
CSc 372, Fall 2006 Ruby, Slide 1
W. H. Mitchell (whm@msweng.com)

Introduction

What is Ruby?

Experimenting with Ruby using irb

Executing Ruby code in a file

Everything is an object

Variables have no type

Ruby's philosophy is often "Why not?"

CSc 372, Fall 2006 Ruby, Slide 2
W. H. Mitchell (whm@msweng.com)

What is Ruby?

"A dynamic, open source programming language with a focus on simplicity and productivity.
It has an elegant syntax that is natural to read and easy to write." — ruby-lang.org

Ruby is commonly described as an "object-oriented scripting language".

Ruby was invented by Yukihiro Matsumoto ("Matz"), a "Japanese amateur language
designer" (his own words). Here is a second-hand summary of a posting by Matz:

"Well, Ruby was born on February 24, 1993. I was talking with my colleague about the
possibility of an object-oriented scripting language. I knew Perl (Perl4, not Perl5), but I
didn't like it really, because it had smell of toy language (it still has). The
object-oriented scripting language seemed very promising."

 http://www.rubygarden.org/faq/entry/show/5

Another quote from Matz:

"I believe that the purpose of life is, at least in part, to be happy. Based on this belief,
Ruby is designed to make programming not only easy but also fun. It allows you to
concentrate on the creative side of programming, with less stress. If you don’t believe
me, read this book and try Ruby. I’m sure you’ll find out for yourself."

CSc 372, Fall 2006 Ruby, Slide 3
W. H. Mitchell (whm@msweng.com)

What is Ruby?

Ruby is a language in flux.

• Version 1.8.4 is installed on lectura. Version 1.9 is available.

• There is no written standard for Ruby. The language is effectively defined by
MRI—Matz' Ruby Implementation.

There is good on-line documentation:

• The first edition of our text, the "pickaxe book", is available for free:
www.ruby-doc.org/docs/ProgrammingRuby

• Documentation for the core classes is at www.ruby-doc.org/core.

• The above and more is collected at www.ruby-lang.org/en/documentation.

• Chapter 22 of the text is a fairly concise language reference for Ruby. It will soon be
available through the UA library as an E-Reserve. Watch for a link on our website.

CSc 372, Fall 2006 Ruby, Slide 4
W. H. Mitchell (whm@msweng.com)

What is Ruby?

Ruby is getting a lot of attention and press at the moment. Two popular topics:

• Ruby on Rails, a web application framework.

• JRuby, a 100% pure-Java implementation of Ruby. With JRuby, among other things,
you can use Java classes in Ruby programs. (jruby.codehaus.org)

CSc 372, Fall 2006 Ruby, Slide 5
W. H. Mitchell (whm@msweng.com)

Experimenting with Ruby using irb

There are two common ways to execute Ruby code: (1) Put it in file and execute the file with
the "ruby" command. (2) Use irb, the Interactive Ruby Shell. We'll start with irb.

NOTE: The examples on these slides assume a particular configuration for irb, so before you
run irb the first time, copy our .irbrc file into your home directory on lectura:

cp /home/cs372/fall06/ruby/.irbrc ~

irb's default prompt contains a little more information than we need at the moment, so we'll
ask for the "simple" prompt:

% irb --prompt simple
>>

To exit irb, use control-D.

CSc 372, Fall 2006 Ruby, Slide 6
W. H. Mitchell (whm@msweng.com)

irb, continued

irb evaluates expressions as are they typed.

>> 1 + 2
=> 3

>> "testing" + "123" (NOTE: No trailing semicolon!)
=> "testing123"

One of the definitions in our .irbrc allows the last result to be referenced with "it":

>> it
=> "testing123"

>> it+it
=> "testing123testing123"

If an expression is definitely incomplete, irb displays an alternate prompt:

>> 1.23 +
?> 1e5
=> 100001.23

CSc 372, Fall 2006 Ruby, Slide 7
W. H. Mitchell (whm@msweng.com)

Executing Ruby code in a file

The ruby command can be used to execute Ruby source code contained in a file.

By convention, Ruby files have the suffix .rb.

Here is "Hello" in Ruby:

% cat hello.rb
puts "Hello, world!"

% ruby hello.rb
Hello, world!
%

Note that the code does not need to be enclosed in a method—"top level" expressions are run
as encountered.

