
CSc 372, Fall 2006 Ruby, Slide 77
W. H. Mitchell (whm@msweng.com)

Iterators and blocks

Using iterators and blocks

Iterate with each or use a for loop?

Creating iterators

CSc 372, Fall 2006 Ruby, Slide 78
W. H. Mitchell (whm@msweng.com)

Iterators and blocks

Some methods are iterators. An iterator that is implemented by the Array class is each.
each iterates over the elements of the array. Example:

>> x = [10,20,30]
=> [10, 20, 30]

>> x.each { puts "element" }
element
element
element
=> [10, 20, 30]

The construct { puts "element" } is a block. Array#each invokes the block once for each of
the elements of the array.

Because there are three values in x, the block is invoked three times and "element" is printed
three times.

Speculate: What does (1..50).each { putc ?x } do?

CSc 372, Fall 2006 Ruby, Slide 79
W. H. Mitchell (whm@msweng.com)

Iterators and blocks, continued

Iterators can pass one or more values to a block as arguments. Array#each passes each
array element in turn.

A block can access arguments by naming them with a parameter list, a comma-separated
sequence of identifiers enclosed in vertical bars.

We might print the values in an array like this:

>> [10, "twenty", 30].each { |e| printf("element: %s\n", e) }
element: 10
element: twenty
element: 30

A note about the format %s: In C, the value of the corresponding parameter must be a pointer
to a zero-terminated sequence of char values. Ruby is more flexible—%s causes to_s to be
invoked on the corresponding value. The result of to_s is used.

Another possibility for the format is %p, which causes inspect to be invoked. However, the
second line above would be element: "twenty".

CSc 372, Fall 2006 Ruby, Slide 80
W. H. Mitchell (whm@msweng.com)

Iterators and blocks, continued

For reference:

[10, "twenty", 30].each { |e| printf("element: %s\n", e) }

Problem: Using a block, compute the sum of the numbers in an array containing values of
any type. (Use elem.is_a? Numeric to decide whether elem is a number of some sort.)

Examples:

>> sum = 0

>> [10, "twenty", 30].each { ??? }
>> sum
=> 40

>> sum = 0

>> (1..100).each { ??? }

>> sum
=> 5050

CSc 372, Fall 2006 Ruby, Slide 81
W. H. Mitchell (whm@msweng.com)

Sidebar: Iterate with each or use a for loop?

You may recall that the for loop requires the result of the "in" expression to have an each
method. Thus, we always have a choice between a for loop,

for name in "x".methods do
 puts name if name.include? "!"
end

and iteration with each,

"x".methods.each {|name| puts name if name.include? "!" }

Which is better?

CSc 372, Fall 2006 Ruby, Slide 82
W. H. Mitchell (whm@msweng.com)

Iterators and blocks, continued

Array#each is typically used to create side effects of interest, like printing values or
changing variables but in many cases it is the value returned by an iterator that is of principle
interest.

See if you can describe what each of the following iterators is doing.

>> [10, "twenty", 30].collect { |v| v * 2 }
=> [20, "twentytwenty", 60]

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 }
=> ["a", [3]]

>> ["burger", "fries", "shake"].sort { |a,b| a[-1] <=> b[-1] }
=> ["shake", "burger", "fries"]

>> [10, 20, 30].inject(0) { |sum, i| sum + i }
=> 60

>> [10,20,30].inject([]) { |thusFar, element| thusFar << element << "---" }
=> [10, "---", 20, "---", 30, "---"]

CSc 372, Fall 2006 Ruby, Slide 83
W. H. Mitchell (whm@msweng.com)

Iterators and blocks, continued

We have yet to study inheritance in Ruby but we can query the ancestors of a class like this:

>> Array.ancestors
=> [Array, Enumerable, Object, Kernel]

Because an instance of Array is an Enumerable, we can apply iterators in Enumerable to
arrays:

