
CSc 372, Fall 2006 Ruby, Slide 137
W. H. Mitchell (whm@msweng.com)

Class definition

Counter: A tally counter

An interesting thing about instance variables

Addition of methods

An interesting thing about class defintions

Sidebar: Fun with eval

Class variables and methods

Setters and getters

A little bit on access control

Getters and setters

CSc 372, Fall 2006 Ruby, Slide 138
W. H. Mitchell (whm@msweng.com)

A tally counter

Imagine a class named Counter that models a tally counter.

Here's how we might create and interact with an instance of
Counter:

c1 = Counter.new
c1.click
c1.click
puts c1 # Output: Counter's count is 2
c1.reset

c2 = Counter.new "c2"
c2.click
puts c2 # Output: c2's count is 1

c2.click
printf("c2 = %d\n", c2.count) # Output: c2 = 2

CSc 372, Fall 2006 Ruby, Slide 139
W. H. Mitchell (whm@msweng.com)

Counter, continued

Here is a partial implementation of Counter:

class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end
end

The reserved word class begins a class definition; a corresponding end terminates it. A
class name must begin with a capital letter.

The method name initialize is special. It identifies the method that is called when the method
new is invoked:

c1 = Counter.new

c2 = Counter.new "c2"

If no argument is supplied to new, the default value of "Counter" is used.

Obviously, initialize is the counterpart to a constructor in Java.

CSc 372, Fall 2006 Ruby, Slide 140
W. H. Mitchell (whm@msweng.com)

Counter, continued

For reference:

class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end
end

The constructor initializes two instance variables: @count and @label.

Instance variables are identified by prefixing them with @.

An instance variable comes into existence when a value is assigned to it.

Just like Java, each object has its own copy of instance variables.

Unlike variables local to a method, instance variables have a default value of nil.

CSc 372, Fall 2006 Ruby, Slide 141
W. H. Mitchell (whm@msweng.com)

Counter, continued

For reference:

class Counter
 def initialize(label = "Counter")
 @count = 0
 @label = label
 end
end

When irb displays an object, the instance variables are shown:

>> a = Counter.new "a"
=> #<Counter:0x2c61eb4 @label="a", @count=0>

>> b = Counter.new
=> #<Counter:0x2c4da04 @label="Counter", @count=0>

>> [a,b]
=> [#<Counter:0x2c61eb4 @label="a", @count=0>,
 #<Counter:0x2c4da04 @label="Counter", @count=0>]

CSc 372, Fall 2006 Ruby, Slide 142
W. H. Mitchell (whm@msweng.com)

Counter, continued

Here's the full source:

class Counter
 def initialize(label = "Counter")
 @count = 0; @label = label
 end
 def click
 @count += 1
 end
 def reset
 @count = 0
 end
 def count # Note the convention: count, not get_count
 @count
 end
 def to_s
 return "#{@label}'s count is #{@count}"
 end
end

A very common error is to omit the @ on a reference to an instance variable.

CSc 372, Fall 2006 Ruby, Slide 143
W. H. Mitchell (whm@msweng.com)

An interesting thing about instance variables

Consider this class:

class X
 def initialize(n)
 case n
 when 1 then @x = 1
 when 2 then @y = 1
 when 3 then @x = @y = 1
 end
 end
end

What's interesting about the following?

>> X.new 1 => #<X:0x2c26a44 @x=1>

>> X.new 2 => #<X:0x2c257d4 @y=1>

>> X.new 3 => #<X:0x2c24578 @x=1, @y=1>

CSc 372, Fall 2006 Ruby, Slide 144
W. H. Mitchell (whm@msweng.com)

Addition of methods

In Ruby, a method can be added to an existing class. In the example below we add a label
method to Counter, to fetch the value of the instance variable @label.