CSc 372, Fall 2006 Ruby, Slide 8
W. H. Mitchell (whm@msweng.com)

Executing Ruby code in a file, continued

Alternatively, code can be placed in a method that is invoked by an expression at the top
level:

% cat hello2.rb
def say_hello
 puts "Hello, world!"
end

say_hello

% ruby hello2.rb
Hello, world!
%

The definition of say_hello must precede the call.

We'll see later that Ruby is somewhat sensitive to newlines.

CSc 372, Fall 2006 Ruby, Slide 9
W. H. Mitchell (whm@msweng.com)

A line-numbering program

Here is a program that reads lines from standard input and writes them, with a line number, to
standard output:

% cat numlines.rb
line_num = 1

while line = gets
 printf("%3d: %s", line_num, line)
 line_num += 1 # Ruby does not have ++ and --
end

Execution:

% ruby numlines.rb < hello2.rb
 1: def say_hello
 2: puts "Hello, world!"
 3: end
 4:
 5: say_hello

Problem: Write a program that reads lines from standard input and writes them in reverse
order to standard output. Use only the Ruby you've already seen.

CSc 372, Fall 2006 Ruby, Slide 10
W. H. Mitchell (whm@msweng.com)

Everything is an object

In Ruby, every value is an object.

Methods can be invoked using the form value.method(parameters...).

>> "testing".index("i") # Where's the first "i"?
=> 4

>> "testing".count("t") # How many times does "t" appear?
=> 2

>> "testing".slice(1,3)
=> "est"

>> "testing".length()
=> 7

Repeat: In Ruby, every value is an object.

What are some values in Java that are not objects?

CSc 372, Fall 2006 Ruby, Slide 11
W. H. Mitchell (whm@msweng.com)

Everything is an object, continued

Parentheses can be omitted from an argument list:

>> "testing".count "aeiou"
=> 2

>> "testing".slice 1,3
=> "est"

>> puts "number",3
number
3
=> nil

>> printf "sum = %d, product = %d\n", 3 + 4, 3 * 4
sum = 7, product = 12
=> nil

If no parameters are required, the parameter list can be omitted.

>> "testing".length
=> 7

CSc 372, Fall 2006 Ruby, Slide 12
W. H. Mitchell (whm@msweng.com)

Everything is an object, continued

Of course, "everything" includes numbers:

>> 7.class
=> Fixnum

>> 1.2.class
=> Float

>> (3-4).abs
=> 1

>> 17**50
=> 33300140732146818380750772381422989832214186835186851059977249

>> it.succ
=> 33300140732146818380750772381422989832214186835186851059977250

>> it.class
=> Bignum

CSc 372, Fall 2006 Ruby, Slide 13
W. H. Mitchell (whm@msweng.com)

Everything is an object, continued

The TAB key can be used to show completions:

>> 100.<TAB>
 100.nil?
100.__id__ 100.nonzero?
100.__send__ 100.numerator
100.abs 100.object_id
100.between? 100.power!
100.ceil 100.prec
100.chr 100.prec_f
100.class 100.prec_i
100.clone 100.private_methods
100.coerce 100.protected_methods
100.denominator 100.public_methods
100.display 100.quo
100.div 100.rdiv
100.divmod 100.remainder
100.downto 100.require

CSc 372, Fall 2006 Ruby, Slide 14
W. H. Mitchell (whm@msweng.com)

Variables have no type

In Java, variables are declared to have a type. When a program is compiled, the compiler
ensures that all operations are valid with respect to the types involved.

Variables in Ruby do not have a type. Instead, type is associated with values.

>> x = 10
=> 10

>> x = "ten"
=> "ten"

>> x.class
=> String

>> x = x.length
=> 3

Here's another way to think about this: Every variable can hold a reference to an object.
Because every value is an object, any variable can hold any value.

CSc 372, Fall 2006 Ruby, Slide 15
W. H. Mitchell (whm@msweng.com)

Variables have no type, continued

It is often said that Java uses static typing. Ruby, like most scripting languages, uses
dynamic typing.

Sometimes the term strong typing is used to characterize languages like Java and weak typing
is used to characterize languages like Ruby but those terms are now often debated and
perhaps best avoided.

Another way to describe a language's type-checking mechanism is based on when the
checking is done. Java uses compile-time type checking. Ruby uses run-time type checking.

