
CSc 372, Fall 2006 Standard ML, Slide 1
W. H. Mitchell (whm@msweng.com)

Introduction

Imperative programming

Functional programming

CSc 372, Fall 2006 Standard ML, Slide 2
W. H. Mitchell (whm@msweng.com)

Imperative Programming

Languages such as C, Pascal, and FORTRAN support programming in an imperative style.

Two fundamental characteristics of imperative languages:

"Variables"—data objects whose contents can be changed.

Support for iteration—a “while” control structure, for example.

Java supports object-oriented programming but methods are written in an imperative style.

Here is an imperative solution in Java to sum the integers from 1 to N:

int sum(int n)
{

int sum = 0;

for (int i = 1; i <= n; i++)
sum += i;

return sum;
}

CSc 372, Fall 2006 Standard ML, Slide 3
W. H. Mitchell (whm@msweng.com)

Functional Programming

Functional programming is based on mathematical functions, which:

• Map values from a domain set into values in a range set

• Can be combined to produce more powerful functions

• Have no side effects

A simple function to double a number:

int Double(int n)
{

return n * 2;
}

Usage:

int result = Double(Double(Double(2)));

A function can be thought of as a rule of correspondence.

CSc 372, Fall 2006 Standard ML, Slide 4
W. H. Mitchell (whm@msweng.com)

Functional programming, continued

A function to compute the maximum of two integers:

int max(int a, int b)
{

if a > b then return a else return b;
}

Two uses of max can be combined to produce a function to compute the largest of three
integers:

int largest(int x, int y, int z)
{

return max(x, max(y, z));
}

The largest of six values can be computed by combining max and largest:

max(largest(a, b, c), largest(d, e, f))

largest(max(a,b), max(c,d), max(e,f))

CSc 372, Fall 2006 Standard ML, Slide 5
W. H. Mitchell (whm@msweng.com)

Functional programming, continued

Recall the imperative solution to sum 1...N:

int sum(int n)
{

int sum = 0;

for (int i = 1; i <= n; i++)
sum += i;

return sum;
}

A solution in a functional style using recursion:

int sum(int n)
{

if (n == 1)
return 1;

else
return n + sum(n - 1);

}

Note that there is no assignment or looping.

CSc 372, Fall 2006 Standard ML, Slide 6
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Standard ML, Slide 7
W. H. Mitchell (whm@msweng.com)

ML Basics

Quick history of ML

Interacting with ML

Identifiers and val declarations

Simple data types and operators

CSc 372, Fall 2006 Standard ML, Slide 8
W. H. Mitchell (whm@msweng.com)

ML—Background

ML will be our vehicle for studying functional programming.

Developed at Edinburgh University in the mid '70s by Mike Gordon, Robin Milner, and Chris
Wadsworth.

Designed specifically for writing proof strategies for the Edinburgh LCF theorem prover. A
particular goal was to have an excellent datatype system.

The name “ML” stands for "Meta Language".

ML is not a pure functional language. It does have some imperative features.

There is a family of languages based on ML. We’ll be using Standard ML of New Jersey
(SML/NJ).

The SML/NJ home page is www.smlnj.org.

See the class website for information on running SML/NJ on lectura and on Windows.

CSc 372, Fall 2006 Standard ML, Slide 9
W. H. Mitchell (whm@msweng.com)

ML is not object-oriented

ML is not designed for object-oriented programming:

• There is no analog for Java’s notion of a class.

• Executable code is contained in functions, which may be associated with a structure but
are often “free floating”.

• Instead of “invoking a method” or “sending a message to an object”, we “call
functions”.

Example: A Java expression such as xList.f(y) might be expressed as f(xList, y) in ML.

• There is no notion of inheritance but ML does support polymorphism in various ways.

The OCaml (Objective Caml) language is derived from ML and has support for object-
oriented programming.

CSc 372, Fall 2006 Standard ML, Slide 10
W. H. Mitchell (whm@msweng.com)

Interacting with ML

SML/NJ is interactive—the user types an expression, it is evaluated, and the result is printed.

% sml
Standard ML of New Jersey, v110.57...
- 3+4;
val it = 7 : int

- 3.4 * 5.6 / 7.8;
val it = 2.44102564102564 : real

- 3 - 4;
val it = ~1 : int

- 10 + ~20;
val it = ~10 : int

Note the prompt is a minus sign. Use a semicolon to terminate the expression.

To use some Lisp terminology, we can say that SML/NJ provides a “read-eval-print loop”.

CSc 372, Fall 2006 Standard ML, Slide 11
W. H. Mitchell (whm@msweng.com)

Interacting with ML, continued

The result of the last expression is given the name it and can be used in subsequent
expressions:

- 10 + ~20;
val it = ~10 : int

- it * it + it;
val it = 90 : int

Input can be broken across several lines:

- 5
= *
= 6 + 7
= ;
val it = 37 : int

Note that the equal signs at the start of the lines are being printed as a secondary prompt—the
expression is recognized as being incomplete.

CSc 372, Fall 2006 Standard ML, Slide 12
W. H. Mitchell (whm@msweng.com)

Interacting with ML, continued

ML has a number of predefined functions. Some of them:

- real(4) ;
val it = 4.0 : real

- floor(3.45);
val it = 3 : int

- ceil(3.45);
val it = 4 : int

- size("testing");
val it = 7 : int

CSc 372, Fall 2006 Standard ML, Slide 13
W. H. Mitchell (whm@msweng.com)

Interacting with ML, continued

For organizational purposes, many functions and constants are grouped in structures such as
Math, Int, and Real:

- Math.sqrt(2.0);
val it = 1.41421356237 : real

- Int.sign(~300);
val it = ~1 : int

- Real.min(1.0, 2.0);
val it = 1.0 : real

- Math.pi;
val it = 3.14159265359 : real

In some ways, an ML structure is similar to a Java class that has only static methods and
fields.

Functions with simple names, like ceil and size, are typically in a structure, with an alias for
the simple name. For example, real(x) is another name for Real.fromInt(x).

CSc 372, Fall 2006 Standard ML, Slide 14
W. H. Mitchell (whm@msweng.com)

Naming values—the val declaration

A val declaration can be used to specify a name for the value of an expression. The name
can then be used to refer to the value.

- val radius = 2.0;
val radius = 2.0 : real

- radius;
val it = 2.0 : real

- val area = Math.pi * radius * radius;
val area = 12.5663706144 : real

- area;
val it = 12.5663706144 : real

Do not think of val as creating a variable.

It can be said that the above adds bindings for radius and area to our environment.

CSc 372, Fall 2006 Standard ML, Slide 15
W. H. Mitchell (whm@msweng.com)

val declarations, continued

It is not an error to use an existing name in a subsequent val declaration:

- val x = 1;
val x = 1 : int

- val x = 3.4;
val x = 3.4 : real

- val x = "abc";
val x = "abc" : string

- x;
val it = "abc" : string

Technically, the environment contains three bindings for x, but only one—the last one—is
accessible.

CSc 372, Fall 2006 Standard ML, Slide 16
W. H. Mitchell (whm@msweng.com)

Identifiers

There are two types of identifiers: alphanumeric and symbolic.

An alphanumeric identifier begins with a letter or apostrophe and is followed by any number
of letters, apostrophes, underscores, and digits. Examples:

x, minValue, a', C''

Identifiers starting with an apostrophe are type variables. Examples:

'a, ''a, 'b

CSc 372, Fall 2006 Standard ML, Slide 17
W. H. Mitchell (whm@msweng.com)

Identifiers, continued

A symbolic identifier is a sequence of one or more of these characters:

 + - / * < > = ! @ # $ % ^ & ` ~ \ | ? :

Examples:

- val \/ = 3; (* Not a “V” — it’s two slashes *)
val \/ = 3 : int

- val <---> = 10;
val <---> = 10 : int

- val |\| = \/ + <--->;
val |\| = 13 : int

The two character sets can’t be mixed. For example, <x> is not a valid identifier.

CSc 372, Fall 2006 Standard ML, Slide 18
W. H. Mitchell (whm@msweng.com)

Comparisons and boolean values

ML has a set of comparison operators that compare values and produce a result of type bool:

- 1 < 3;
val it = true : bool

- 1 > 3;
val it = false : bool

- 1 = 3;
val it = false : bool

- 1 <> 1+1;
val it = true : bool

ML does not allow real numbers to be tested for equality or inequality:

- 1.0 = 1.0;
stdIn:5.1-5.10 Error: operator and operand don't agree [equality type required]
 operator domain: ''Z * ''Z
 operand: real * real

CSc 372, Fall 2006 Standard ML, Slide 19
W. H. Mitchell (whm@msweng.com)

Comparisons and boolean values, continued

The logical operators andalso and orelse provide logical conjunction and disjunction:

- 1 <= 3 andalso 7 >= 5 ;
val it = true : bool

- 1 = 0 orelse 3 = 4;
val it = false : bool

The values true and false may be used literally:

- true andalso true;
val it = true : bool

- false orelse true;
val it = true : bool

CSc 372, Fall 2006 Standard ML, Slide 20
W. H. Mitchell (whm@msweng.com)

The conditional expression

ML has an if-then-else construct. Example:

- if 1 < 2 then 3 else 4;
val it = 3 : int

This construct is called the “conditional expression”.

It evaluates a boolean expression and then depending on the result, evaluates the expression
on the then “arm” or the else “arm”. The value of that expression becomes the result of the
conditional expression.

A conditional expression can be used anywhere an expression can be used:

- val x = 3;
val x = 3 : int

- x + (if x < 5 then x*x else x+x);
val it = 12 : int

How does ML’s if-then-else compare to Java?

CSc 372, Fall 2006 Standard ML, Slide 21
W. H. Mitchell (whm@msweng.com)

The conditional expression, continued

For reference:

if boolean-expr then expr1 else expr2

Problem: Using nested conditional expressions, write an expression having a result of -1, 0,
or 1 depending on whether n is negative, zero, or positive, respectively.

val n = <some integer>

val sign =

Note that the boolean expression is not required to be in parentheses. Instead, the keyword
then is required.

There is no else-less form of the conditional expression. Why?

What construct in Java is most similar to this ML construct?

CSc 372, Fall 2006 Standard ML, Slide 22
W. H. Mitchell (whm@msweng.com)

Strings

ML has a string data type to represent a sequence of zero or more characters.

