
CSc 372, Fall 2006 Ruby, Slide 109
W. H. Mitchell (whm@msweng.com)

Regular Expressions

A little theory

Good news and Bad news

The match operator

Character classes

Alternation and grouping

Repetition

split and scan

Anchors

Grouping and references

Iteration with gsub

Application: Time totaling

CSc 372, Fall 2006 Ruby, Slide 110
W. H. Mitchell (whm@msweng.com)

A little theory

In computer science theory, a language is a set of strings. The set may be infinite.

The Chomsky hierarchy of languages looks like this:

Unrestricted languages ("Type 0")
Context-sensitive languages ("Type 1")
Context-free languages ("Type 2")
Regular languages ("Type 3")

Roughly speaking, natural languages are unrestricted languages that can only specified by
unrestricted grammars.

Programming languages are usually context-free languages—they can be specified with a
context-free grammar, which has very restrictive rules. Every Java program is a string in the
context-free language that is specified by the Java grammar.

A regular language is a very limited kind of context free language that can be described by a
regular grammar. A regular language can also be described by a regular expression.

CSc 372, Fall 2006 Ruby, Slide 111
W. H. Mitchell (whm@msweng.com)

A little theory, continued

A regular expression is simply a string that may contain metacharacters. Here is a simple
regular expression:

a+

It specifies the regular language that consists of the strings {a, aa, aaa, ...}.

Here is another regular expression:

(ab)+c*

It describes the set of strings that have ab repeated some number of times followed by zero
or more c's. Some strings in the language are ab, ababc, and ababababccccccc.

The regular expression

(north|south)(east|west)

describes a language with four strings: {northeast, northwest, southeast, southwest}.

CSc 372, Fall 2006 Ruby, Slide 112
W. H. Mitchell (whm@msweng.com)

Good news and bad news

UNIX tools such as the ed editor and grep/fgrep/egrep introduced regular expressions to a
wide audience.

Many languages provide a library for working with regular expressions. Java provides the
java.util.regex package. The command man regex produces some documentation for the C
library's regular expression routines.

Some languages, Ruby included, have a regular expression datatype.

Regular expressions have a sound theoretical basis and are also very practical. Over time,
however, a great number of extensions have been added. In languages like Ruby, regular
expressions are truly a language within a language.

Chapter 22 of the text devotes four pages to its summary of regular expressions. In contrast,
integers, floating point numbers, strings, ranges, arrays, and hashes are summarized in a total
of four pages.

CSc 372, Fall 2006 Ruby, Slide 113
W. H. Mitchell (whm@msweng.com)

Good news and Bad news, continued

Entire books have been written on the subject of regular expressions. A number of tools have
been developed to help programmers create and maintain complex regular expressions.

Here is a regular expression written by Mark Cranness and posted at regexlib.com:

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?=[\x01-\x7f])[^"\\]|\\[\x01-\x7f])*"\x20*)*(?
<angle><))?((?!\.)(?>\.?[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-\
x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]{2,}|\[(((?(?<!\[)\.)(25[0-5]|2[0-4]\d|[01]?\d?
\d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:((?=[\x01-\x7f])[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$

It describes RFC 2822 email addresses.

The instructor believes that regular expressions have their place but grammar-based parsers
should be considered more often than they are, especially when an underlying specification
includes a grammar.

We'll cover a subset of Ruby's regular expression capabilities.

CSc 372, Fall 2006 Ruby, Slide 114
W. H. Mitchell (whm@msweng.com)

A simple regular expression in Ruby

One way to create a regular expression (RE) in Ruby is to use the /pattern/ syntax:

>> re = /a.b.c/ => /a.b.c/

>> re.class => Regexp

In an RE, a dot is a metacharacter (a character with special meaning) that will match any
(one) character.

Alphanumeric characters and some special characters simply match themselves.

The meaning of a metacharacter can be suppressed by preceding with a backslash.