Some statically-typed languages do some type checking at run-time. An example of a run-
time type error is Java's ClassCastException. C does absolutely no type-checking at run-
time. Ruby does absolutely no type-checking at compile-time.

What is ML's type-checking approach?

 http://www.artima.com/weblogs/viewpost.jsp?thread=46391

CSc 372, Fall 2006 Ruby, Slide 16
W. H. Mitchell (whm@msweng.com)

Variables have no type, continued

In a statically typed language a number of constraints can be checked at compile time. For
example, all of the following can be verified when a Java program is compiled:

x.getValue() x must have a getValue method

x * y x and y must be of compatible types for *

x.f(1,2,3) x.f must accept three integer parameters

In contrast, a typical compiler for a dynamically typed language will attempt to verify none
of the above when the code is compiled. If x doesn't have a getValue method, or x and y
can't be multiplied, or x.f requires three strings instead of three integers, there will be no
warning of that until the program is run.

For years it has been widely held in industry that static typing is a must for reliable systems
but a shift in thinking is underway. It is increasingly believed that good test coverage can
produce equally reliable software. 1

CSc 372, Fall 2006 Ruby, Slide 17
W. H. Mitchell (whm@msweng.com)

Ruby's philosophy is often "Why not?"

When designing a language, some designers ask, "Why should feature X be included?"
Some designers ask the opposite: "Why should feature X not be included?"

The instructor sees Ruby's philosophy as often being "Why not?" Here are some examples,
involving overloaded operators:

>> [1,2,3] + [4,5,6] + [] + [7]
=> [1, 2, 3, 4, 5, 6, 7]

>> "abc" * 5
=> "abcabcabcabcabc"

>> [1, 3, 15, 1, 2, 1, 3, 7] - [3, 2, 1]
=> [15, 7]

>> [10, 20, 30] * "..."
=> "10...20...30"

>> "decimal: %d, octal: %o, hex: %x" % [20, 20, 20]
=> "decimal: 20, octal: 24, hex: 14"

CSc 372, Fall 2006 Ruby, Slide 18
W. H. Mitchell (whm@msweng.com)

Building blocks

nil

Strings

Numbers

Conversions

Arrays

CSc 372, Fall 2006 Ruby, Slide 19
W. H. Mitchell (whm@msweng.com)

The value nil

nil is Ruby's "no value" value. The name nil references the only instance of the class
NilClass.

>> nil
=> nil

>> nil.class
=> NilClass

>> nil.object_id
=> 4

We'll see that Ruby uses nil in a variety of ways.

Speculate: Do uninitialized variables have the value nil?

CSc 372, Fall 2006 Ruby, Slide 20
W. H. Mitchell (whm@msweng.com)

Strings

Instances of Ruby's String class are used to represent character strings.

One way to specify a literal string is with double quotes. A variety of "escapes" are
recognized:

>> "formfeed \f, newline \n, return \r, tab \t"
=> "formfeed \f, newline \n, return \r, tab \t"

>> "\n\t\\".length
=> 3

> puts "newline >\n<, return (\r), tab >\t<"
newline >
), tab > <
=> nil

>> "Newlines: octal \012, hex \xa, control-j \cj"
=> "Newlines: octal \n, hex \n, control-j \n"

Page 321 in the text has a full list of escapes.

CSc 372, Fall 2006 Ruby, Slide 21
W. H. Mitchell (whm@msweng.com)

Strings, continued

A string literal may be constructed using apostrophes instead of double quotes. If so, only \'
and \\ are recognized as escapes:

>> '\n\t'.length Four characters: backslash, n, backslash, t
=> 4

>> '\'\\' Two characters: apostrophe, backslash
=> "'\\"

>> it.length
=> 2

A "here document" provides a third way to specify a string:

>> s = <<SomethingUnique
just
 testing
SomethingUnique
=> "just \n testing\n"

There's a fourth way, too: %q{ just testin' this } How many ways to do something is too
many? Which are syntactic sugar?