>> [2, 4, 5].any? { |n| n % 2 == 0 }
=> true

>> [2, 4, 5].all? { |n| n % 2 == 0 }
=> false

>> [1,10,17,25].detect { |n| n % 5 == 0 }
=> 10

>> ["apple", "banana", "grape"].max { |a,b| v = "aeiou";
 a.count(v) <=> b.count(v) }
=> "banana"

CSc 372, Fall 2006 Ruby, Slide 84
W. H. Mitchell (whm@msweng.com)

Iterators and blocks, continued

Many classes have iterators. Here are some examples:

>> 3.times { |i| puts i }
0
1
2
=> 3

>> "abc".each_byte { |b| puts b }
97
98
99

>> (1..50).inject(1) { |product, i| product * i }
=> 30414093201713378043612608166064768844377641568960512000000000000

To print each line in the file x.txt, we might do this:

IO.foreach("x.txt") { |line| puts line }

A quick way to find the iterators for a class is to search for "block" in the documentation.

CSc 372, Fall 2006 Ruby, Slide 85
W. H. Mitchell (whm@msweng.com)

Blocks and iterators, continued

As you'd expect, blocks can be nested. Here is a program that reads lines from standard
input, assumes the lines consist of integers separated by spaces, and averages the values.

total = n = 0
STDIN.readlines().each {
 |line|
 line.split(" ").each {
 |word|
 total += word.to_i
 n += 1
 }
 }

printf("Total = %d, n = %d, Average = %g\n", total, n, total / n.to_f) if n != 0

Notes:
• STDIN represents "standard input". It is an instance of IO.
• STDIN.readlines reads standard input to EOF and returns an array of the lines read.
• The printf format specifier %g indicates to format the value as a floating point

number and select the better of fixed point or exponential form based on the value.

% cat nums.dat
5 10 0 50

 200
1 2 3 4 5 6 7 8 9 10
% ruby sumnums.rb < nums.dat
Total = 320, n = 15, Average = 21.3333

CSc 372, Fall 2006 Ruby, Slide 86
W. H. Mitchell (whm@msweng.com)

Some details on blocks

An alternative to enclosing a block in braces is to use do/end:

a.each do
|element|

 printf("element: %s\n", element)
 end

do/end has lower precedence than braces but that only becomes an issue if the iterator is
supplied an argument that is not enclosed in parentheses. (Good practice: enclose iterator
argument(s) in parentheses, as shown in these slides.)

Note that do, {, or a backslash (to indicate continuation) must appear on the same line as the
iterator invocation. The following will produce an error

a.each
 do # "LocalJumpError: no block given"

|element|
 printf("element: %s\n", element)
 end

CSc 372, Fall 2006 Ruby, Slide 87
W. H. Mitchell (whm@msweng.com)

Some details on blocks, continued

Blocks raise issues with the scope of variables. If a variable is created in a block, the scope
of the variable is limited to the block:

>> x
NameError: undefined local variable or method `x' for main:Object

>> [1].each { x = 10 } => [1]

>> x
NameError: undefined local variable or method `x' for main:Object

If a variable already exists, a reference in a block is resolved to that existing variable.

>> x = "test" => "test"

>> [1].each { x = 10 } => [1]

>> x => 10

Sometimes you want that, sometimes you don't. It's said that this behavior may change with
Ruby 2.0.

CSc 372, Fall 2006 Ruby, Slide 88
W. H. Mitchell (whm@msweng.com)

Creating iterators with yield

In Ruby, an iterator is "a method that can invoke a block".

The yield expression invokes the block associated with the current method invocation.

Here is a simple iterator that yields two values, a 3 and a 7:

def simple()
 puts "simple: Starting up..."
 yield 3

 puts "simple: More computing..."
 yield 7

 puts "simple: Out of values..."
 "simple result"
end

The iterator (simple) prints a line of output, then calls the block with the value 3. The
iterator prints another line and calls the block with 7. It prints one more line and then returns,
producing "simple result" as the value of simple() { |x| printf("\tx = %d\n", x) }.