The RE /a.b.c/ matches strings that contain the five-character sequence
a<anychar>b<anychar>c, like "albacore", "barbecue", "drawback", and

"iambic".

How many strings are in the language specified with the regular expression /a.b.c/?

CSc 372, Fall 2006 Ruby, Slide 115
W. H. Mitchell (whm@msweng.com)

The match operator

The binary operator =~ is called "match". One operand must be a string and the other must
be a regular expression. If the string contains a match for the RE, the position of the match is
returned. nil is returned if there is no match.

>> "albacore" =~ /a.b.c/ => 0

>> /a.b.c/ =~ "drawback" => 2

>> "abc" =~ /a.b.c/ => nil

What does the following loop do?

while line = gets do
 puts line if line =~ /a.b.c/
end

How could we invert the operation of the loop?

Problem: Write a program that prints lines longer than the length specified by a command
line argument. For example, longerthan 80 < x prints the lines in x that are 81 characters or
more in length. (Don't use String#length or size!)

CSc 372, Fall 2006 Ruby, Slide 116
W. H. Mitchell (whm@msweng.com)

The match operator, continued

After a successful match we can use some cryptically named predefined variables to access
parts of the string:

$` Is the portion of the string that precedes the match. (That's a backquote.)
$& Is the portion of the string that was matched by the regular expression.
$' Is the portion of the string following the match.

Example:

>> "limit=300" =~ /=/ => 5

>> $` => "limit"

>> $& => "="

>> $' => "300"

CSc 372, Fall 2006 Ruby, Slide 117
W. H. Mitchell (whm@msweng.com)

The match operator, continued

Here is a handy utility routine from the text:

def show_match(s, re)
 if s =~ re then
 "#{$`}<<#{$&}>>#{$'}"
 else
 "no match"
 end
end

Usage:

>> show_match("limit is 300", /is/) => "limit <<is>> 300"

>> %w{albacore drawback iambic}.each { |w| puts show_match(w, /a.b.c/) }
<<albac>>ore
dr<<awbac>>k
i<<ambic>>

Handy: Put show_match in your ~/.irbrc file. Maybe name it sm.

CSc 372, Fall 2006 Ruby, Slide 118
W. H. Mitchell (whm@msweng.com)

Regular expressions as subscripts

As a subscript, a regular expression specifies the portion of the string, if any, matched by it.

>> s = "testing" => "testing"

>> s[/.../] = "*" => "*"

>> s => "*ting"

Another example:

>> %w{albacore drawback iambic}.map { |w| w[/a.b.c/] = "(a.b.c)"; w }
=> ["(a.b.c)ore", "dr(a.b.c)k", "i(a.b.c)"]

CSc 372, Fall 2006 Ruby, Slide 119
W. H. Mitchell (whm@msweng.com)

Character classes

The pattern [characters] is an RE that matches any one of the specified characters.

[^characters] is an RE that matches any character not in the set. (It matches the complement
of the set.)

A dash between two characters in a set specifies a range based on ASCII codes.

Examples:

/[aeiou]/ matches a string that contains a lower-case vowel
>> show_match("testing", /[aeiou]/)
=> "t<<e>>sting"

/[^0-9]/ matches a string that contains a non-digit
>> show_match("1,000", /[^0-9]/)
=> "1<<,>>000"

/[a-z][0-9][a-z]/ matches strings that somewhere contain the three-character sequence
lowercase letter, digit, lowercase letter.

>> show_match("A1b33s4ax1", /[a-z][0-9][a-z]/)
=> "A1b33<<s4a>>x1"

CSc 372, Fall 2006 Ruby, Slide 120
W. H. Mitchell (whm@msweng.com)

Character classes, continued

Ruby provides abbreviations for some commonly used character classes:

\d Stands for [0-9]
\w Stands for [A-Za-z0-9_]
\s Whitespace—blank, tab, carriage return, newline, formfeed

The abbreviations \D, \W, and \S produce a complemented set for the corresponding class.