A string literal is specified by enclosing a sequence of characters in double quotes:

- "testing";
val it = "testing" : string

Escape sequences may be used to specify characters in a string literal:

\n newline
\t tab
\\ backslash
\" double quote
\010 any character; value is in decimal (000-255)
\^A control character (must be capitalized)

Example:

- "\n is \^J is \010";
val it = "\n is \n is \n" : string

CSc 372, Fall 2006 Standard ML, Slide 23
W. H. Mitchell (whm@msweng.com)

Strings, continued

Strings may be concatenated with the ^ (caret) operator:

- "Standard " ^ "M" ^ "L";
val it = "Standard ML" : string

- it ^ it ^ it;
val it = "Standard MLStandard MLStandard ML" : string

Strings may be compared:

- "aaa" < "bbb";
val it = true : bool

- "aa" < "a";
val it = false : bool

- "some" = "so" ^ "me";
val it = true : bool

Based on the above, how are strings in ML different from strings in Java?

CSc 372, Fall 2006 Standard ML, Slide 24
W. H. Mitchell (whm@msweng.com)

String functions

The size function produces the length of a string:

- size("abcd");
val it = 4 : int

The structures Int, Real, and Bool each have a toString function to convert values into
strings.

- Real.toString(Math.sqrt(2.0));
val it = "1.41421356237" : string

String.substring does what you’d expect:

- String.substring("0123456789", 3, 4);
val it = "3456" : string

CSc 372, Fall 2006 Standard ML, Slide 25
W. H. Mitchell (whm@msweng.com)

The char type

It is possible to make a one-character string but there is also a separate type, char, to
represent single characters.

A char literal consists of a pound sign followed by a single character, or escape sequence,
enclosed in double-quotes:

- #"a";
val it = #"a" : char

- #"\010";
val it = #"\n" : char

String.sub extracts a character from a string:

- String.sub("abcde", 2);
val it = #"c" : char

CSc 372, Fall 2006 Standard ML, Slide 26
W. H. Mitchell (whm@msweng.com)

The char type, continued

The chr(n) function produces a char having the value of the n'th ASCII character. The
ord(c) function calculates the inverse of chr.

- chr(97);
val it = #"a" : char

- ord(#"b");
val it = 98 : int

The str(c) function returns a one-character string containing the character c.

- str(chr(97)) ^ str(chr(98));
val it = "ab" : string

What are some pros and cons of having a character type in addition to a string type?

CSc 372, Fall 2006 Standard ML, Slide 27
W. H. Mitchell (whm@msweng.com)

Operator summary (partial)

Integer arithmetic operators:

 + - * div mod ~ (unary)

Real arithmetic operators:

+ - * / ~ (unary)

Comparison operators (int, string; bool and real for some):

= <> < > <= >=

Boolean operators:

andalso orelse not (unary)

CSc 372, Fall 2006 Standard ML, Slide 28
W. H. Mitchell (whm@msweng.com)

Operator summary (partial), continued

Precedence:

not

* / div quot rem mod

+ - ^

= <> < > <= >=

andalso orelse

CSc 372, Fall 2006 Standard ML, Slide 29
W. H. Mitchell (whm@msweng.com)

Functions

Type consistency

Defining functions

Type deduction

Type variables

Loading source with use

CSc 372, Fall 2006 Standard ML, Slide 30
W. H. Mitchell (whm@msweng.com)

A prelude to functions: type consistency

ML requires that expressions be type consistent. A simple violation is to try to add a real and
an int:

- 3.4 + 5;
Error: operator and operand don't agree (tycon mismatch)
 operator domain: real * real
 operand: real * int
 in expression:
 + : overloaded (3.4,5)

(tycon stands for “type constructor”.)

Type consistency is a cornerstone of the design philosophy of ML.

There are no automatic type conversions in ML.

What automatic type conversions does Java provide?

CSc 372, Fall 2006 Standard ML, Slide 31
W. H. Mitchell (whm@msweng.com)

Type consistency, continued

Another context where type consistency appears is in the conditional operator: the
expressions in both "arms" must have the same type.

Example:

- if "a" < "b" then 3 else 4.0;
Error: rules don't agree (tycon mismatch)
 expected: bool -> int
 found: bool -> real
 rule:
 false => 4.0

CSc 372, Fall 2006 Standard ML, Slide 32
W. H. Mitchell (whm@msweng.com)

Function definition basics

A simple function definition:

- fun double(n) = n * 2;
val double = fn : int -> int

The body of a function is a single expression. The return value of the function is the value of
that expression. There is no “return” statement.

The text "fn" is used to indicate that the value defined is a function, but the function itself is
not displayed.

The text "int -> int" indicates that the function takes an integer argument and produces an
integer result. ("->" is read as "to".)

Note that the type of the argument and the type produced by the function are not specified.
Instead, type deduction was used.

CSc 372, Fall 2006 Standard ML, Slide 33
W. H. Mitchell (whm@msweng.com)

Function definition basics

At hand:

- fun double(n) = n * 2;
val double = fn : int -> int

Examples of usage for double:

- double(double(3));
val it = 12 : int

- double;
val it = fn : int -> int

- val f = double;
val f = fn : int -> int

- f(5);
val it = 10 : int

CSc 372, Fall 2006 Standard ML, Slide 34
W. H. Mitchell (whm@msweng.com)

Function definition basics, continued

Another example of type deduction:

- fun f(a, b, c, d) =
 if a = b then c + 1 else
 if a > b then c else b + d;
val f = fn : int * int * int * int -> int

The type of a function is described with a type expression.

The symbols * and -> are both type operators. * is left-associative and has higher

precedence than ->, which is right-associative.

The type operator * is read as “cross”.

What is a possible sequence of steps used to determine the type of f?

CSc 372, Fall 2006 Standard ML, Slide 35
W. H. Mitchell (whm@msweng.com)

Function definition basics, continued

More simple functions:

- fun sign(n) = if n < 0 then ~1
 else if n > 0 then 1 else 0;
val sign = fn : int -> int

- fun max(a,b) = if a > b then a else b;
val max = fn : int * int -> int

- fun max3(x,y,z) = max(x,max(y,z));
val max3 = fn : int * int * int -> int

- max3(~1, 7, 2);
val it = 7 : int

How was the type of max3 deduced?

CSc 372, Fall 2006 Standard ML, Slide 36
W. H. Mitchell (whm@msweng.com)

Function definition basics, continued

Problem: Define functions with the following types. The functions don’t need to do anything
practical; only the type is important.

string -> int

real * int -> real

bool -> string

int * bool * string -> real

Problem: Make up some more and solve them, too.

Have you previously used a system that employs type deduction?

CSc 372, Fall 2006 Standard ML, Slide 37
W. H. Mitchell (whm@msweng.com)

Function definition basics, continued

Problem: Write a function even(n) that returns true iff (if and only if) n is an even integer.

Problem: Write a function sum(N) that returns the sum of the integers from 1 through N.
Assume N is greater than zero.

Problem: Write a function countTo(N) that returns a string like this: “1...2...3”, if N is 3, for
example. Use Int.toString to convert int values to strings.

CSc 372, Fall 2006 Standard ML, Slide 38
W. H. Mitchell (whm@msweng.com)

Function definition basics, continued

Sometimes, especially when overloaded arithmetic operators are involved, we want to specify
a type other than that produced by default.

Imagine we want a function to square real numbers. The obvious definition for a square
function produces the type int -> int:

- fun square(x) = x * x;
val square = fn : int -> int

Solution: We can explicitly specify a type:

- fun real(x:real) = x * x;
val real = fn : real -> real

Two other solutions:

fun square(x) = (x * x):real;
fun square(x) = x * (x:real);

CSc 372, Fall 2006 Standard ML, Slide 39
W. H. Mitchell (whm@msweng.com)

Type variables and polymorphic functions

In some cases ML expresses the type of a function using one or more type variables.

A type variable expresses type equivalences among parameters and between parameters and
the return value.

A function that simply returns its argument:

- fun f(a) = a;
val f = fn : 'a -> 'a

The identifier 'a is a type variable. The type of the function indicates that it takes a
parameter of any type and returns a value of that same type, whatever it is.

- f(1);
val it = 1 : int
- f(1.0);
val it = 1.0 : real
- f("x");
val it = "x" : string

’a is read as “alpha”, ’b as “beta”, etc.

CSc 372, Fall 2006 Standard ML, Slide 40
W. H. Mitchell (whm@msweng.com)

Type variables and polymorphic functions, continued

At hand:

- fun f(a) = a;
val f = fn : 'a -> 'a

The function f is said to be polymorphic because it can operate on a value of any type.

A polymorphic function may have many type variables:

- fun third(x, y, z) = z;
val third = fn : 'a * 'b * 'c -> 'c

- third(1, 2, 3);
val it = 3 : int

- third(1, 2.0, "three");
val it = "three" : string

CSc 372, Fall 2006 Standard ML, Slide 41
W. H. Mitchell (whm@msweng.com)

Type variables and polymorphic functions

A function's type may be a combination of fixed types and type variables:

- fun classify(n, a, b) = if n < 0 then a else b;
val classify = fn : int * 'a * 'a -> 'a

- classify(~3, "left", "right");
val it = "left" : string

- classify(10, 21.2, 33.1);
val it = 33.1 : real

A single type variable is sufficient for a function to be considered polymorphic.

A polymorphic function has an infinite number of possible instances.

CSc 372, Fall 2006 Standard ML, Slide 42
W. H. Mitchell (whm@msweng.com)

Equality types

An equality type variable is a type variable that ranges over equality types. Instances of
values of equality types, such as int, string, and char can be tested for equality. Example:

- fun equal(a,b) = a = b;
val equal = fn : ''a * ''a -> bool

The function equal can be called with any type that can be tested for equality. ''a is an
equality type variable, distinguished by the presence of two apostrophes, instead of just one.

- equal(1,10);
val it = false : bool

- equal("xy", "x" ^ "y");
val it = true : bool

Another example:

- fun equal3(a,b,c) = a = b andalso b = c;
val equal3 = fn : ''a * ''a * ''a -> bool

CSc 372, Fall 2006 Standard ML, Slide 43
W. H. Mitchell (whm@msweng.com)

Practice

Problem: Define functions having the following types:

''a * int * ''a -> real

''a * ''b * ''a * ''b -> bool

''a * 'b * ''a -> 'b

Problem: Make up some more and solve them, too.

CSc 372, Fall 2006 Standard ML, Slide 44
W. H. Mitchell (whm@msweng.com)

Loading source code with use

SML source code can be loaded from a file with the use function:

% cat funcs.sml
fun double(n) = n * 2

fun bracket(s) = "{" ^ s ^ "}"

% sml
- use("funcs.sml");
[opening funcs.sml]
val double = fn : int -> int
val bracket = fn : string -> string

- double(3);
val it = 6 : int

- bracket("abc");
val it = "{abc}" : string
- ^D

CSc 372, Fall 2006 Standard ML, Slide 45
W. H. Mitchell (whm@msweng.com)

Loading source with use, continued

Calls to use can be nested:

% cat test.sml
use("funcs.sml");

(* Test cases *)
val r1 = double(3);
val r2 = bracket("abc");
val r3 = bracket(bracket(""));

% sml
- use("test.sml");
[opening test.sml]
[opening funcs.sml]
val double = fn : int -> int
val bracket = fn : string -> string
val r1 = 6 : int
val r2 = "{abc}" : string
val r3 = "{{}}" : string

Note the use of r1, r2, ... to associate results with test cases.