CSc 372, Fall 2006 Ruby, Slide 22
W. H. Mitchell (whm@msweng.com)

Strings, continued

The public_methods (and methods) method show the public methods that are available for
an object. Here are some of the methods for String:

>> "abc".public_methods.sort
=> ["%", "*", "+", "<", "<<", "<=", "<=>", "==", "===", "=~", ">", ">=", "[]", "[]=", "__id__",
"__send__", "all?", "any?", "between?", "capitalize", "capitalize!", "casecmp", "center",
"chomp", "chomp!", "chop", "chop!", "class", "clone", "collect", "concat", "count",
"crypt", "delete", "delete!", "detect", "display", "downcase", "downcase!", "dump",
"dup", "each", "each_byte", "each_line", "each_with_index", "empty?", "entries",
"eql?", "equal?", "extend", "find", "find_all", "freeze", "frozen?", "gem", "grep", "gsub",
"gsub!", "hash", "hex", "id", "include?", "index", "inject", "insert", "inspect",
"instance_eval", "instance_of?", "instance_variable_get", "instance_variable_set",
"instance_variables", "intern", "is_a?", "kind_of?", "length", "ljust", "lstrip", "lstrip!",
"map", "match", "max", "member?", "method", "methods","min", "next", "next!", "nil?",
"object_id", "oct", "partition", "private_methods", "protected_methods",
"public_methods", "reject", "replace", "require", "require_gem", "respond_to?",
"reverse", "reverse!", "rindex", "rjust", "rstrip", "rstrip!", "scan", "select", "send",
...

>> "abc".public_methods.length
=> 145

CSc 372, Fall 2006 Ruby, Slide 23
W. H. Mitchell (whm@msweng.com)

Strings, continued

Unlike Java, ML, and many other languages, strings in Ruby are mutable. If two variables
reference a string and the string is changed, the change is reflected by both variables:

>> x = "testing"
=> "testing"

>> y = x x and y now reference the same instance of String.
=> "testing"

>> x.upcase! Convention: If there are both applicative and imperative forms of a
method, the name of the imperative form ends with an exclamation.

=> "TESTING"

>> y
=> "TESTING"

In Java, if s1 and s2 are Strings an assignment such as s1 = s2 produces a shared reference
but it's never an issue because instances of String are immutable—no methods change a
String.

CSc 372, Fall 2006 Ruby, Slide 24
W. H. Mitchell (whm@msweng.com)

Strings, continued

The dup method produces a copy of a string.

>> y = x.dup
=> "TESTING"

>> y.downcase!
=> "testing"

>> y
=> "testing"

>> x
=> "TESTING"

Some objects that hold strings make a copy of the string when the string is added to the
object.

CSc 372, Fall 2006 Ruby, Slide 25
W. H. Mitchell (whm@msweng.com)

Strings, continued

Strings can be compared with a typical set of operators:

>> s1 = "apple"
=> "apple"

>> s2 = "testing"
=> "testing"

>> s1 == s2
=> false

>> s1 != s2
=> true

>> s1 < s2
=> true

>> s1 >= s2
=> false

CSc 372, Fall 2006 Ruby, Slide 26
W. H. Mitchell (whm@msweng.com)

Strings, continued

There is also a comparison operator. It produces -1, 0, or 1 depending on whether
the first operand is less than, equal to, or greater than the second operand.

>> "apple" <=> "testing"
=> -1

>> "testing" <=> "apple"
=> 1

>> "x" <=> "x"
=> 0

CSc 372, Fall 2006 Ruby, Slide 27
W. H. Mitchell (whm@msweng.com)

Strings, continued

A individual character can be extracted from a string but note that the result is
an integer character code (an instance of Fixnum), not a one-character string:

>> s = "abc"
=> "abc"

>> s[0]
=> 97 # 97 is the ASCII code for 'a'

>> s[1]
=> 98

>> s[-1] # -1 is the last character, -2 is next to last, etc.
=> 99

>> s[100] # Why not produce 0 for an out of bounds reference?
=> nil

Note that the position is zero-based. A negative value indicates an offset from the
end of the string.

What's a good reason that Java provides s.charAt(n) instead of allowing s[n]?

CSc 372, Fall 2006 Ruby, Slide 28
W. H. Mitchell (whm@msweng.com)

Strings, continued

A subscripted string can be the target of an assignment.

>> s = "abc"
=> "abc"

>> s[0] = 65
=> 65

>> s[1] = "tomi"
=> "tomi"

>> s
=> "Atomic"

The numeric code for a character can be obtained by preceding the character with a question
mark:

>> s[0] = ?B
=> 66
>> s
=> "Btomic"

CSc 372, Fall 2006 Ruby, Slide 29
W. H. Mitchell (whm@msweng.com)

Strings, continued

A substring can be referenced in several ways.

