
CSc 372, Fall 2006 Introduction—Slide 1
W. H. Mitchell (whm@msweng.com)

The University of Arizona

Fall Semester, 2006

CSc 372
Comparative Programming Languages

CSc 372, Fall 2006 Introduction—Slide 2
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Introduction—Slide 3
W. H. Mitchell (whm@msweng.com)

Introduction

Instructor

Teaching philosophy

Course topics

Syllabus Highlights

CSc 372, Fall 2006 Introduction—Slide 4
W. H. Mitchell (whm@msweng.com)

Instructor

• William Mitchell

• Consultant/contractor specializing in software development and training of
software developers. Practice includes Java, C++, C, Icon, object-oriented
methods, and programming language implementation.

• Occasionally teach courses in programming languages at The University of
Arizona (CSc 328, 352, 372, 451).

• Education: BSCS (North Carolina State University, 1981), MSCS (The
University of Arizona, 1984).

• Lecturer, not a professor.

CSc 372, Fall 2006 Introduction—Slide 5
W. H. Mitchell (whm@msweng.com)

Teaching Philosophy

• I work for you!

• My goal: everybody earns an "A" and spends less than ten hours per week on this
course, counting lecture time.

• Effective use of office hours, e-mail, IM, and the telephone can equalize
differences in learning speed.

• I should be able to answer every pertinent question about course material.

• My goal is zero defects in slides, assignments, etc.

CSc 372, Fall 2006 Introduction—Slide 6
W. H. Mitchell (whm@msweng.com)

Course Content

At least three-fourths of our time will be spent studying three programming languages,
and the programming paradigms they best support:

• Functional programming with ML.

• Fun with Ruby, a “scripting language”.

• Logic programming with Prolog.

The balance of the course will spent on various topics of interest in programming
languages, possibly including material on Icon, Lisp, Scala, Aspect Oriented
Programming, the “big picture”, and more (or less).

CSc 372, Fall 2006 Introduction—Slide 7
W. H. Mitchell (whm@msweng.com)

Syllabus Highlights

• Instructor

• Teaching Assistant

• Prerequisites

• Texts

• Grading Structure

• Assignments

• Bug Bounties

• Quizzes

• Computing Facilities

• Office Hours

• E-mail

• IM

• Telephone

• Mailing List

• Original Thoughts

• (NO!) Cheating

Important: Read through the syllabus before the second class meeting.

CSc 372, Fall 2006 Introduction—Slide 8
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Introduction—Slide 9
W. H. Mitchell (whm@msweng.com)

Basic Questions

What is a programming language?

Why study programming languages?

How many programming languages are there?

When did languages come into being?

...and more...

CSc 372, Fall 2006 Introduction—Slide 10
W. H. Mitchell (whm@msweng.com)

What is a programming language?

A simple definition:
A system for describing computation.

It is generally agreed that in order for a language to be considered a programming
language it must be Turing Complete.

One way to prove that a language is Turing Complete is to use it to implement
a (Universal) Turing Machine, a theoretical device capable of performing any
algorithmic computation.

CSc 372, Fall 2006 Introduction—Slide 11
W. H. Mitchell (whm@msweng.com)

Why study programming languages?

• Learn new ways to think about computation.

• Learn to see languages from a critical viewpoint.

• Improve basis for choosing languages for a task.

• Add some tools to the “toolbox”.

• Increase ability to design a new language.

Speculate: How many programming languages is a typical software developer fluent in?

CSc 372, Fall 2006 Introduction—Slide 12
W. H. Mitchell (whm@msweng.com)

When did various languages come into being?

Plankakül 1945
Short Code 1949
FORTRAN 1957
ALGOL 1958
COBOL 1959
LISP 1960
BASIC 1964
PL/I 1965
SIMULA 67 1967
Pascal 1971
C 1972
Prolog 1972

Smalltalk 1972
ML 1977
Icon 1979
Ada 1983
C++ 1983
perl 1987
Haskell 1988
Python 1990
Java 1994
Ruby 1995
C# 2000
Scala 2003

A pretty good family tree of prominent languages:
http://www.digibarn.com/collections/posters/tongues/

CSc 372, Fall 2006 Introduction—Slide 13
W. H. Mitchell (whm@msweng.com)

How many programming languages are there?

http://groups.google.com/groups/dir?&sel=33583294&expand=1
USENET comp.lang at Google

http://dir.yahoo.com/Computers_and_Internet/
Programming_and_Development/Languages

http://en.wikipedia.org/wiki/Alphabetical_list_of_programming_languages

http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm

http://hopl.murdoch.edu.au/
 HOPL: An interactive Roster of Programming Languages

CSc 372, Fall 2006 Introduction—Slide 14
W. H. Mitchell (whm@msweng.com)

Language development at UA

The University of Arizona Department of Computer Science has a history of developing
programming languages. Here are some of them:

Cg
EZ
Icon
Leo
MPD
Ratsno
Rebus

S
Seque
SIL2
SL5
SR
SuccessoR
Y

CSc 372, Fall 2006 Introduction—Slide 15
W. H. Mitchell (whm@msweng.com)

How do programming languages help us create programs?

• Free the programmer from details

int i = 5;

x = y * z + q;

• Detect careless errors

int f(String s, char c);
...
i = f('i', "Testing");

• Provide constructs to succinctly express a computation

for (int i = 1; i <= 10; i++)
 ...

CSc 372, Fall 2006 Introduction—Slide 16
W. H. Mitchell (whm@msweng.com)

How do languages help..., continued

• Provide portability

Examples: C provides moderate source-level portability. Java was designed with
binary portability in mind.

• Provide for understanding by other persons

• Facilitate working in a particular style, such as imperative, functional, or
object-oriented.

CSc 372, Fall 2006 Introduction—Slide 17
W. H. Mitchell (whm@msweng.com)

How are programming languages specified?

There are two facets to the specification of a language:

Syntax:
Specification of the sequences of symbols that are valid programs in the
language.

Semantics:
Specification of the meaning of a sequence of symbols.

Consider this expression:

a[i] = x

What are some languages in which it is valid? What are the various meanings of it?

Some languages have specifications that are approved as international standards. Others
are defined by little more than the behavior of a lone implementation.

CSc 372, Fall 2006 Introduction—Slide 18
W. H. Mitchell (whm@msweng.com)

How can languages be evaluated?

• Simplicity (“mental footprint”)

• Expressive power

• Readability of programs

• Reliability of programs

• Run-time efficiency

• Practical development project size

• Support for a style of programming

• Popularity

CSc 372, Fall 2006 Introduction—Slide 19
W. H. Mitchell (whm@msweng.com)

What factors affect the popularity of a language?

• Available implementations

• Available documentation

• Vectors of “infection”

• Ability to occupy a niche

• Availability of supporting tools, like IDEs

CSc 372, Fall 2006 Introduction—Slide 20
W. H. Mitchell (whm@msweng.com)

Language philosophy

What is the philosophy of a language? How is that philosophy exhibited?

C
• Close to the machine
• Few constraints on the programmer
• High run-time efficiency
• “What you write is what you get.”

C++
• Close to the problem being solved
• Support object-oriented programming
• “As close to C as possible, but no closer.” — Stroustrup

PostScript
• Page description
• Intended for generation by machine, not humans

What is the philosophy of Java?

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