CSc 372, Fall 2006 Standard ML, Slide 46
W. H. Mitchell (whm@msweng.com)

Loading source with use, continued

When developing code, you might have an editor open and an SML session open, too. In that
session you might do this:

- fun run() = use("test.sml");
val run = fn : unit -> unit

- run();
[opening test.sml]
[opening funcs.sml]
val double = fn : int -> int
val bracket = fn : string -> string
val r1 = 6 : int
val r2 = "{abc}" : string
val r3 = "{{}}" : string

...edit your source files...
- run();

...repeat...

CSc 372, Fall 2006 Standard ML, Slide 47
W. H. Mitchell (whm@msweng.com)

Running tests with redirection

On both lectura and at a Windows command prompt, you can use input redirection to feed
source code into sml:

c:\372> sml < test.sml
Standard ML of New Jersey v110.57 [built: Mon Nov 21 21:46:28 2005]
- [opening funcs.sml]
...
val r1 = 6 : int
val r2 = "{abc}" : string
val r3 = "{{}}" : string

On lectura:

% sml < test.sml
Standard ML of New Jersey v110.57 [built: Mon Nov 21 21:46:28 2005]
- [opening funcs.sml]
...

On both Windows and lectura, sml exits after processing redirected input.

CSc 372, Fall 2006 Standard ML, Slide 48
W. H. Mitchell (whm@msweng.com)

The unit type

All ML functions return a value but in some cases, there's little practical information to return
from a function.

use is such a function. Note its type, and the result of a call:

- use;
val it = fn : string -> unit

- use("x.sml");
 [opening x.sml]
...Output from evaluating expressions in x.sml...
val it = () : unit

There is only one value having the type unit. That value is represented as a pair of
parentheses.

- ();
val it = () : unit

 Is there an analog to unit in Java?

CSc 372, Fall 2006 Standard ML, Slide 49
W. H. Mitchell (whm@msweng.com)

Simple exceptions

Like Java, ML provides exceptions.

Here is a simple example:

exception BadArg;
 fun sum(N) = if N < 1 then raise BadArg
 else if N = 1 then 1
 else N + sum(N-1);

Usage:

- sum(10);
val it = 55 : int

- sum(~10);
uncaught exception BadArg
 raised at: big.sml:26.35-26.41

We’ll learn how to catch exceptions if the need arises.

CSc 372, Fall 2006 Standard ML, Slide 50
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Standard ML, Slide 51
W. H. Mitchell (whm@msweng.com)

More-interesting types

Tuples

Pattern matching

Lists

List processing functions

CSc 372, Fall 2006 Standard ML, Slide 52
W. H. Mitchell (whm@msweng.com)

Tuples

A tuple is an ordered aggregation of two or more values of possibly differing types.

- val a = (1, 2.0, "three");
val a = (1,2.0,"three") : int * real * string

- (1, 1);
val it = (1,1) : int * int

- (it, it);
val it = ((1,1),(1,1)) : (int * int) * (int * int)

- ((1,1), "x", (2.0,2.0));
val it = ((1,1),"x",(2.0,2.0)) : (int * int) * string * (real * real)

Problem: Specify tuples with the following types:

string * int

string * (int * int)

(real * int) * int

CSc 372, Fall 2006 Standard ML, Slide 53
W. H. Mitchell (whm@msweng.com)

Tuples, continued

Problem: What is the type of the following values?

(1 < 2, 3 + 4, "a" ^ "b")

(1, (2, (3,4)))

(#”a”, (2.0, #”b”), (“c”), 3)

(((1)))

A tuple may be drawn as a tree.

("x", 3) (1,2,(3,4)) ((1,2),(3,4))

CSc 372, Fall 2006 Standard ML, Slide 54
W. H. Mitchell (whm@msweng.com)

Tuples, continued

A function can return a tuple as its result:

- fun pair(x, y) = (x, y);
val pair = fn : 'a * 'b -> 'a * 'b

- pair(1, "one");
val it = (1,"one") : int * string

- pair(it, it);
val it = ((1,"one"),(1,"one")): (int * string) * (int * string)

- val c = "a" and i = 1;
val c = "a" : string
val i = 1 : int

- pair((c,i,c), (1,1,(c,c)));
val it = (("a",1,"a"),(1,1,("a","a"))) : (string * int * string) * (int * int * (string * string))

CSc 372, Fall 2006 Standard ML, Slide 55
W. H. Mitchell (whm@msweng.com)

Tuples, continued

A function to put two integers in ascending order:

- fun order(x, y) = if x < y then (x, y) else (y, x);
val order = fn : int * int -> int * int

- order(3,4);
val it = (3,4) : int * int

- order(10,1);
val it = (1,10) : int * int

Does Java have a language element that is equivalent to a tuple?

Problem: Write a function rev3 that reverses the sequence of values in a 3-tuple. What is its
type?

CSc 372, Fall 2006 Standard ML, Slide 56
W. H. Mitchell (whm@msweng.com)

Pattern matching

Thus far, function parameter lists appear conventional but in fact the “parameter list” is a
pattern specification.

Recall order:

fun order(x, y) = if x < y then (x, y) else (y, x)

In fact, order has only one parameter: an (int * int) tuple.

The pattern specification (x, y) indicates that the name x is bound to the first value of the
two-tuple that order is called with. The name y is bound to the second value.

Consider this:

- val x = (7, 3);
val x = (7,3) : int * int

- order(x);
val it = (3,7) : int * int

CSc 372, Fall 2006 Standard ML, Slide 57
W. H. Mitchell (whm@msweng.com)

Pattern matching, continued

Consider a swap function:

- fun swap(x,y) = (y,x);
val swap = fn : 'a * 'b -> 'b * 'a

- val x = (7, 3);
val x = (7,3) : int * int

- swap(x);
val it = (3,7) : int * int

We can swap the result of order:

- swap(order(x));
val it = (7,3) : int * int

Problem: Write a function descOrder that orders an int * int in descending order.

CSc 372, Fall 2006 Standard ML, Slide 58
W. H. Mitchell (whm@msweng.com)

Pattern matching, continued

In fact, all ML functions in our current 372 world take one argument!

The syntax for a function call in ML is this:

function value

In other words, two values side by side are considered to be a function call.

Examples:

- val x = (7,3);
val x = (7,3) : int * int

- swap x;
val it = (3,7) : int * int

- size "testing";
val it = 7 : int

CSc 372, Fall 2006 Standard ML, Slide 59
W. H. Mitchell (whm@msweng.com)

Pattern matching, continued

Consider a couple of errors:

- 1 2;
stdIn:15.1-15.4 Error: operator is not a function [literal]
 operator: int
 in expression:
 1 2

- swap order x;
stdIn:65.1-65.13 Error: operator and operand don't agree [tycon mismatch]
 operator domain: 'Z * 'Y
 operand: int * int -> int * int
 in expression:
 swap order

Explain them! Fix the second one.

CSc 372, Fall 2006 Standard ML, Slide 60
W. H. Mitchell (whm@msweng.com)

Pattern matching, continued

Patterns provide a way to bind names to components of values.

Imagine a 2x2 matrix represented by a pair of 2-tuples:

- val m = ((1, 2),
 (3, 4));
val m = ((1,2),(3,4)) : (int * int) * (int * int)

Elements of the matrix can be extracted with pattern matching:

- fun lowerRight((ul,ur),(ll,lr)) = lr;
val lowerRight = fn : ('a * 'b) * ('c * 'd) -> 'd

- lowerRight m;
val it = 4 : int

Underscores can be used in a pattern to match values of no interest. An underscore creates
an anonymous binding.

- fun upperLeft ((x, _), (_, _)) = x;
val upperLeft = fn : ('a * 'b) * ('c * 'd) -> 'a

CSc 372, Fall 2006 Standard ML, Slide 61
W. H. Mitchell (whm@msweng.com)

Pattern matching, continued

The left hand side of a val expression is in fact a pattern specification:

- val (i,r,s) = (1, 2.0, "three");
val i = 1 : int
val r = 2.0 : real
val s = "three" : string

Which of the following are valid? If valid, what bindings result?

val (x, y, z) = (1, (2, 3), (4, (5, 6)));

val (x, (y, z)) = (1, 2, 3);

val ((x, y), z) = ((1, 2), (3, 4));

val x = (1, (2,3), (4,(5,6)));

CSc 372, Fall 2006 Standard ML, Slide 62
W. H. Mitchell (whm@msweng.com)

Pattern matching, continued

Consider a function that simply returns the value 5:

- fun five() = 5;
val five = fn : unit -> int

- five ();
val it = 5 : int

In this case, the pattern is the literal for unit. Alternatively, we can bind a name to the value
of unit and use that name:

- val x = ();
val x = () : unit

- five x;
val it = 5 : int

Is five(x) valid?

CSc 372, Fall 2006 Standard ML, Slide 63
W. H. Mitchell (whm@msweng.com)

Pattern matching, continued

Functions may be defined using a series of patterns that are tested in turn against the
argument value. If a match is found, the corresponding expression is evaluated to produce the
result of the call. Also, literal values can be used in a pattern.

- fun f(1) = 10
 | f(2) = 20
 | f(n) = n;
val f = fn : int -> int

Usage:

- f(1);
val it = 10 : int

- f(2);
val it = 20 : int

- f(3);
val it = 3 : int

CSc 372, Fall 2006 Standard ML, Slide 64
W. H. Mitchell (whm@msweng.com)

Pattern matching, continued

One way to sum the integers from 0 through N:

fun sum(n) = if n = 0 then 0 else n + sum(n-1);

A better way:

fun sum(0) = 0
 | sum(n) = n + sum(n - 1);

CSc 372, Fall 2006 Standard ML, Slide 65
W. H. Mitchell (whm@msweng.com)

Pattern matching, continued

The set of patterns for a function may be cited as being non-exhaustive:

- fun f(1) = 10
 | f(2) = 20;
stdIn:10.5-11.14 Warning: match nonexhaustive
 1 => ...
 2 => ...

This warning indicates that there is at least one value of the appropriate type (int, here) that
isn’t matched by any of the cases.

Calling f with such a value produces an exception:

- f(3);
uncaught exception nonexhaustive match failure

A non-exhaustive match warning can indicate incomplete reasoning.

It’s just a warning—f works fine when called with only 1 or 2.

CSc 372, Fall 2006 Standard ML, Slide 66
W. H. Mitchell (whm@msweng.com)

Lists

A list is an ordered collection of values of the same type.