>> s = "replace"
=> "replace"

>> s[2,3]
=> "pla"

>> s[2,1] Remember that s[n] yields a number, not a string.
=> "p"

>> s[2..-1] 2..-1 creates a Range object. (More on ranges later.)
=> "place"

>> s[10,10]
=> nil

>> s[-4,3]
=> "lac"

Speculate: What does s[1,100] produce? How about s[-1,-3]?

CSc 372, Fall 2006 Ruby, Slide 30
W. H. Mitchell (whm@msweng.com)

Strings, continued

A substring can be the target of assignment:

>> s = "replace"
=> "replace"

>> s[0,2] = ""
=> ""

>> s
=> "place"

>> s[3..-1] = "naria"
=> "naria"

>> s["aria"] = "kton" If "aria" appears, replace it (error if not).
=> "kton"

>> s
=> "plankton"

CSc 372, Fall 2006 Ruby, Slide 31
W. H. Mitchell (whm@msweng.com)

Strings, continued

In a string literal enclosed with double quotes, or specified with a here document,
the sequence #{expr} causes interpolation of expr, an arbitrary Ruby expression.

>> x = 10
=> 10

>> y = "twenty"
=> "twenty"

>> s = "x = #{x}, y + y = '#{y + y}'"
=> "x = 10, y + y = 'twentytwenty'"

>> s = "String methods: #{"abc".methods}".length
=> 896

The << operator appends to a string and produces the new string. The string is changed.

>> s = "just"
=> "just"
>> s << "testing" << "this"
=> "justtestingthis"

CSc 372, Fall 2006 Ruby, Slide 32
W. H. Mitchell (whm@msweng.com)

Numbers

On lectura, integers in the range -2 to 2 -1 are represented by instances of Fixnum. If an30 30

operation produces a number outside of that range, the value is represented with a Bignum.

>> x = 2**30-1 The exponentiation operator is **.
=> 1073741823

>> x.class
=> Fixnum

>> y = x + 1
=> 1073741824

>> y.class
=> Bignum

>> z = y - 1
=> 1073741823

>> z.class
=> Fixnum

How can we see what methods are available for instances of Fixnum?

CSc 372, Fall 2006 Ruby, Slide 33
W. H. Mitchell (whm@msweng.com)

Numbers, continued

The Float class represents floating point numbers that can be represented by a double-
precision floating point number on the host architecture.

>> x = 123.456
=> 123.456

>> x.class
=> Float

>> x ** 0.5
=> 11.1110755554987

>> x * 2e-3
=> 0.246912

>> x = x / 0.0
=> Infinity

>> (0.0/0.0).nan?
=> true

CSc 372, Fall 2006 Ruby, Slide 34
W. H. Mitchell (whm@msweng.com)

Numbers, continued

Fixnums and Floats can be mixed. The result is a Float.

>> 10 / 5.1
=> 1.96078431372549

>> 10 % 4.5
=> 1.0

>> 2**40 / 8.0
=> 137438953472.0

>> it.class
=> Float

Other numeric classes in Ruby include BigDecimal, Complex, Rational and Matrix.

CSc 372, Fall 2006 Ruby, Slide 35
W. H. Mitchell (whm@msweng.com)

Conversions

Unlike many scripting languages, Ruby does not automatically convert strings to numbers
and numbers to strings as needed:

>> 10 + "20"
TypeError: String can't be coerced into Fixnum

The methods to_i, to_f, and to_s are used to convert values to Fixnums, Floats, and
Strings, respectively

>> 10.to_s + "20"
=> "1020"

>> 10 + "20".to_f
=> 30.0

>> 10 + 20.9.to_i
=> 30

>> 2**100.to_f
=> 1.26765060022823e+030

Speculate: What does "123xyz".to_i produce?

CSc 372, Fall 2006 Ruby, Slide 36
W. H. Mitchell (whm@msweng.com)

Arrays

An ordered sequence of values is typically represented in Ruby by an instance of Array.

An array can be created by enclosing a comma-separated sequence of values in square
brackets:

>> a1 = [10, 20, 30]
=> [10, 20, 30]

>> a2 = ["ten", 20, 30.0, 10**40]
=> ["ten", 20, 30.0, 100]

>> a3 = [a1, a2, [[a1]]]
=> [[10, 20, 30], ["ten", 20, 30.0, 100],
[[[10, 20, 30]]]]

What's a difference between a Ruby array and an ML list?

