]) < 4 then return i
end

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56