One way to make a list is to enclose a sequence of values in square brackets:

- [1, 2, 3];
val it = [1,2,3] : int list

- ["just", "a", "test"];
val it = ["just","a","test"] : string list

- [it, it];
val it = [["just","a","test"],["just","a","test"]] : string list list

- [(1, "one"), (2, "two")];
val it = [(1,"one"),(2,"two")] : (int * string) list

Note the type, int list, for example. list is another type operator. It has higher precedence
than both * and ->.

What is the analog for a (int * string) list in Java?

Obviously, list is a postfix operator. How might a prefix alternative be represented?

CSc 372, Fall 2006 Standard ML, Slide 67
W. H. Mitchell (whm@msweng.com)

Lists, continued

An empty list can be represented with [] or the literal nil:

- [];
val it = [] : 'a list

- nil;
val it = [] : 'a list

- [[], nil, [1], [7, 3]];
val it = [[],[],[1],[7,3]] : int list list

Why is ‘a list used as the type of an empty list?

Recall that all elements of a list must be of the same type. Which of the following are valid?

[[1], [2], [[3]]];

[[],[1, 2]];

[[], [[]]];

CSc 372, Fall 2006 Standard ML, Slide 68
W. H. Mitchell (whm@msweng.com)

Heads and tails

The hd and tl functions produce the head and tail of a list, respectively. The head is the first
element. The tail is the list without the first element.

- val x = [1, 2, 3, 4];
val x = [1,2,3,4] : int list

- hd x;
val it = 1 : int

- tl x;
val it = [2,3,4] : int list

- tl it;
val it = [3,4] : int list

- hd(tl(tl x));
val it = 3 : int

Both hd and tl, as all functions in our ML world, are applicative. They produce a value but
don’t change their argument.

Speculate: What are the types of hd and tl?

CSc 372, Fall 2006 Standard ML, Slide 69
W. H. Mitchell (whm@msweng.com)

Heads and tails, continued

Problems:

Given val x = [1, 2, 3, 4], what is the value of hd(tl x))? How about hd(hd (tl x))?

What is the value of tl [3]?

Given val x = [[1], [2], [3]], extract the 2.

What is the value of hd(tl(hd([[1,2],[3,4]])))?

Specify a list x for which hd(hd(hd x)) is 3.

Given val x = [length], what is the value of hd x x?

CSc 372, Fall 2006 Standard ML, Slide 70
W. H. Mitchell (whm@msweng.com)

List equality

Lists can be tested for equality if their component types are equality types. Equality is
determined based on the complete contents of the list. (I.e., it is a deep comparison.)

- [1,2,3] = [1,2,3];
val it = true : bool

- [1] <> [1,2];
val it = true : bool

- [("a", "b")] = [("b", "a")];
val it = false : bool

 Some comparisons involving empty lists produce a warning about “polyEqual”:

- [] = [];
stdIn:27.4 Warning: calling polyEqual
val it = true : bool

For our purposes, this warning can be safely ignored.

 Unless we use the imperative features of ML, which we won’t be studying!1

CSc 372, Fall 2006 Standard ML, Slide 71
W. H. Mitchell (whm@msweng.com)

A VERY important point

• Lists can't be modified. There is no way to add or remove list elements, or change the
value of an element. (Ditto for tuples and strings.)

• Ponder this: Just as you cannot change an integer's value, you cannot change the value

of a string, list, or tuple.

In ML, we never change anything. We only make new things.1

CSc 372, Fall 2006 Standard ML, Slide 72
W. H. Mitchell (whm@msweng.com)

Simple functions with lists

The built-in length function produces the number of elements in a list:

- length [20, 10, 30];
val it = 3 : int

- length [];
val it = 0 : int

Problem: Write a function len that behaves like length. What type will it have?

Problem: Write a function sum that calculates the sum of the integers in a list:

- sum([1,2,3,4]);
val it = 10 : int

CSc 372, Fall 2006 Standard ML, Slide 73
W. H. Mitchell (whm@msweng.com)

Cons’ing up lists

A list may be constructed with the :: (“cons”) operator, which forms a list from a compatible
head and tail:

- 1::[2];
val it = [1,2] : int list

- 1::2::3::[];
val it = [1,2,3] : int list

- 1::[];
val it = [1] : int list

- "x"::nil;
val it = ["x"] : string list

What’s an example of an incompatible head and tail?

 Note the type of the operator:

- op:: ; (Just prefix the operator with “op”)
val it = fn : 'a * 'a list -> 'a list

CSc 372, Fall 2006 Standard ML, Slide 74
W. H. Mitchell (whm@msweng.com)

Cons, continued

Note that :: is right-associative. The expression

1::2::3::nil

is equivalent to

1::(2::(3::nil))

What is the value and type of the following expressions?

(1,2)::nil

[1]::[[2]]

nil::nil

nil::nil::nil

length::nil

CSc 372, Fall 2006 Standard ML, Slide 75
W. H. Mitchell (whm@msweng.com)

Cons, continued

Recall that all elements must be the same type, i.e., they are homogenous. Note the error
produced when this rule is violated with the [...] syntax:

- [1, "x"];
Error: operator and operand don't agree [literal]
 operator domain: int * int list
 operand: int * string list
 in expression:
 1 :: "x" :: nil

The [...] form is syntactic sugar—we can live without it, and use only cons, but it sweetens
the language a bit.

CSc 372, Fall 2006 Standard ML, Slide 76
W. H. Mitchell (whm@msweng.com)

Cons, continued

Problem: Write a function m_to_n(m, n) that produces a list of the integers from m through
n inclusive. (Assume that m <= n.)

- m_to_n(1, 5);
val it = [1,2,3,4,5] : int list

- m_to_n(~3, 3);
val it = [~3,~2,~1,0,1,2,3] : int list

- m_to_n(1, 0);
val it = [] : int list

What would m_to_n look like in Java? Which is faster, ML or Java?

Problem: Calculate the sum of the integers from 1 to 100.

CSc 372, Fall 2006 Standard ML, Slide 77
W. H. Mitchell (whm@msweng.com)

Sidebar: A Java model of ML lists

public class List {
 private Object head;
 private List tail;

 public List(Object head, List tail) {
 this.head = head; this.tail = tail;
 }

 public static List cons(Object head, List tail) {
 return new List(head, tail);
 }

 public static void main(String args[]) {
 List L1 = List.cons("z", null);
 List L2 = List.cons("x", List.cons("y", L1));

 System.out.println(L1); // Output: [z]
 System.out.println(L2); // Output: [x, y, z]

 List L3 = List.cons(L1, List.cons(L2, null));
 System.out.println(L3); // Output: [[z], [x, y, z]]
 }

A good exercise is to model elements of new
language in a language we know.

Here is a simple model of ML lists in Java.

Problems:
(1) Draw the structures for L1, L2, and L3.

(2) Implement toString() in a functional
style. Don’t worry about empty lists.

CSc 372, Fall 2006 Standard ML, Slide 78
W. H. Mitchell (whm@msweng.com)

List concatenation

The @ operator concatenates two lists:

- [1,2] @ [3,4];
val it = [1,2,3,4] : int list

- it @ it @ it;
val it = [1,2,3,4,1,2,3,4,1,2,3,4] : int list

- op@ ;
val it = fn : 'a list * 'a list -> 'a list

Problem: Write a function iota(n) that produces a list of the integers between 1 and n
inclusive. Don't use m_to_n. Example:

- iota(5);
val it = [1,2,3,4,5] : int list

CSc 372, Fall 2006 Standard ML, Slide 79
W. H. Mitchell (whm@msweng.com)

Lists, strings, and characters

The explode and implode functions convert between strings and lists of characters:

- explode("boom");
val it = [#"b", #"o", #"o", #"m"] : char list

- implode([#"o", #"o", #"p", #"s", #"!"]);
val it = "oops!" : string

- explode("");
val it = [] : char list

- implode([]);
val it = "" : string

What are the types of implode and explode?

Problem: Write a function reverse(s), which reverses the string s. Hint: rev reverses a list.

CSc 372, Fall 2006 Standard ML, Slide 80
W. H. Mitchell (whm@msweng.com)

Lists, strings, and characters, continued

The concat function forms a single string out of a list of strings:

- concat(["520", "-", "621", "-", "4632"]);
val it = "520-621-4632" : string

- concat([]);
val it = "" : string

What is the type of concat?

CSc 372, Fall 2006 Standard ML, Slide 81
W. H. Mitchell (whm@msweng.com)

Pattern matching with lists

In a pattern, :: can be used to describe a value. Example:

fun len ([]) = 0
 | len (x::xs) = 1 + len(xs)

The first pattern is the basis case and matches an empty list.

The second pattern requires a list with at least one element. The head is bound to x and the
tail is bound to xs.

Problem: Noting that x is never used, improve the above implementation.

Problem: Write a function sum_evens(L) that returns the sum of the even values in L, an int
list.

Problem: Write a function drop2(L) that returns a copy of L with the first two values
removed. If the length of L is less than 2, return L.

CSc 372, Fall 2006 Standard ML, Slide 82
W. H. Mitchell (whm@msweng.com)

Pattern matching, continued

What's an advantage of using a pattern to work with a list rather than the hd and tl functions?

Hint: Consider the following two implementations of sum:

fun sum(L) = hd(L) + sum(tl(L));

fun sum(x::xs) = x + sum(xs);

CSc 372, Fall 2006 Standard ML, Slide 83
W. H. Mitchell (whm@msweng.com)

Practice

Problem: Write a function member(v, L) that produces true iff v is contained in the list L.

- member(7, [3, 7, 15]);
val it = true : bool

Problem: Write a function contains(s, c) that produces true iff the char c appears in the
string s.

Problem: Write a function maxint(L) that produces the largest integer in the list L. Raise the
exception Empty if the list has no elements.

CSc 372, Fall 2006 Standard ML, Slide 84
W. H. Mitchell (whm@msweng.com)

Pattern construction

A pattern can be:

• A literal value such as 1, "x", true (but not a real)

• An identifier

• An underscore

• A tuple composed of patterns

• A list of patterns in [] form

• A list of patterns constructed with :: operators

Note the recursion.

CSc 372, Fall 2006 Standard ML, Slide 85
W. H. Mitchell (whm@msweng.com)

Pattern construction, continued

Unfortunately, a pattern cannot contain an arbitrary expression:

- fun f(n > 0) = n (* not valid! *)
 | f(n) = n;
stdIn:1.5-2.13 Error: non-constructor applied to argument in pattern: >

Note "non-constructor" in the message. In a pattern, operators like :: are known as
constructors.