CSc 372, Fall 2006 Ruby, Slide 37
W. H. Mitchell (whm@msweng.com)

Arrays, continued

Array elements and subarrays (sometimes called slices) are specified with a notation like that
used for strings.

>> a = [1, "two", 3.0, %w{a b c d}]
=> [1, "two", 3.0, ["a", "b", "c", "d"]]

>> a[0]
=> 1

>> a[1,2]
=> ["two", 3.0]

>> a[-1][-2]
=> "c"

>> a[-1][-2][0]
=> 99

Note that %w{ ... } provides a way to avoid the tedium of surrounding each string with
quotes. Experiment with it!

CSc 372, Fall 2006 Ruby, Slide 38
W. H. Mitchell (whm@msweng.com)

Arrays, continued

Elements and subarrays can be assigned to. Ruby accommodates a variety of cases; here are
some:

>> a = [10, 20, 30, 40, 50, 60]
=> [10, 20, 30, 40, 50, 60]

>> a[1] = "twenty"; a Note: Semicolon separates expressions; a's value is shown.
=> [10, "twenty", 30, 40, 50, 60]

>> a[2..4] = %w{a b c d e}; a
=> [10, "twenty", "a", "b", "c", "d", "e", 60]

>> a[1..-1] = []; a
=> [10]

>> a[0] = [1,2,3]; a
=> [[1, 2, 3]]

>> a[10] = [5,6]; a
=> [[1, 2, 3], nil, nil, nil, nil, nil, nil, nil, nil, nil, [5, 6]]

CSc 372, Fall 2006 Ruby, Slide 39
W. H. Mitchell (whm@msweng.com)

Arrays, continued

A variety of operations are provided for arrays. Here's a small sample:

>> a = []
=> []

>> a << 1; a
=> [1]

>> a << [2,3,4]; a
=> [1, [2, 3, 4]]

>> a.reverse!; a
=> [[2, 3, 4], 1]

>> a[0].shift
=> 2

>> a
=> [[3, 4], 1]

>> a,b = [1,2,3,4], [1,3,5]
=> [[1, 2, 3, 4], [1, 3, 5]]

>> a + b
=> [1, 2, 3, 4, 1, 3, 5]

>> a - b
=> [2, 4]

>> a & b
=> [1, 3]

>> a | b
=> [1, 2, 3, 4, 5]

>> a == (a | b)[0..3]
=> true

CSc 372, Fall 2006 Ruby, Slide 40
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Ruby, Slide 41
W. H. Mitchell (whm@msweng.com)

Control structures

The while loop

Sidebar: Source code layout

Expressions or statements?

Logical operators

if-then-else

if and unless as modifiers

break and next

The for loop

CSc 372, Fall 2006 Ruby, Slide 42
W. H. Mitchell (whm@msweng.com)

The while loop

Here is a loop to print the numbers from 1 through 10, one per line.

i = 1
while i <= 10
 puts i
 i += 1
end

When i <= 10 produces false, control branches to the code following end (if any).

The body of the while is always terminated with end, even if there's only one expression in
the body.

The control expression can be optionally followed by do or a colon. Example:

while i <= 10 do # Or, while i <= 10 :
 puts i
 i += 1
end

What's a minor problem with Ruby's syntax versus Java's use of braces to bracket multi-line
loop bodies?

CSc 372, Fall 2006 Ruby, Slide 43
W. H. Mitchell (whm@msweng.com)

while, continued

In Java, control structures like if, while, and for are driven by the result of expressions that
produce a value whose type is boolean. C has a more flexible view: control structures
consider an integer value that is non-zero to be "true".

In Ruby, any value that is not false or nil is considered to be "true".

Consider this loop, which reads lines from standard input using gets.

while line = gets
 puts line
end

Each call to gets returns a string that is the next line of the file. The string is assigned to line
and like Java, assignment produces the value assigned. If the first line of the file is "one",
then the first time through the loop, what's evaluated is while "one". The value "one" is not
false or nil, so the body of the loop is executed and "one" is printed on standard output.

At end of file, gets returns nil. nil is assigned to line and produced as the value of the
assignment, terminating the loop in turn.

 I bet some of you get this wrong the first time, like I did!1

CSc 372, Fall 2006 Ruby, Slide 44
W. H. Mitchell (whm@msweng.com)

while, continued

On UNIX machines the string returned by gets has a trailing newline. The chomp method
of String can be used to remove it.