Examples:

>> show_match("Call me at 555-1212", /\d\d\d-\d\d\d\d/)
=> "Call me at <<555-1212>>"

>> "fun double(n) = n * 2".gsub(/\w/,".")
=> "...(.) = . * ."

>> "FCS 202, 12:30-13:45 TH".gsub(/\D/, "~")
=> "~~~~202~~12~30~13~45~~~"

gsub's replacement string can be any length, as you'd expect.

CSc 372, Fall 2006 Ruby, Slide 121
W. H. Mitchell (whm@msweng.com)

Alternatives and grouping

Alternatives can be specified with a vertical bar:

>> %w{one two three four}.select { |s| s =~ /two|four|six/ }
=> ["two", "four"]

Parentheses can be used for grouping. Consider this regular expression:

/(two|three) (apple|biscuit)s/

It corresponds to a regular language with four strings:

two apples
three apples
two biscuits
three biscuits

Usage:

>> "I ate two apples." =~ /(two|three) (apple|biscuit)s/ => 6

>> "She ate three mice." =~ /(two|three) (apple|biscuit)s/ => nil

CSc 372, Fall 2006 Ruby, Slide 122
W. H. Mitchell (whm@msweng.com)

Creating regular expressions at run-time

The method Regexp.new(s) creates a regular expression from the string s.

counts = %w{two three four five}
foods = %w{apples oranges bananas}

re = ""; sep = ""
counts.each {
 |count| foods.each {
 |food|

re << sep << count << " " << food
sep = "|"

 }
}
puts re
re = Regexp.new(re)
while line = (printf("Query? "); gets)
 if line =~ re then
 puts "Yes: #{$`}[#{$&}]#{$'}"
 else puts "No"
 end
end

Execution:

% ruby re2.rb
two apples|two oranges|two bananas|three
apples|three oranges|three bananas|four
apples|...

Query? Are there four apples?
Yes: Are there [four apples]?

Query? We sold two bananas.
Yes: We sold [two bananas].

Query? Three oranges were thrown at me!
No

CSc 372, Fall 2006 Ruby, Slide 123
W. H. Mitchell (whm@msweng.com)

Repetition with *, +, and ?

If R is a regular expression, then...

R* matches zero or more occurrences of R.

R+ matches one or more occurrences of R.

R? matches zero or one occurrences of R.

All have higher precedence than juxtaposition.

Examples:

/ab*c/ Matches strings that contain an 'a' that is followed by zero or more 'b's that
are followed by a 'c'. Examples: ac, abc, abbbbbbc, back, and cache.

/-?\d+/ Matches strings that contain an integer. What strings are matched by /-?\d*/?
What would show_match("maybe --123.4e-10 works", /-?\d+/) produce?

/a(12|21|3)*b/
Matches strings like ab, a3b, a312b, and a3123213123333b.

CSc 372, Fall 2006 Ruby, Slide 124
W. H. Mitchell (whm@msweng.com)

Repetition, continued

The operators *, +, and ? are "greedy"—each tries to match the longest string possible, and
cuts back only to make the full expression succeed. Example:

Given a.*b and the input 'abbb', the first attempt is:

a matches a
.* matches bbb
b fails—no characters left!

The matching algorithm then backtracks and does this:

a matches a
.* matches bb
b matches b

CSc 372, Fall 2006 Ruby, Slide 125
W. H. Mitchell (whm@msweng.com)

Repetition, continued

More examples of greed:

>> show_match("xabbbbc", /a.*b/) => "x<<abbbb>>c"

>> show_match("xabbbbc", /ab?b?/) => "x<<abb>>bbc"

>> show_match("xabbbbc", /ab?b?.*c/ => "x<<abbbbc>>"

>> show_match("maybe --123.4e-10 works", /-?\d+/)
=> "maybe -<<-123>>.4e-10 works"

Why are *, +, and ? greedy?