An identifier cannot appear more than once in a pattern:

- fun equals(x, x) = true (* not valid! *)
 | equals(_) = false;
stdIn:1.5-3.24 Error: duplicate variable in pattern(s): x

CSc 372, Fall 2006 Standard ML, Slide 86
W. H. Mitchell (whm@msweng.com)

Practice

What bindings result from the following val declarations?

val [[(x, y)]] = [[(1, 2)]];

val [[x, y]] = [[1, 2, 3]];

val [(x,y)::z] = [[(1, (2 ,3))]];

val (x, (y::ys, x)) = (1, ([2,3,4], (1, 2)));

CSc 372, Fall 2006 Standard ML, Slide 87
W. H. Mitchell (whm@msweng.com)

A batch of odds and ends

let expressions

Producing output

Common problems

CSc 372, Fall 2006 Standard ML, Slide 88
W. H. Mitchell (whm@msweng.com)

let expressions

A let expression can be used to create name/value bindings for use in a following expression
to improve clarity and/or efficiency.

One way to write a function:

fun calc(x, y, z) = f1(g(x + y) - h(z)) + f2(g(x + y) - h(z))

An alternative with let:

fun calc(x,y,z) =
 let
 val diff = g(x+y) - h(z)
 in
 f1(diff) + f2(diff)
 end

Would it be practical for a compiler to make the above transformation automatically, using
CSE (common subexpression elimination)?

CSc 372, Fall 2006 Standard ML, Slide 89
W. H. Mitchell (whm@msweng.com)

let expressions, continued

General form of a let expression:

let
declaration1
declaration2
...
declarationN

in
expression

end

The value of expression is the value produced by the overall let expression. The
name/value binding(s) established in the declaration(s) are only accessible in expression.

- val result = let val x = 1 val y = 2 in x + y end;
val result = 3 : int

- x;
stdIn:2.1 Error: unbound variable or constructor: x

CSc 372, Fall 2006 Standard ML, Slide 90
W. H. Mitchell (whm@msweng.com)

let expressions, continued

A cute example of let from Ullman, p.78:

fun hundredthPower(x:real) =
 let
 val four = x*x*x*x
 val twenty = four*four*four*four*four
 in
 twenty*twenty*twenty*twenty*twenty
 end

Usage:

- hundredthPower(10.0);
val it = 1.0E100 : real

CSc 372, Fall 2006 Standard ML, Slide 91
W. H. Mitchell (whm@msweng.com)

let expressions, continued

A function to count the number of even and odd values in a list of integers and return the
result as int * int:

fun count_eo([]) = (0,0)
 | count_eo(x::xs) =

let
val (even,odd) = count_eo(xs)

in
if x mod 2 = 0 then (even+1,odd)

else (even,odd+1)
end

Usage:

- count_eo([7,3,5,2]);
val it = (1,3) : int * int

- count_eo([2,4,6,8]);
val it = (4,0) : int * int

Would it be as easy to write without the let?

CSc 372, Fall 2006 Standard ML, Slide 92
W. H. Mitchell (whm@msweng.com)

let expressions, continued

Imagine a function remove_min(L) that produces a tuple consisting of the smallest integer in
L and a list consisting of the other values, possibly in a different order.

- remove_min([3,1,4,2]);
val it = (1,[3,2,4]) : int * int list

- remove_min([3,2,4]);
val it = (2,[3,4]) : int * int list

- remove_min([3,4]);
val it = (3,[4]) : int * int list

- remove_min([4]);
val it = (4,[]) : int * int list

CSc 372, Fall 2006 Standard ML, Slide 93
W. H. Mitchell (whm@msweng.com)

let expressions, continued

remove_min can be used to write a function that sorts a list:

fun remsort([]) = []
 | remsort(L) =
 let
 val (min, remain) = remove_min(L)
 in
 min::remsort(remain)
 end

Usage:

- remsort([3,1,4,2]);
val it = [1,2,3,4] : int list

CSc 372, Fall 2006 Standard ML, Slide 94
W. H. Mitchell (whm@msweng.com)

let expressions, continued

A common technique is to define “helper” functions inside a function using a let expression.

Consider a function that returns every Nth element in a list:

- every_nth([10,20,30,40,50,60,70], 3);
val it = [30,60] : int list

Implementation:

fun every_nth(L, n) =
 let
 fun select_nth([],_,_) = []
 | select_nth(x::xs, elem_num, n) =
 if elem_num mod n = 0 then
 x::select_nth(xs, elem_num+1, n)
 else
 select_nth(xs, elem_num+1, n)
 in
 select_nth(L, 1, n)
 end;

CSc 372, Fall 2006 Standard ML, Slide 95
W. H. Mitchell (whm@msweng.com)

Simple output

The print function writes its argument, a string, to standard output.

- print("abc");
abcval it = () : unit

- print("i = " ^ Int.toString(i) ^ "\n"); (* assume i = 7 *)
i = 7
val it = () : unit

A function to print the integers from 1 through N:

fun printN(n) =
 let
 fun printN'(0) = ""
 | printN'(n) = printN'(n - 1) ^ Int.toString(n) ^ "\n"
 in
 print(printN'(n))
 end

Note the similarity between this function and countTo, on slide 37 (1...2...3). Could a
generalization provide both behaviors?

CSc 372, Fall 2006 Standard ML, Slide 96
W. H. Mitchell (whm@msweng.com)

Simple output, continued

Imagine a function to print name/value pairs:

- print_pairs([("x",1), ("y",10), ("z",20)]);
x 1
y 10
z 20
val it = () : unit

Problem: Write it!

CSc 372, Fall 2006 Standard ML, Slide 97
W. H. Mitchell (whm@msweng.com)

Common problems

When loading source code sml typically cites the line and position in the line of any errors
that are encountered:

% cat -n errors.sml (-n produces numbered output)
 1 fun count_eo([]) = (0,0)
 2 | count_eo(x::xs) =
 3 let
 4 (even,odd) = count_eo(xs)
 5 in
 6 if x mud 2 = 0 then (even+1,odd)
 7 else (even,Odd+1)
 8 end

Loading:

- use "errors.sml";
[opening errors.sml]
errors.sml:4.5 Error: syntax error: inserting VAL
errors.sml:6.10-6.13 Error: unbound variable or constructor: mud
errors.sml:7.31-7.34 Error: unbound variable or constructor: Odd

CSc 372, Fall 2006 Standard ML, Slide 98
W. H. Mitchell (whm@msweng.com)

Common problems, continued

Infinite recursion:

fun sum(0) = 0
 | sum(n) = n + sum(n);

Usage:

- sum(5);
...no response...
^C
Interrupt

CSc 372, Fall 2006 Standard ML, Slide 99
W. H. Mitchell (whm@msweng.com)

Common problems, continued

Type mismatch when calling a function:

- fun double(n) = n*2;
val double = fn : int -> int

- fun f(x) = double(3.0 * x);
stdIn:3.27 Error: operator and operand don't agree [tycon mismatch]
 operator domain: int
 operand: real
 in expression:
 double (3.0 * x)

Type mismatch when recursively calling a function:

- fun f(x,y) = f(x);
Error: operator and operand don't agree [circularity]
 operator domain: 'Z * 'Y
 operand: 'Z
 in expression:
 f x

CSc 372, Fall 2006 Standard ML, Slide 100
W. H. Mitchell (whm@msweng.com)

Common problems, continued

A non-exhaustive match warning can indicate incomplete reasoning, typically a missing basis
case to terminate recursion:

- fun len(x::xs) = 1 + len(xs);
Warning: match nonexhaustive
 x :: xs => ...

- len([1,2,3]);
uncaught exception nonexhaustive match failure
 raised at: stdIn:368.3

Use of fun instead of | (or-bar) for a function case:

- fun f(1) = "one"
 fun f(n) = "other";
Warning: match nonexhaustive
 1 => ...

val f = <hidden-value> : int -> string
val f = fn : 'a -> string

CSc 372, Fall 2006 Standard ML, Slide 101
W. H. Mitchell (whm@msweng.com)

 Larger Examples

expand

travel

tally

CSc 372, Fall 2006 Standard ML, Slide 102
W. H. Mitchell (whm@msweng.com)

expand

Consider a function that expands a string in a trivial packed representation:

- expand("x3y4z");
val it = "xyyyzzzz" : string

- expand("123456");
val it = "244466666" : string

Fact: The digits 0 through 9 have the ASCII codes 48 through 57. A character can be
converted to an integer by subtracting from it the ASCII code for 0. Therefore,

fun ctoi(c) = ord(c) - ord(#"0")

fun is_digit(c) = #"0" <= c andalso c <= #"9"

- ctoi(#"5");
val it = 5 : int

- is_digit(#"x");
val it = false : bool

CSc 372, Fall 2006 Standard ML, Slide 103
W. H. Mitchell (whm@msweng.com)

expand, continued

One more function:

fun repl(x, 0) = []
 | repl(x, n) = x::repl(x, n-1)

What does it do?

Finally, expand:

fun expand(s) =
 let
 fun expand'([]) = []
 | expand'([c]) = [c]
 | expand'(c1::c2::cs) =
 if is_digit(c1) then
 repl(c2, ctoi(c1)) @ expand'(cs)
 else
 c1 :: expand'(c2::cs)
 in
 implode(expand'(explode(s)))
 end;

CSc 372, Fall 2006 Standard ML, Slide 104
W. H. Mitchell (whm@msweng.com)

travel

Imagine a robot that travels on an infinite grid of cells. The robot's movement is directed by
a series of one character commands: n, e, s, and w.

In this problem we will consider a function travel of type string -> string that moves the
robot about the grid and determines if the robot ends up where it started (i.e., did it get
home?) or elsewhere (did it get lost?).

1

2

R

If the robot starts in square R the command string nnnn leaves the robot in the square marked
1. The string nenene leaves the robot in the square marked 2. nnessw and news move the
robot in a round-trip that returns it to square R.

CSc 372, Fall 2006 Standard ML, Slide 105
W. H. Mitchell (whm@msweng.com)

travel, continued

Usage:

- travel("nnnn");
val it = "Got lost" : string

- travel("nnessw");
val it = "Got home" : string

How can we approach this problem?

CSc 372, Fall 2006 Standard ML, Slide 106
W. H. Mitchell (whm@msweng.com)

travel, continued

One approach:

1. Map letters into integer 2-tuples representing X and Y displacements on a Cartesian
plane.

2. Sum the X and Y displacements to yield a net displacement.

Example:

Argument value: "nnee"
Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
Sum of tuples: (2,2)

Another:

Argument value: "nnessw"
Mapped to tuples: (0,1) (0,1) (1,0) (0,-1) (0,-1) (-1,0)
Sum of tuples: (0,0)

CSc 372, Fall 2006 Standard ML, Slide 107
W. H. Mitchell (whm@msweng.com)

travel, continued

A couple of building blocks:

fun mapmove(#"n") = (0,1)
 | mapmove(#"s") = (0,~1)
 | mapmove(#"e") = (1,0)
 | mapmove(#"w") = (~1,0)

fun sum_tuples([]) = (0,0)
 | sum_tuples((x,y)::ts) =

let
val (sumx, sumy) = sum_tuples(ts)

in
(x+sumx, y+sumy)

end

CSc 372, Fall 2006 Standard ML, Slide 108
W. H. Mitchell (whm@msweng.com)

travel, continued

The grand finale:

fun travel(s) =
 let
 fun mk_tuples([]) = []
 | mk_tuples(c::cs) = mapmove(c)::mk_tuples(cs)

 val tuples = mk_tuples(explode(s))

 val disp = sum_tuples(tuples)

 in
if disp = (0,0) then

"Got home"
else

"Got lost"
 end

Note that mapmove and sum_tuples are defined at the outermost level. mk_tuples is
defined inside a let. Why?