Notice how the flow of control alternates between the iterator and the block.

Usage:

>> simple() { |x| printf("\tx = %d\n", x) }
simple: Starting up...
 x = 3
simple: More computing...
 x = 7
simple: Out of values...
=> "simple result"

CSc 372, Fall 2006 Ruby, Slide 89
W. H. Mitchell (whm@msweng.com)

yield, continued

Problem: Write an iterator from_to(f, t, by) that yields the integers from f through t in
steps of by, which defaults to 1.

>> from_to(1,10) { |i| puts i }
1
2
...
10
=> nil

>> from_to(0,100,25) { |i| puts i }
0
25
50
75
100
=> nil

CSc 372, Fall 2006 Ruby, Slide 90
W. H. Mitchell (whm@msweng.com)

yield, continued

If a block is to receive multiple arguments, just specify them as a comma-separated list for
yield.

Here's an iterator that produces consecutive pairs of elements from an array:

def elem_pairs(a)
 for i in 0..(a.length-2)
 yield a[i], a[i+1]
 end
end

Usage:

>> elem_pairs([3,1,5,9]) { |x,y| printf("x = %s, y = %s\n", x, y) }
x = 3, y = 1
x = 1, y = 5
x = 5, y = 9

Speculate: What will be the result with yield [a[i], a[i+1]]? (Extra brackets.)

CSc 372, Fall 2006 Ruby, Slide 91
W. H. Mitchell (whm@msweng.com)

yield, continued

Recall that Array#select produces the elements for which the block returns true:

>> [[1,2], "a", [3], "four"].select { |v| v.size == 1 }
=> ["a", [3]]

Speculate: How is the code in select accessing the result of the block?

CSc 372, Fall 2006 Ruby, Slide 92
W. H. Mitchell (whm@msweng.com)

yield, continued

The last expression in a block becomes the value of the yield that invoked the block.

Here's how we might implement a function-like version of select:

def select(enumerable)
 result = []
 enumerable.each do
 |element|
 if yield element then
 result << element
 end
 end
 return result
end

Usage:

>> select([[1,2], "a", [3], "four"]) { |v| v.size == 1 }
=> ["a", [3]]

Note the we pass the array as an argument instead of invoking the object's select method.

CSc 372, Fall 2006 Ruby, Slide 93
W. H. Mitchell (whm@msweng.com)

yield, continued

Problem: Implement in Ruby an analog for ML's foldr.

>> foldr([10,20,30], 0) { |e, thus_far| e + thus_far }
=> 60

>> foldr([10,20,30], 0) { |e, thus_far| 1 + thus_far }
=> 3

>> foldr([5, 1, 7, 2], 0) { |e, max| e > max ? e : max }
=> 7

Here's a weakness in the instructor's implementation:

>> foldr(1..10, []) { |e,thus_far| thus_far + [e] }
NoMethodError: undefined method `reverse_each' for 1..10:Range

What can we learn from it?

CSc 372, Fall 2006 Ruby, Slide 94
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Ruby, Slide 95
W. H. Mitchell (whm@msweng.com)

A Batch of Odds and Ends

Constants

Symbols

The Hash class

CSc 372, Fall 2006 Ruby, Slide 96
W. H. Mitchell (whm@msweng.com)

Constants

A rule in Ruby is that if an identifier begins with a capital letter, it represents a constant.

Ruby allows a constant to be changed but a warning is generated:

>> A = 1
=> 1

>> A = 2; A
(irb): warning: already initialized constant A
=> 2

Modifying an object referenced by a constant does not produce a warning:

>> L = [10,20]
=> [10, 20]

>> L << 30; L
=> [10, 20, 30]

>> L = 1
(irb): warning: already initialized constant L

CSc 372, Fall 2006 Ruby, Slide 97
W. H. Mitchell (whm@msweng.com)

Constants, continued

You may have noticed that the names of all the standard classes are capitalized. That's not
simply a convention; Ruby requires class names to be capitalized.