CSc 372, Fall 2006 Ruby, Slide 126
W. H. Mitchell (whm@msweng.com)

Repetition, continued

Describe the strings matched by...

/[a-z]+[0-9]?/
/a...b?c/
/..1.*2../
/..*.+.*./
/((ab)+c?(xyz)*)?/

Specify an RE that matches...

Strings corresponding to ML int lists, like [10], [5,1,~700], and []. Assume there are
no embedded spaces.

Lines that contain only whitespace and a left or right brace.

Strings that match /^[A-Za-z_]\w*$/ commonly occur in programs. What are they?

CSc 372, Fall 2006 Ruby, Slide 127
W. H. Mitchell (whm@msweng.com)

split and scan with regular expressions

It is possible to split a string on a regular expression:

>> " one, two,three / four".split(/[\s,\/]+/) # Note escaped backslash in class
=> ["", "one", "two", "three", "four"]

Unfortunately, leading delimiters produce an empty string in the result.

If we can describe the strings of interest instead of what separates them, scan is a better
choice:

>> "10.0/-1.3...5.700+[1.0,2.3]".scan(/-?\d+\.\d+/)
=> ["10.0", "-1.3", "5.700", "1.0", "2.3"]

Here's a way to keep all the pieces:

>> " one, two,three / four".scan(/(\w+|\W+)/)
=> [[" "], ["one"], [", "], ["two"], [","], ["three"], [" / "], ["four"]]

A list of lists is produced because of the grouping. We'll see a use for this later.

CSc 372, Fall 2006 Ruby, Slide 128
W. H. Mitchell (whm@msweng.com)

Anchors

The metacharacter ^ is an anchor. It doesn't match any characters but it constrains the
following regular expression to appear at the beginning of the string being matched against.

Another anchor is $. It constrains the preceding regular expression to appear at the end of
the string.

 $ grep.rb ^bucket < $words
bucket
bucketed
bucketeer

$ grep.rb bucket$ < $words
bucket
gutbucket
trebucket

Problems:
Specify an RE that will match words that are at least six characters long, start with an
'a', and end with a 'z'.

Count the number of empty lines in x.rb. (Yes, you can't use String#size!)

CSc 372, Fall 2006 Ruby, Slide 129
W. H. Mitchell (whm@msweng.com)

Groups and references

In addition to providing a way to override precedence rules, parentheses create references
(also called back references) to the text matched by a group.

Here is a regular expression that matches strings consisting of digits where the first and last
digit are the same:

/^(\d)\d*\1$/

Piece by piece:

^ Require the following RE to be at the beginning of the string.

(\d) Match one digit and retain it as the text of "group 1".

\d* Match zero or more digits.

\1 The text of group 1.

$ Require the preceding RE to be at the end of the string.

CSc 372, Fall 2006 Ruby, Slide 130
W. H. Mitchell (whm@msweng.com)

Groups and references, continued

For reference:

/^(\d)\d*\1$/

Usage:

>> show_match("121", /^(\d)\d*\1$/) => "<<121>>"

>> show_match("12", /^(\d)\d*\1$/) => "no match"

>> show_match("3013", /^(\d)\d*\1$/) => "<<3013>>"

>> show_match("3", /^(\d)\d*\1$/) => "no match"

A little fun:

>> (1000..2000).select { |n| (7**n).to_s =~ /^(\d)\d*\1$/ }
=> [1000, 1012, 1020, 1021, 1023, 1032, 1044, 1046, 1052, 1053, 1055, 1064, 1075,
1084, 1096, 1107, 1116, 1128, 1130, 1136, 1137, 1139, 1148, 1168, 1180, 1191,
1200, 1212, 1220, 1221, 1223, 1232, 1246, 1252, 1255, 1264, 1275, 1284, ...]

CSc 372, Fall 2006 Ruby, Slide 131
W. H. Mitchell (whm@msweng.com)

Groups and references, continued

In addition to setting $`, $&, and $', a successful match also sets $1, $2, ..., $9 to the text of
the corresponding group.