CSc 372, Fall 2006 Standard ML, Slide 109
W. H. Mitchell (whm@msweng.com)

Larger example: tally

Consider a function tally that prints the number of occurrences of each character in a string:

- tally("a bean bag");
a 3
b 2
 2
g 1
n 1
e 1
val it = () : unit

Note that the characters are shown in order of decreasing frequency.

How can this problem be approached?

CSc 372, Fall 2006 Standard ML, Slide 110
W. H. Mitchell (whm@msweng.com)

tally, continued

Implementation:

(*
 * inc_entry(c, L)
 *
 * L is a list of (char * int) tuples that indicate how many times a
 * character has been seen.
 *
 * inc_entry() produces a copy of L with the count in the tuple
 * containing the character c incremented by one. If no tuple with
 * c exists, one is created with a count of 1.
 *)
 fun inc_entry(c, []) = [(c, 1)]
 | inc_entry(c, (char, count)::entries) =
 if c = char then
 (char, count+1)::entries
 else
 (char, count)::inc_entry(c, entries)

CSc 372, Fall 2006 Standard ML, Slide 111
W. H. Mitchell (whm@msweng.com)

tally, continued

(* mkentries(s) calls inc_entry() for each character in the string s *)

fun mkentries(s) =
 let
 fun mkentries'([], entries) = entries
 | mkentries'(c::cs, entries) =
 mkentries'(cs, inc_entry(c, entries))
 in
 mkentries'(explode s, [])
 end

(* fmt_entries(L) prints, one per line, the (char * int) tuples in L *)

fun fmt_entries(nil) = ""
 | fmt_entries((c, count)::es) =
 str(c) ^ " " ^ Int.toString(count) ^ "\n" ^ fmt_entries(es)

CSc 372, Fall 2006 Standard ML, Slide 112
W. H. Mitchell (whm@msweng.com)

tally, continued

(*
 * sort, insert, and order_pair work together to provide an insertion sort
 *
 * insert(v, L) produces a copy of the int list L with the int v in the
 * proper position. Values in L are descending order.
 *
 * sort(L) produces a sorted copy of L by using insert() to place
 * values at the proper position.
 *
 *)
fun insert(v, []) = [v]
 | insert(v, x::xs) =
 if order_pair(v,x) then v::x::xs
 else x::insert(v, xs)

fun sort([]) = []
 | sort(x::xs) = insert(x, sort(xs))

fun order_pair((_, v1), (_, v2)) = v1 > v2

CSc 372, Fall 2006 Standard ML, Slide 113
W. H. Mitchell (whm@msweng.com)

tally, continued

With all the pieces in hand, tally itself is a straightforward sequence of calls.

(*
 * tally: make entries, sort the entries, and print the entries
 *)
fun tally(s) = print(fmt_entries(sort(mkentries(s))))

CSc 372, Fall 2006 Standard ML, Slide 114
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Standard ML, Slide 115
W. H. Mitchell (whm@msweng.com)

More with functions

Functions as values

Functions as arguments

A flexible sort

Curried functions

CSc 372, Fall 2006 Standard ML, Slide 116
W. H. Mitchell (whm@msweng.com)

Functions as values

A fundamental characteristic of a functional language is that functions are values that can be
used as flexibly as values of other types.

In essence, the fun declaration creates a function value and binds it to a name. Additional
names can be bound to a function value with a val declaration.

- fun double(n) = 2*n;
val double = fn : int -> int

- val twice = double;
val twice = fn : int -> int

- twice;
val it = fn : int -> int

- twice 3;
val it = 6 : int

Note that unlike values of other types, no representation of a function is shown. Instead, "fn"
is displayed. (Think flexibly: What could be shown instead of only fn?)

CSc 372, Fall 2006 Standard ML, Slide 117
W. H. Mitchell (whm@msweng.com)

Functions as values, continued

Just as values of other types can appear in lists, so can functions:

- val convs = [floor, ceil, trunc];
val convs = [fn,fn,fn] : (real -> int) list

- hd convs;
val it = fn : real -> int

- it 4.3;
val it = 4 : int

- (hd (tl convs)) 4.3;
val it = 5 : int

What is the type of the list [hd]?

What is the type of [size, length]?

CSc 372, Fall 2006 Standard ML, Slide 118
W. H. Mitchell (whm@msweng.com)

Functions as values, continued

It should be no surprise that functions can be elements of a tuple:

- (hd, 1, size, "x", length);
val it = (fn,1,fn,"x",fn)
 : ('a list -> 'a) * int * (string -> int) * string * ('b list -> int)

- [it];
val it = [(fn,1,fn,"x",fn)]
 : (('a list -> 'a) * int * (string -> int) * string * ('b list -> int)) list

Using the "op" syntax we can work with operators as functions:

- swap(pair(op~, op^));
val it = (fn,fn) : (string * string -> string) * (int -> int)

- #2(it) 10; (* #n(tuple) produces the nth value of the tuple *)
val it = ~10 : int

What are some other languages that allow functions to be treated as values, at least to some
extent?

CSc 372, Fall 2006 Standard ML, Slide 119
W. H. Mitchell (whm@msweng.com)

Functions as arguments

A function may be passed as an argument to a function.

This function simply applies a given function to a value:

- fun apply(F,v) = F(v);
val apply = fn : ('a -> 'b) * 'a -> 'b

Usage:

- apply(size, "abcd");
val it = 4 : int

- apply(swap, (3,4));
val it = (4,3) : int * int

- apply(length, apply(m_to_n, (5,7)));
val it = 3 : int

A function that uses other functions as values is said to be a higher-order function.

Could apply be written in Java? In C?

CSc 372, Fall 2006 Standard ML, Slide 120
W. H. Mitchell (whm@msweng.com)

Functions as arguments, continued

Consider the following function:

fun f(f', x, 1) = f'(x)
 | f(f', x, n) = f(f', f'(x), n - 1)

What does it do?

What is its type?

Give an example of a valid use of the function.

CSc 372, Fall 2006 Standard ML, Slide 121
W. H. Mitchell (whm@msweng.com)

Functions as arguments, continued

Here is a function that applies a function to every element of a list and produces a list of the
results:

fun applyToAll(_, []) = []
 | applyToAll(f, x::xs) = f(x)::applyToAll(f, xs);

Usage:

- applyToAll(double, [10, 20, 30]);
val it = [20,40,60] : int list

- applyToAll(real, iota(5));
val it = [1.0,2.0,3.0,4.0,5.0] : real list

- applyToAll(length, [it, it@it]);
val it = [5,10] : int list

- applyToAll(implode,
applyToAll(rev,

applyToAll(explode, ["one", "two", "three"])));
val it = ["eno","owt","eerht"] : string list

CSc 372, Fall 2006 Standard ML, Slide 122
W. H. Mitchell (whm@msweng.com)

Functions as arguments, continued

Here's a roundabout way to calculate the length of a list:

- val L = explode "testing";
val L = [#"t",#"e",#"s",#"t",#"i",#"n",#"g"] : char list

- fun one _ = 1;
val one = fn : 'a -> int

- sumInts(applyToAll(one, L));
val it = 7 : int

Problem: Create a list like ["x", "xx", "xxx", ... "xxxxxxxxxx"]. (One to ten "x"s.)

We'll see later that applyToAll is really the map function from the library, albeit in a slightly
different form.

CSc 372, Fall 2006 Standard ML, Slide 123
W. H. Mitchell (whm@msweng.com)

Functions that produce functions

Consider a function that applies two specified functions to the same value and returns the
function producing the larger integer result:

- fun larger(f1, f2, x) = if f1(x) > f2(x) then f1 else f2;
val larger = fn : ('a -> int) * ('a -> int) * 'a -> 'a -> int

- val g = larger(double, square, 5);
val g = fn : int -> int

- g(5);
val it = 25 : int

- val h = larger(sum, len, [0, 0, 0]);
val h = fn : int list -> int

- h([10,20,30]);
val it = 3 : int

- (larger(double, square, ~4)) (10);
val it = 100 : int

CSc 372, Fall 2006 Standard ML, Slide 124
W. H. Mitchell (whm@msweng.com)

A flexible sort

Recall order(ed)_pair, insert, and sort from tally (slide 112). They work together to sort a
(char * int) list.

fun ordered_pair((_, v1), (_, v2)) = v1 > v2

fun insert(v, []) = [v]
 | insert(v, x::xs) = if ordered_pair(v,x) then v::x::xs else x::insert(v, xs)

fun sort([]) = []
 | sort(x::xs) = insert(x, sort(xs))

Consider eliminating ordered_pair and instead supplying a function to test whether the
values in a 2-tuple are the desired order.

CSc 372, Fall 2006 Standard ML, Slide 125
W. H. Mitchell (whm@msweng.com)

A flexible sort, continued

Here are versions of insert and sort that use a function to test the order of elements in a 2-
tuple:

fun insert(v, [], isInOrder) = [v]
 | insert(v, x::xs, isInOrder) =
 if isInOrder(v,x) then v::x::xs
 else x::insert(v, xs, isInOrder)

fun sort([], isInOrder) = []
 | sort(x::xs, isInOrder) = insert(x, sort(xs, isInOrder), isInOrder)

Types:

- insert;
val it = fn : 'a * 'a list * ('a * 'a -> bool) -> 'a list

- sort;
val it = fn : 'a list * ('a * 'a -> bool) -> 'a list

What C library function does this version of sort resemble?

CSc 372, Fall 2006 Standard ML, Slide 126
W. H. Mitchell (whm@msweng.com)

A flexible sort, continued

Sorting integers:

- fun intLessThan(a,b) = a < b;
val intLessThan = fn : int * int -> bool

- sort([4,10,7,3], intLessThan);
val it = [3,4,7,10] : int list

We might sort (int * int) tuples based on the sum of the two values:

fun sumLessThan((a1, a2), (b1, b2)) = a1 + a2 < b1 + b2;

- sort([(1,1), (10,20), (2,~2), (3,5)], sumLessThan);
val it = [(2,~2),(1,1),(3,5),(10,20)] : (int * int) list

Problem: Sort an int list list based on the largest value in each of the int lists. Sorting

[[3,1,2],[50],[10,20],[4,3,2,1]]

would yield

[[3,1,2],[4,3,2,1],[10,20],[50]]

CSc 372, Fall 2006 Standard ML, Slide 127
W. H. Mitchell (whm@msweng.com)

Curried functions

It is possible to define a function in curried form:

- fun add x y = x + y; (Two arguments, x and y, not (x,y), a 2-tuple)
val add = fn : int -> int -> int

The function add can be called like this:

- add 3 5;
val it = 8 : int

Note the type of add: int -> (int -> int) (Remember that -> is right-associative.)