Here's a program that is intended to flatten the input lines to a single line:

result = ""

while line = gets.chomp
 result += line
end

puts result

It doesn't work. What's wrong with it?

Problem: Write a while loop that prints the characters in the string s, one per line. Don't use
the length or size methods of String.1

CSc 372, Fall 2006 Ruby, Slide 45
W. H. Mitchell (whm@msweng.com)

Sidebar: Source code layout

Unlike Java, Ruby does pay some attention to the presence of newlines in source code. For
example, a while loop cannot be naively compressed to a single line. This does not work:

while i <= 10 puts i i += 1 end # Syntax error!

If we add semicolons where newlines originally were, it works:

while i <= 10; puts i; i += 1; end # OK

There is some middle ground, too:

while i <= 10 do puts i; i += 1 end # OK

CSc 372, Fall 2006 Ruby, Slide 46
W. H. Mitchell (whm@msweng.com)

Source code layout, continued

Ruby considers a newline to terminate an expression, unless the expression is definitely
incomplete. Examples:

while i <= # OK because "i <=" is definitely incomplete
10 do puts i; i += 1 end

while i # NOT OK. "while i" is complete, but then "<= 10"
<= 10 do puts i; i += 1 end # is flagged as a syntax error.

There is a pitfall related to this rule. For example, Ruby considers

x = a + b
 - c

to be two expressions: x = a +b and -c.

Rule of thumb: If breaking an expression across lines, put an operator at the end of the line:

x = a + b +
 c

Alternative: Indicate continuation with a backslash at the end of the line.

CSc 372, Fall 2006 Ruby, Slide 47
W. H. Mitchell (whm@msweng.com)

Expression or statement?

Academic writing on programming languages commonly uses the term "statement" to denote
a syntactic element that performs an operation but does not produce a value. The term
"expression" is consistently used to describe an operation that produces a value.

Ruby literature, including the text, sometimes talks about the "while statement" even though
while produces a value:

>> i = 1
=> 1

>> a = (while i <= 3 do i += 1 end)
=> nil

Dilemma: Should we call it the "while statement" or the "while expression"?

The text sometimes uses the term "while loop" instead.

We'll see later that the break construct can cause a while loop to produce a value other than
nil.

CSc 372, Fall 2006 Ruby, Slide 48
W. H. Mitchell (whm@msweng.com)

Logical operators

Ruby has operators for conjunction, disjunction, and "not" with the same symbols as Java,
but with somewhat different semantics.

Conjunction is &&, just like Java, but note the values produced:

>> true && false
=> false

>> 1 && 2
=> 2

>> true && "abc"
=> "abc"

>> true && false
=> false

>> true && nil
=> nil

Challenge: Precisely describe the rule that Ruby uses to determine the value of a conjunction
operation.

CSc 372, Fall 2006 Ruby, Slide 49
W. H. Mitchell (whm@msweng.com)

Logical operators, continued

Disjunction is ||, just like Java. As with conjunction, the values produced are interesting:

>> 1 || nil
=> 1

>> false || 2
=> 2

>> "abc" || "xyz"
=> "abc"

>> s = "abc"
=> "abc"

>> s[0] || s[3]
=> 97

>> s[4] || false
=> false

CSc 372, Fall 2006 Ruby, Slide 50
W. H. Mitchell (whm@msweng.com)

Logical operators, continued

Just like Java, an exclamation mark inverts a logical value. The resulting value is true or
false.

>> ! true
=> false

>> ! 1
=> false

>> ! nil
=> true

>> ! (1 || 2)
=> false

>> ! ("abc"[5] || [1,2,3][10])
=> true

>> ![nil]
=> false

There are also and, or, and not operators, but with very low precedence. Why?

CSc 372, Fall 2006 Ruby, Slide 51
W. H. Mitchell (whm@msweng.com)

The if-then-else construct

Ruby's if-then-else looks familiar:

>> if 1 < 2 then "three" else [4] end
=> "three"

>> if 10 < 2 then "three" else [4] end
=> [4]

>> if 0 then "three" else [4] end
=> "three"

What can we say about it?

Speculate: What will 'if 1 > 2 then 3 end' produce?