Strictly to illustrate the mechanism, here is a method that swaps the first three and last
characters of a string:

def swap3(s)
 if s =~ /(...)(.*)(...)/ then
 "#{$3}#{$2}#{$1}"
 else
 s
 end
end

Usage:

>> swap3 "abc-def" => "def-abc"
>> swap3 "aaabbb" => "bbbaaa"
>> swap3 "abcd" => "abcd"

In actual practice what's a better way to perform this computation?

CSc 372, Fall 2006 Ruby, Slide 132
W. H. Mitchell (whm@msweng.com)

Groups and references, continued

As a more practical example, here is a method that rewrites infix operators as function calls:

$ops = { "-" => "sub", "+" => "add", "mul" => "mul", "div" => "div" } # global variable
def infix_to_function(line)
 if line =~ /^(\w+)\s*(([-+]|(mul|div)))\s*(\w+)$/ then
 fcn = $ops[$2]
 return "#{fcn}(#{$1},#{$5})"
 else
 return nil
 end
end

Usage:

>> infix_to_function("3 + 4") => "add(3,4)"

>> infix_to_function("limit-1500") => "sub(limit,1500)"

>> infix_to_function("10mul20") => "mul(10,20)"

Could we generate the regular expression from the hash? Do we really need a character class
or would just alternation suffice?

CSc 372, Fall 2006 Ruby, Slide 133
W. H. Mitchell (whm@msweng.com)

Groups and references, continued

If the argument to scan has one or more groups, a list of lists is produced:

>> "1:2 33:28 100:7".scan(/(\d+):(\d+)/)
=> [["1", "2"], ["33", "28"], ["100", "7"]]

>> "1234567890".scan(/(.)(.)(.)/)
=> [["1", "2", "3"], ["4", "5", "6"], ["7", "8", "9"]]

Recall this example:

>> " one, two,three / four".scan(/(\w+|\W+)/)
=> [[" "], ["one"], [", "], ["two"], [","], ["three"], [" / "], ["four"]]

CSc 372, Fall 2006 Ruby, Slide 134
W. H. Mitchell (whm@msweng.com)

Iteration with gsub

Recall String#gsub:

>> "fun double(n) = n * 2".gsub(/\w/,".")
=> "...(.) = . * ."

gsub has a one argument form that is an iterator. The result of the block is substituted for
the match.

Here is a method that augments a string with a running sum of the numbers it contains:

def running_sums(s)
 sum = 0
 s.gsub(/\d+/) {
 sum += $&.to_i
 $& + "(%d)" % sum
 }
end

Usage:
>> running_sum("1 pencil, 3 erasers, 2 pens")
=> "1(1) pencil, 3(4) erasers, 2(6) pens"

CSc 372, Fall 2006 Ruby, Slide 135
W. H. Mitchell (whm@msweng.com)

Application: Time totaling

Consider an application that reads elapsed times on standard input and prints their total:

% ttl.rb
3h
15m
4:30
^D
7:45

Multiple times can be specified per line:

% ruby ttl.rb
10m, 20m
3:30 2:15 1:01
^D
7:16

Times in an unexpected format are ignored:
% ttl.rb
10 2:90
What's 10? Ignored...
What's 2:90? Ignored...

CSc 372, Fall 2006 Ruby, Slide 136
W. H. Mitchell (whm@msweng.com)

Time totaling, continued

def main
 mins = 0
 while line = gets do
 line.scan(/[^\s,]+/).each {|time| mins += parse_time(time) }
 end
 printf("%d:%02d\n", mins / 60, mins % 60)
end

def parse_time(s)
 case
 when s =~ /^(\d+):([0-5]\d)$/
 $1.to_i * 60 + $2.to_i
 when s =~ /^(\d+)([hm])$/
 if $2 == "h" then $1.to_i * 60
 else $1.to_i end
 else
 print("What's #{s}? Ignored...\n"); 0
 end
end
main

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