What add 3 5 means is this:

- (add 3) 5;
val it = 8 : int

add is a function that takes an int and produces a function that takes an int and produces an
int. add 3 produces a function that is then called with the argument 5.

Is add(3,5) valid?

CSc 372, Fall 2006 Standard ML, Slide 128
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

For reference: fun add x y = x + y. The type is int -> (int -> int).

More interesting than add 3 5 is this:

- add 3;
val it = fn : int -> int

- val plusThree = add 3;
val plusThree = fn : int -> int

The name plusThree is bound to a function that is a partial instantiation of add. (a.k.a.
partial application)

- plusThree 5;
val it = 8 : int

- plusThree 20;
val it = 23 : int

- plusThree (plusThree 20);
val it = 26 : int

CSc 372, Fall 2006 Standard ML, Slide 129
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

For reference:

fun add x y = x + y

As a conceptual model, think of this expression:

val plusThree = add 3

as producing a result similar to this:

fun plusThree(y) = 3 + y

The idea of a partially applicable function was first described by Moses Schönfinkel. It was
further developed by Haskell B. Curry. Both worked wtih David Hilbert in the 1920s.

What prior use have you made of partially applied functions?

CSc 372, Fall 2006 Standard ML, Slide 130
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

For reference:

- fun add x y = x + y;
val add = fn : int -> int -> int

- val plusThree = add 3;
val plusThree = fn : int -> int

Analogy: A partially instantiated function is like a machine with a hardwired input value.

This model assumes that data flows from left to right.

CSc 372, Fall 2006 Standard ML, Slide 131
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

Consider another function:

- fun f a b c = a*2 + b*3 + c*4;
val f = fn : int -> int -> int -> int

- val f_a = f 1;
val f_a = fn : int -> int -> int

fun f_a(b,c) = 1*2 + b*3 + c*4

- val f_a_b = f_a 2;
val f_a_b = fn : int -> int

fun f_a_b(c) = 1*2 + 2*3 + c*4
 8 + c*4;

- f_a_b 3;
val it = 20 : int

- f_a 5 10;
val it = 57 : int

CSc 372, Fall 2006 Standard ML, Slide 132
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

At hand:

- fun f a b c = a*2 + b*3 + c*4;
val f = fn : int -> int -> int -> int

Note that the expression

f 10 20 30;

is evaluated like this:

((f 10) 20) 30

In C, it's said that "declaration mimics use"—a declaration like int f() means that if you see
the expression f(), it is an int. We see something similar with ML function declarations:

fun add(x,y) = x + y Call: add (3, 4)

fun add x y = x + y Call: add 3 4

CSc 372, Fall 2006 Standard ML, Slide 133
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

Problem: Define a curried function named mul to multiply two integers. Using a partial
application, use a val binding to create a function equivalent to fun double(n) = 2 * n.

Here is a curried implementation of m_to_n (slide 76):

- fun m_to_n m n = if m > n then [] else m :: (m_to_n (m+1) n);
val m_to_n = fn : int -> int -> int list

Usage:

- m_to_n 1 7;
val it = [1,2,3,4,5,6,7] : int list

- val L = m_to_n ~5 5;
val L = [~5,~4,~3,~2,~1,0,1,2,3,4,5] : int list

Problem: Create the function iota, described on slide 78. (iota(3) produces [1,2,3].)

CSc 372, Fall 2006 Standard ML, Slide 134
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

What's happening here?

- fun add x y = x + y;
val add = fn : int -> int -> int

- add double(3) double(4);
Error: operator and operand don't agree [tycon mismatch]
 operator domain: int
 operand: int -> int
 in expression:
 add double

CSc 372, Fall 2006 Standard ML, Slide 135
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

Problem—fill in the blanks:

fun add x y z = x + y + z;

val x = add 1;

val xy = x 2;

xy 3;

xy 10;

x 0 0;

CSc 372, Fall 2006 Standard ML, Slide 136
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

Here is sort from slide 125:

fun sort([], isInOrder) = []
 | sort(x::xs, isInOrder) = insert(x, sort(xs, isInOrder), isInOrder)

A curried version of sort:

fun sort _ [] = []
 | sort isInOrder (x::xs) = insert(x, (sort isInOrder xs), isInOrder)

Usage:

- val intSort = sort intLessThan;
val int_sort = fn : int list -> int list

- int_sort [4,2,1,8];
val it = [1,2,4,8] : int list

Why does the curried form have the function as the first argument?

CSc 372, Fall 2006 Standard ML, Slide 137
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

Functions in the ML standard library (the "Basis") are often curried.

String.isSubstring returns true iff its first argument is a substring of the second argument:

- String.isSubstring;
val it = fn : string -> string -> bool

- String.isSubstring "tan" "standard";
val it = true : bool

We can create a partial application that returns true iff a string contains "tan":

- val hasTan = String.isSubstring "tan";
val hasTan = fn : string -> bool

- hasTan "standard";
val it = true : bool

- hasTan "library";
val it = false : bool

See the Resources page on the website for a link to documentation for the Basis.

CSc 372, Fall 2006 Standard ML, Slide 138
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

In fact, the curried form is syntactic sugar. An alternative to fun add x y = x + y is this:

- fun add x =
 let

 fun add' y = x + y
in
 add'
end

val add = fn : int -> int -> int (Remember associativity: int -> (int -> int))

A call such as add 3 produces an instance of add' where x is bound to 3. That instance is
returned as the value of the let expression.

- add 3;
val it = fn : int -> int

- it 4;
val it = 7 : int

- add 3 4;
val it = 7 : int

CSc 372, Fall 2006 Standard ML, Slide 139
W. H. Mitchell (whm@msweng.com)

List processing idioms with functions

Mapping

Anonymous functions

Predicate based functions

Reduction/folding

travel, revisited

CSc 372, Fall 2006 Standard ML, Slide 140
W. H. Mitchell (whm@msweng.com)

Mapping

The applyToAll function seen earlier applies a function to each element of a list and
produces a list of the results. There is a built-in function called map that does the same
thing.

- map;
val it = fn : ('a -> 'b) -> 'a list -> 'b list

- map size ["just", "testing"];
val it = [4,7] : int list

- map sumInts [[1,2,3],[5,10,20],[]];
val it = [6,35,0] : int list

Mapping is one of the idioms of functional programming.

There is no reason to write a function that performs an operation on each value in a list.
Instead create a function to perform the operation on a single value and then map that
function onto lists of interest.

CSc 372, Fall 2006 Standard ML, Slide 141
W. H. Mitchell (whm@msweng.com)

Mapping, continued

Contrast the types of applyToAll and map. Which is more useful?

- applyToAll;
val it = fn : ('a -> 'b) * 'a list -> 'b list

- map;
val it = fn : ('a -> 'b) -> 'a list -> 'b list

Consider a partial application of map:

- val sizes = map size;
val sizes = fn : string list -> int list

- sizes ["ML", "Ruby", "Prolog"];
val it = [2,4,6] : int list

- sizes ["ML", "Icon", "C++", "Prolog"];
val it = [2,4,3,6] : int list

CSc 372, Fall 2006 Standard ML, Slide 142
W. H. Mitchell (whm@msweng.com)

Mapping, continued

Here's one way to generate a string with all the ASCII characters:

- implode (map chr (m_to_n 0 127));
val it =
 "\^@\^A\^B\^C\^D\^E\^F\a\b\t\n\v\f\r\^N\^O\^P\^Q\^R\^S\^T\^U\^V\^W\^X\^Y\^Z\^[
\^\\^]\^^\^_ !\"#$%&'()*+,-./0123456789:;<=>?@ABCDE#"
 : string

(Note that the full value is not shown—the trailing # indicates the value was truncated for
display.)

Problem: Write a function equalsIgnoreCase of type string * string -> bool. The function
Char.toLower (char -> char) converts upper-case letters to lower case and leaves other
characters unchanged.

CSc 372, Fall 2006 Standard ML, Slide 143
W. H. Mitchell (whm@msweng.com)

Mapping with curried functions

It is common to map with a partial application:

- val addTen = add 10;
val addTen = fn : int -> int

- map addTen (m_to_n 1 10);
val it = [11,12,13,14,15,16,17,18,19,20] : int list

- map (add 100) (m_to_n 1 10);
val it = [101,102,103,104,105,106,107,108,109,110] : int list

The partial application "plugs in" one of the addends. The resulting function is then called
with each value in the list in turn serving as the other addend.

Remember that map is curried, too:

- val addTenToAll = map (add 10);
val addTenToAll = fn : int list -> int list

- addTenToAll [3,1,4,5];
val it = [13,11,14,15] : int list

CSc 372, Fall 2006 Standard ML, Slide 144
W. H. Mitchell (whm@msweng.com)

Mapping with anonymous functions

Here's another way to define a function:

- val double = fn(n) => n * 2;
val double = fn : int -> int

The expression being evaluated, fn(n) => n * 2, is a simple example of a match expression.
It provides a way to create a function "on the spot".

If we want to triple the numbers in a list, instead of writing a triple function we might do this:

- map (fn(n) => n * 3) [3, 1, 5, 9];
val it = [9,3,15,27] : int list

The function created by fn(n) => n * 3 never has a name. It is an anonymous function. It is
created, used, and discarded.

The term match expression is ML-specific. A more general term for an expression that
defines a nameless function is a lambda expression.

CSc 372, Fall 2006 Standard ML, Slide 145
W. H. Mitchell (whm@msweng.com)

Mapping with anonymous functions, continued

Explain the following:

- map (fn(s) => (size(s), s)) ["just", "try", "it"];
val it = [(4,"just"),(3,"try"),(2,"it")] : (int * string) list

Problem: Recall this mapping of a partial application:

- map (add 100) (m_to_n 1 10);
val it = [101,102,103,104,105,106,107,108,109,110] : int list

Do the same thing but use an anonymous function instead.

CSc 372, Fall 2006 Standard ML, Slide 146
W. H. Mitchell (whm@msweng.com)

Predicate-based functions

The built-in function List.filter applies function F to each element of a list and produces a list
of those elements for which F produces true. Here's one way to write filter:

- fun filter F [] = []
 | filter F (x::xs) = if (F x) then x::(filter F xs)

 else (filter F xs);
val filter = fn : ('a -> bool) -> 'a list -> 'a list

It is said that F is a predicate—inclusion of a list element in the result is predicated on
whether F returns true for that value.