CSc 372, Fall 2006 Ruby, Slide 52
W. H. Mitchell (whm@msweng.com)

if-then-else, continued

If there's no else clause and the control expression is false, nil is produced:

>> if 1 > 2 then 3 end
=> nil

If a language provides for if-then-else to return a value it raises the issue of what if-then
means.

• In the C family, if-then-else doesn't return a value.

• ML simply doesn't allow an else-less if.

• In Icon, an expression like if > 2 then 3 is said to fail. No value is produced and that
failure propagates to any enclosing expression, which in turn fails.

Ruby also provides 1 > 2 ? 3 : 4, a ternary conditional operator, just like the C family. Is
that a good thing or bad thing?

CSc 372, Fall 2006 Ruby, Slide 53
W. H. Mitchell (whm@msweng.com)

if-then-else, continued

The most common Ruby coding style puts the if, the else, the end, and the expressions of the
clauses on separate lines:

>> if lower <= x && x <= higher or inExtendedRange(x, rangeList) then
?> puts "x is in range"
>> history.add(x)
>> else
?> outliers.add(x)
>> end

Speculate: Ruby has both || and or for disjunction. Why was or used above?

CSc 372, Fall 2006 Ruby, Slide 54
W. H. Mitchell (whm@msweng.com)

The elsif clause

Ruby provides an elsif clause for "else-if" situations.

if average >= 90 then
 grade = "A"
elsif average >= 80 then
 grade = "B"
elsif average >= 70 then
 grade = "C"
else
 grade = "F"
end

Note that there is no "end" to terminate the then clauses. elsif both closes the current then
and starts a new clause.

It is not required to have a final else.

How could the code above be improved?

Is elsif syntactic sugar?

CSc 372, Fall 2006 Ruby, Slide 55
W. H. Mitchell (whm@msweng.com)

if and unless as modifiers

Conditional execution can be indicated by using if and unless as modifiers.

>> total, count = 123.4, 5
=> [123.4, 5]

>> printf("average = %g\n", total / count) if count != 0
average = 24.68
=> nil

>> total, count = 123.4, 0
=> [123.4, 0]

>> printf("average = %g\n", total / count) unless count == 0
=> nil

The general forms are:

expression1 if expression2
expression1 unless expression2

What does 'x.f if x' mean?

CSc 372, Fall 2006 Ruby, Slide 56
W. H. Mitchell (whm@msweng.com)

break and next

The break and next expressions are similar to break and continue in Java.

Below is a loop that reads lines from standard input, terminating on end of file or when a line
beginning with a period is read. Each line is printed unless the line begins with a pound sign.

while line = gets

 if line[0] == ?. then
 break
 end

 if line[0] == ?# then next end

 puts line
end

Recall: (1) If s is a string, s[0] produces an integer. (2) The construct ?c produces the integer
code of the character c.

Problem: Rewrite it to use if as a modifier.

CSc 372, Fall 2006 Ruby, Slide 57
W. H. Mitchell (whm@msweng.com)

break and next, continued

If an expression is specified with break, the value of the expression becomes the value of the
while:

% cat break2.rb
s = "x"

puts (while true do
 break s if s.size > 30
 s += s
end)

% ruby break2.rb
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
%

Two other control flow modifiers used with loops are redo and retry.

CSc 372, Fall 2006 Ruby, Slide 58
W. H. Mitchell (whm@msweng.com)

The for loop

Here are three simple examples of Ruby's for loop:

for i in 1..100 do
 sum += i
end

for i in [10,20,30] do
 sum += i
end

for method_name in "x".methods do
 puts method_name if method_name.include? "!"
end

The "in" expression must be an object that has an each method. In the first case, the "in"
expression is a Range. In the latter two it is an Array.

break and next have the same meaning as in a while loop.

CSc 372, Fall 2006 Ruby, Slide 59
W. H. Mitchell (whm@msweng.com)

The for loop, continued

The for loop supports parallel assignment:

for s,n,sep in [["1",5,"-"], ["s",2,"o"], [" <-> ",10,""]] do
 puts [s] * n * sep
end

Output:

1-1-1-1-1
sos
 <-> <-> <-> <-> <-> <-> <-> <-> <-> <->

Is it good or bad that the for loop specifically supports parallel assignment? How
inconvenient would it be to do without it?

Of course, while, for, if-then-else and other statements can be arbitrarily interleaved and
nested, just like in most languages.

CSc 372, Fall 2006 Ruby, Slide 60
W. H. Mitchell (whm@msweng.com)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60