>> class b
>> end
SyntaxError: compile error
(irb): class/module name must be CONSTANT

If a method is given a name that begins with a capital letter, it can't be found:

>> def M; 10 end
=> nil
>> M
NameError: uninitialized constant M

CSc 372, Fall 2006 Ruby, Slide 98
W. H. Mitchell (whm@msweng.com)

Constants, continued

There are a number of predefined constants. Here are a few:

ARGV
An array holding the command line arguments, like the argument to main in a Java
program.

FALSE, TRUE, NIL
Synonyms for false, true, and nil.

STDIN, STDOUT
Instances of IO representing standard input and standard output (the keyboard and
screen, by default).

CSc 372, Fall 2006 Ruby, Slide 99
W. H. Mitchell (whm@msweng.com)

Symbols

An identifier preceded by a colon creates a Symbol. A symbol is much like a string but a
given identifier always produces the same symbol:

>> s = :length => :length

>> s.object_id => 42498

>> :length.object_id => 42498

In contrast, two identical string literals produce two different String objects:

>> "length".object_id => 23100890

>> "length".object_id => 23096170

If you're familiar with Java's String.intern method, note that Ruby's String#to_sym is roughly
equivalent:

>> "length".to_sym.object_id => 42498

For the time being, it's sufficient to simply know that :identifier creates a Symbol.

CSc 372, Fall 2006 Ruby, Slide 100
W. H. Mitchell (whm@msweng.com)

The Hash class

Ruby's Hash class is similar to Hashtable and Map in Java. It can be thought of as an array
that can be subscripted with values of any type, not just integers.

The expression { } (empty curly braces) creates a Hash:

>> numbers = { } => { }

>> numbers.class => Hash

Subscripting a hash with a "key" and assigning a value to it stores that key/value pair in the
hash:

>> numbers["one"] = 1 => 1

>> numbers["two"] = 2 => 2

>> numbers => {"two"=>2, "one"=>1}

>> numbers.size => 2

CSc 372, Fall 2006 Ruby, Slide 101
W. H. Mitchell (whm@msweng.com)

Hash, continued

At hand:

>> numbers => {"two"=>2, "one"=>1}

To fetch the value associated with a key, simply subscript the hash with the key. If the key is
not found, nil is produced.

>> numbers["two"] => 2

>> numbers["three"] => nil

The value associated with a key can be changed via assignment. A key/value pair can be
removed with Hash#delete.

>> numbers["two"] = "1 + 1" => "1 + 1"

>> numbers.delete("one") => 1 # The associated value, if any, is
returned.

>> numbers => {"two"=>"1 + 1"}

Speculate: What is the net result of numbers["two"] = nil?

CSc 372, Fall 2006 Ruby, Slide 102
W. H. Mitchell (whm@msweng.com)

Hash, continued

There are no restrictions on the types that can be used for keys and values.

>> h = { } => { }

>> h[1000] = [1,2] => [1, 2]

>> h[true] = { } => { }

>> h[[1,2,3]] = [4] => [4]

>> h => {true=>{ }, [1, 2, 3]=>[4], 1000=>[1, 2]}

>> h[h[1000] + [3]] << 40 => [4, 40]

>> h[!h[10]]["x"] = "ten" => "ten"

>> h => {true=>{"x"=>"ten"}, [1, 2, 3]=>[4, 40], 1000=>[1, 2]}

CSc 372, Fall 2006 Ruby, Slide 103
W. H. Mitchell (whm@msweng.com)

Hash, continued

It was said earlier that if a key is not found, nil is returned. That was a simplification. In
fact, the default value of the hash is returned if the key is not found.

The default value of a hash defaults to nil but an arbitrary default value can be specified when
creating a hash with new:

>> h = Hash.new("Go Fish!") => { } # Example from ruby-doc.org

>> h["x"] = [1,2] => [1, 2]

>> h["x"] => [1, 2]

>> h["y"] => "Go Fish!"