>> c = Counter.new "ctr 1"
=> #<Counter:0x2c26bac @label="ctr 1", @count=0>

>> c.label
NoMethodError: undefined method `label' for #<Counter:0x2c26bac @label="ctr 1",
@count=0>
 from (irb):4
>> class Counter
>> def label
>> @label
>> end
>> end
=> nil

>> c.label
=> "ctr 1"

What are the implications of this capability?

CSc 372, Fall 2006 Ruby, Slide 145
W. H. Mitchell (whm@msweng.com)

Addition of methods, continued

We can extend built-in classes, too!

% cat hexstr.rb
class Fixnum
 def hexstr
 return "%x" % self
 end
end

Usage:

>> load "hexstr.rb" => true

>> 15.hexstr => "f"

>> p (10..20).collect { |n| n.hexstr }
["a", "b", "c", "d", "e", "f", "10", "11", "12", "13", "14"]
=> nil

CSc 372, Fall 2006 Ruby, Slide 146
W. H. Mitchell (whm@msweng.com)

An interesting thing about class definitions

Observe the following. What does it suggest to you?

>> class X
>> end
=> nil

>> p (class X; end)
nil
=> nil

>> class X; puts "here"; end
here
=> nil

CSc 372, Fall 2006 Ruby, Slide 147
W. H. Mitchell (whm@msweng.com)

Class definitions are executable code

In fact, a class definition is executable code. Consider the following, which uses a case
statement to selectively execute defs.

class X
 print "What methods would you like? "
 methods = gets.chomp
 methods.each_byte { |c|
 case c
 when ?f then def f; "from f" end
 when ?g then def g; "from g" end
 when ?h then def h; "from h" end
 end
 }
end

Execution:

What methods would you like? fg
>> c = X.new => #<X:0x2c2a1e4>
>> c.f => "from f"
>> c.h
NoMethodError: undefined method `h' for #<X:0x2c2a1e4>

CSc 372, Fall 2006 Ruby, Slide 148
W. H. Mitchell (whm@msweng.com)

Sidebar: Fun with eval

Kernel#eval parses a string containing Ruby source code and executes it.

>> s = "abc" => "abc"

>> n = 3 => 3

>> eval "x = s * n" => "abcabcabc"

>> x => "abcabcabc"

>> eval "x[2..-2].length" => 6

>> eval gets
s.reverse

=> "cba"

Look carefully at the above. Note that eval uses variables from the current environment and
that an assignment to x is reflected in the environment.

Bottom line: A Ruby program can generate code for itself.

CSc 372, Fall 2006 Ruby, Slide 149
W. H. Mitchell (whm@msweng.com)

Sidebar, continued

Problem: Create a file new_method.rb with a class X that prompts the user for a method
name, parameters, and method body. It then creates that method. Repeat.

>> load "new_method.rb"
What method would you like? add
Parameters? a, b
What shall it do? a + b
Method add(a, b) added to class X

What method would you like? last
Parameters? a
What shall it do? a[-1]
Method last(a) added to class X

What method would you like? ^D

>> c = X.new => #<X:0x2c2980c>

>> c.add(3,4) => 7

>> c.last [1,2,3] => 3

CSc 372, Fall 2006 Ruby, Slide 150
W. H. Mitchell (whm@msweng.com)

Sidebar, continued

Solution:

class X
 while true
 print "What method would you like? "
 name = gets || break
 name.chomp!

 print "Parameters? "
 params = gets.chomp

 print "What shall it do? "
 body = gets.chomp

 code = "def #{name} #{params}; #{body}; end"

 eval(code)
 print("Method #{name}(#{params}) added to class #{self}\n\n");
 end
end

Is this a useful capability or simply fun to play with?

CSc 372, Fall 2006 Ruby, Slide 151
W. H. Mitchell (whm@msweng.com)

Class variables and methods

Just as Java, Ruby provides a way to associate data and methods with a class itself rather than
each instance of a class.

Java uses the static keyword to denote a class variable.

In Ruby a variable prefixed with two at-signs is a class variable.

Here is Counter augmented with a class variable that keeps track of how many counters have
been created:

class Counter
 @@created = 0 # Must precede any use of @@created

 def initialize(label = "Counter")
 @count = 0; @label = label
 @@created += 1
 end

end

Note: Unaffected methods are not shown.

CSc 372, Fall 2006 Ruby, Slide 152
W. H. Mitchell (whm@msweng.com)

Class variables and methods, continued

To define a class method, simply prefix the method name with the name of the class:

class Counter
 @@created = 0

 ... other methods ...

 def Counter.created # class method
 return @@created
 end
end

Usage:

>> Counter.created => 0
>> c = Counter.new => #<Counter:0x... @label="Counter", @count=0>
>> Counter.created => 1
>> 5.times { Counter.new } => 5
>> Counter.created => 6

CSc 372, Fall 2006 Ruby, Slide 153
W. H. Mitchell (whm@msweng.com)

A little bit on access control

By default, methods are public. If private appears on a line by itself, subsequent methods in
the class are private.

class X
 def f; puts "in f"; g end # Note: calls g

 private
 def g; puts "in g" end
end

>> x = X.new => #<X:0x2c0cc84>
>> x.f
in f
in g

>> x.g
NoMethodError: private method `g' called for #<X:0x2c0cc84>

In Ruby, there is simply no such thing as a public class variable or public instance variable.
All access must be through methods.

CSc 372, Fall 2006 Ruby, Slide 154
W. H. Mitchell (whm@msweng.com)

Getters and setters

If Counter were in Java, we might provide methods like void setCount(int n) and int
getCount().

In Counter we provide a method called count to fetch the count.

Instead of something like setCount, we'd do this:

def count= n # IMPORTANT: Note the trailing '='
 print("count=(#{n}) called\n")
 @count = n unless n < 0
end

Usage:

>> c = Counter.new => #<Counter:0x2c94094 @label="Counter", @count=0>

>> c.count = 10
count=(10) called

>> c => #<Counter:0x2c94094 @label="Counter", @count=10>

CSc 372, Fall 2006 Ruby, Slide 155
W. H. Mitchell (whm@msweng.com)

Getters and setters, continued

Here's class to represent points on a 2d Cartesian plane:

class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 def x; @x end
 def y; @y end
end

Usage:

>> p1 = Point.new(3,4) => #<Point:0x2c72c78 @x=3, @y=4>

>> [p1.x, p1.y] => [3, 4]

It can be tedious and error prone to write a number of simple getter methods, like Point#x
and Point#y.

CSc 372, Fall 2006 Ruby, Slide 156
W. H. Mitchell (whm@msweng.com)

Getters and setters, continued

The method attr_reader creates getter methods. Here's an equivalent definition of Point:

class Point
 def initialize(x, y)
 @x = x
 @y = y
 end
 attr_reader :x, :y # Recall that :x and :y are Symbols. (But "x" and "y" work!)
end

Usage:

>> p = Point.new(3,4) => #<Point:0x2c25478 @x=3, @y=4>

>> p.x => 3

>> p.y => 4

>> p.x = 10
NoMethodError: undefined method `x=' for #<Point:0x2c29924 @y=4, @x=3>

Why does p.x = 10 fail?

CSc 372, Fall 2006 Ruby, Slide 157
W. H. Mitchell (whm@msweng.com)

Getters and setters, continued

If you want both getters and setters, use attr_accessor:

class Point
 def initialize(x, y)
 @x = x
 @y = y
 end

 attr_accessor :x, :y
end

Usage:

>> p = Point.new(3,4) => #<Point:0x2c298d4 @y=4, @x=3>
>> p.x => 3
>> p.y = -20 => -20
>> p => #<Point:0x2c298d4 @y=-20, @x=3>

It's important to appreciate that attr_reader and attr_accessor are methods that create
methods. We could define a method called getters that has the same effect as attr_reader.

CSc 372, Fall 2006 Ruby, Slide 158
W. H. Mitchell (whm@msweng.com)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22