>> h.default => "Go Fish!"

It is not discussed here but there is also a form of Hash#new that uses a block to produce
default values.

CSc 372, Fall 2006 Ruby, Slide 104
W. H. Mitchell (whm@msweng.com)

Hash example: tally.rb

Here is a program that reads lines from standard input and tallies the number of occurrences
of each word. The final counts are dumped with inspect.

counts = Hash.new(0) # Use default of zero so that ' += 1' works.

STDIN.readlines.each {
 |line|
 line.split(" ").each {
 |word|
 counts[word] += 1
 }
 }
puts counts.inspect # Equivalent: p counts

Usage:

% ruby tally.rb
to be or
not to be
^D
{"or"=>1, "be"=>2, "to"=>2, "not"=>1}

CSc 372, Fall 2006 Ruby, Slide 105
W. H. Mitchell (whm@msweng.com)

tally.rb, continued

The output of puts counts.inspect is not very user-friendly:

{"or"=>1, "be"=>2, "to"=>2, "not"=>1}

Hash#sort produces a list of key/value lists ordered by the keys, in ascending order:

>> counts.sort
[["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Problem: Produce nicely labeled output, like this:

Word Count
be 2
not 1
or 1
to 2

CSc 372, Fall 2006 Ruby, Slide 106
W. H. Mitchell (whm@msweng.com)

tally.rb, continued

At hand:

>> counts.sort
[["be", 2], ["not", 1], ["or", 1], ["to", 2]]

Solution:

([["Word","Count"]] + counts.sort).each {
 |k,v| printf("%-10s\t%5s\n", k, v) # %-10s left-justifies in a field of width 10
 }

As a shortcut for easy alignment, the column headers are put at the start of the list. Then, we
use %5s instead of %5d to format the counts and accommodate "Count". (Recall that this
works because %s causes to_s to be invoked on the value.)

Is the shortcut a "programming technique" or a hack?

CSc 372, Fall 2006 Ruby, Slide 107
W. H. Mitchell (whm@msweng.com)

tally.rb, continued

Hash#sort's default behavior of ordering by keys can be overridden by supplying a block.

The block is repeatedly invoked with two arguments: a pair of list elements.

>> counts.sort { |a,b| puts "a = #{a.inspect}, b = #{b.inspect}"; 1}
a = ["or", 1], b = ["to", 2]
a = ["to", 2], b = ["not", 1]
a = ["be", 2], b = ["to", 2]
a = ["be", 2], b = ["or", 1]

The block is to return -1, 0, or 1 depending on whether a is considered to be less than, equal
to, or greater than b.

Here's a block that sorts by descending count: (the second element of the two-element lists)

>> counts.sort { |a,b| b[1] <=> a[1] }
[["to", 2], ["be", 2], ["or", 1], ["not", 1]]

How could we put ties on the count in ascending order by the words? Example:
[["be", 2], ["to", 2], ["not", 1], ["or", 1]]

CSc 372, Fall 2006 Ruby, Slide 108
W. H. Mitchell (whm@msweng.com)

Hash initialization

It is tedious to initialize a hash with a series of assignments:

numbers = { }
numbers["one"] = 1
numbers["two"] = 2
...

Ruby provides a shortcut:

>> numbers = { "one", 1, "two", 2, "three", 3 }
=> {"three"=>3, "two"=>2, "one"=>1}

There's a more verbose variant, too:

>> numbers = { "one" => 1, "two" => 2, "three" => 3 }
=> {"three"=>3, "two"=>2, "one"=>1}

One more option: (but note that both keys and values are strings)

>> Hash[* %w/a 1 b 2 c 3 d 4 e 5/]
=> {"a"=>"1", "b"=>"2", "c"=>"3", "d"=>"4", "e"=>"5"}

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