Problem: Explain the following.

- val f = List.filter (fn(n) => n mod 2 = 0);
val f = fn : int list -> int list

- f [5,10,12,21,32];
val it = [10,12,32] : int list

- length (f (m_to_n 1 100));
val it = 50 : int

CSc 372, Fall 2006 Standard ML, Slide 147
W. H. Mitchell (whm@msweng.com)

Predicate-based functions, continued

Another predicate-based function is List.partition:

- List.partition;
val it = fn : ('a -> bool) -> 'a list -> 'a list * 'a list

- List.partition (fn(s) => size(s) <= 3) ["a", "test", "now"];
val it = (["a","now"],["test"]) : string list * string list

String.tokens uses a predicate to break a string into tokens:

- Char.isPunct;
val it = fn : char -> bool

- String.tokens Char.isPunct "a,bc:def.xyz";
val it = ["a","bc","def","xyz"] : string list

Problem: What characters does Char.isPunct consider to be punctuation?

CSc 372, Fall 2006 Standard ML, Slide 148
W. H. Mitchell (whm@msweng.com)

Real-world application: A very simple grep

The UNIX grep program searches files for lines that contain specified text. Imagine a very
simple grep in ML:

- grep;
val it = fn : string -> string list -> unit list

- grep "sort" ["all.sml","flexsort.sml"];
all.sml:fun sort1([]) = []
all.sml: | sort1(x::xs) =
all.sml: insert(x, sort1(xs))
flexsort.sml:fun sort([], isInOrder) = []
flexsort.sml: | sort(x::xs, isInOrder) = insert(x, sort(xs, isInOrder), isInOrder)
val it = [(),()] : unit list

We could use SMLofNJ.exportFn to create a file that is executable from the UNIX
command line, just like the real grep.

CSc 372, Fall 2006 Standard ML, Slide 149
W. H. Mitchell (whm@msweng.com)

A simple grep, continued

Implementation

fun grepAFile text file =
 let

 val inputFile = TextIO.openIn(file);
val fileText = TextIO.input(inputFile);
val lines = String.tokens (fn(c) => c = #"\n") fileText
val linesWithText = List.filter (String.isSubstring text) lines
val _ = TextIO.closeIn(inputFile);

in
print(concat(map (fn(s) => file ^ ":" ^ s ^ "\n") linesWithText))

end;

fun grep text files = map (grepAFile text) files;

Notes:
• TextIO.openIn opens a file for reading.
• TextIO.input reads an entire file and returns it as a string.
• Study the use of anonymous functions, mapping, and partial application.
• No loops, no variables, no recursion at this level.

How much code would this be in Java? Do you feel confident the code above is correct?

CSc 372, Fall 2006 Standard ML, Slide 150
W. H. Mitchell (whm@msweng.com)

Reduction of lists

Another idiom is reduction of a list by repeatedly applying a binary operator to produce a
single value. Here is a simple reduction function:

- fun reduce F [] = raise Empty
 | reduce F [x] = x
 | reduce F (x::xs) = F(x, reduce F xs)
val reduce = fn : ('a * 'a -> 'a) -> 'a list -> 'a

Usage:

- reduce op+ [3,4,5,6];
val it = 18 : int

What happens:

op+(3, reduce op+ [4,5,6])
op+(4, reduce op+ [5,6])

op+(5, reduce op+ [6])

Or,
op+(3, op+(4, op+(5,6)))

CSc 372, Fall 2006 Standard ML, Slide 151
W. H. Mitchell (whm@msweng.com)

Reduction, continued

More examples:

- reduce op^ ["just", "a", "test"];
val it = "justatest" : string

- reduce op* (iota 5);
val it = 120 : int

Problem: How could a list like [[1,2],[3,4,5],[6]] be turned into [1,2,3,4,5,6]?

CSc 372, Fall 2006 Standard ML, Slide 152
W. H. Mitchell (whm@msweng.com)

Reduction, continued

Because reduce is curried, we can create a partial application:

- val concat = reduce op^; (* mimics built-in concat *)
val concat = fn : string list -> string

- concat ["xyz", "abc"];
val it = "xyzabc" : string

- val sum = reduce op+ ;
val sum = fn : int list -> int

- sum(iota 10);
val it = 55 : int

- val max = reduce (fn(x,y) => if x > y then x else y);
val max = fn : int list -> int

- max [5,3,9,1,2];
val it = 9 : int

CSc 372, Fall 2006 Standard ML, Slide 153
W. H. Mitchell (whm@msweng.com)

Reduction, continued

Another name for reduction is "folding"; There are two built-in reduction/folding functions:
foldl and foldr. Contrast their types with the implementation of reduce shown above:

- foldl;
val it = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

- foldr;
val it = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

- reduce;
val it = fn : ('a * 'a -> 'a) -> 'a list -> 'a

Here's an example of foldr:

- foldr op+ 0 [5,3,9,2];
val it = 19 : int

What are the differences between reduce and foldr?

Speculate: What's the difference between foldl and foldr?

CSc 372, Fall 2006 Standard ML, Slide 154
W. H. Mitchell (whm@msweng.com)

Reduction, continued

At hand:

- foldr; (* foldl has same type *)
val it = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b
- reduce;
val it = fn : ('a * 'a -> 'a) -> 'a list -> 'a

Our reduce has two weaknesses: (1) It can't operate on an empty list. (2) The operation must
produce the same type as the list elements.

Consider this identity operation:

- foldr op:: [] [1,2,3,4];
val it = [1,2,3,4] : int list

Here are the op:: (cons) operations that are performed:

- op::(1, op::(2, op::(3, op::(4, []))));
val it = [1,2,3,4] : int list

Note that the empty list in op::(4, []) comes from the call. (Try it with [10] instead of [].)

CSc 372, Fall 2006 Standard ML, Slide 155
W. H. Mitchell (whm@msweng.com)

Reduction, continued

At hand:

- foldr op:: [] [1,2,3,4];
val it = [1,2,3,4] : int list

foldl (note the "L") folds from the left, not the right:

- foldl op:: [] [1,2,3,4];
val it = [4,3,2,1] : int list

Here are the op:: calls that are made:

- op::(4, op::(3, op::(2, op::(1, []))));
val it = [4,3,2,1] : int list

CSc 372, Fall 2006 Standard ML, Slide 156
W. H. Mitchell (whm@msweng.com)

Reduction, continued

In some cases foldl and foldr produce different results. In some they don't:

- foldr op^ "!" ["a","list","of","strings"];
val it = "alistofstrings!" : string

- foldl op^ "!" ["a","list","of","strings"];
val it = "stringsoflista!" : string

- foldr op+ 0 [5,3,9,2];
val it = 19 : int

- foldl op+ 0 [5,3,9,2];
val it = 19 : int

- foldl op@ [] [[1,2],[3],[4,5]];
val it = [4,5,3,1,2] : int list

- foldr op@ [] [[1,2],[3],[4,5]];
val it = [1,2,3,4,5] : int list

What characteristic of an operation leads to different results with foldl and foldr?

CSc 372, Fall 2006 Standard ML, Slide 157
W. H. Mitchell (whm@msweng.com)

travel, revisited

Here's a version of travel (slide 107) that uses mapping and reduction (folding) instead of
explicit recursion:

fun dirToTuple(#"n") = (0,1)
 | dirToTuple(#"s") = (0,~1)
 | dirToTuple(#"e") = (1,0)
 | dirToTuple(#"w") = (~1,0)

fun addTuples((x1 , y1), (x2, y2)) = (x1 + x2, y1 + y2);

fun travel(s) =
 let
 val tuples = map dirToTuple (explode s)
 val displacement = foldr addTuples (0,0) tuples
 in
 if displacement = (0,0) then "Got home"
 else "Got lost"
 end

How confident are we that it is correct? Would it be longer or shorter in Java?

CSc 372, Fall 2006 Standard ML, Slide 158
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Standard ML, Slide 159
W. H. Mitchell (whm@msweng.com)

Even more with functions

Composition

Manipulation of operands

CSc 372, Fall 2006 Standard ML, Slide 160
W. H. Mitchell (whm@msweng.com)

Composition of functions

Given two functions F and G, the composition of F and G is a function C that for all values
of x, C(x) = F(G(x)).

Here is a primitive compose function that applies two functions in turn:

- fun compose(F,G,x) = F(G(x));
val compose = fn : ('a -> 'b) * ('c -> 'a) * 'c -> 'b

Usage:

- length;
val it = fn : 'a list -> int

- explode;
val it = fn : string -> char list

- compose(length, explode, "testing");
val it = 7 : int

Could we create a function composeAll([f1, f2, ... fn], x) that would call f1(f2(...fn(x)))?

CSc 372, Fall 2006 Standard ML, Slide 161
W. H. Mitchell (whm@msweng.com)

The composition operator (o)

There is a composition operator in ML:

- op o; (* lower-case "Oh" *)
val it = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'b

Two functions can be composed into a new function:

- val strlen = length o explode;
val strlen = fn : string -> int

- strlen "abc";
val it = 3 : int

Consider the types with respect to the type of op o:

'a is 'a list
'b is int
'c is string

(('a list -> int) * (string -> 'a list)) -> (string -> int)

CSc 372, Fall 2006 Standard ML, Slide 162
W. H. Mitchell (whm@msweng.com)

Composition, continued

When considering the type of a composed function only the types of the leftmost and
rightmost functions come into play.

Note that the following three compositions all have the same type. (Yes, the latter two are
doing some "busywork"!)

- length o explode;
val it = fn : string -> int

- length o explode o implode o explode;
val it = fn : string -> int

- length o rev o explode o implode o rev o explode;
val it = fn : string -> int

A COMMON ERROR is to say the type of length o explode is something like this:

string -> 'a list -> int (WRONG!!!)

Assuming a composition is valid, the type is based only on the input of the rightmost function
and the output of the leftmost function.

CSc 372, Fall 2006 Standard ML, Slide 163
W. H. Mitchell (whm@msweng.com)

Composition, continued

For reference:

- val strlen = length o explode;
val strlen = fn : string -> int

Analogy: Composition is like bolting machines together.

Because these machine models assume left to right data flow, explode comes first.

CSc 372, Fall 2006 Standard ML, Slide 164
W. H. Mitchell (whm@msweng.com)

Composition, continued

Recall order and swap:

fun order(x, y) = if x < y then (x, y) else (y, x)

fun swap(x, y) = (y, x)

A descOrder function can be created with composition:

- val descOrder = swap o order;
val descOrder = fn : int * int -> int * int

- descOrder(1,4);
val it = (4,1) : int * int

Problem: Using composition, create a function to reverse a string.

Problem: Create a function to reverse each string in a list of strings and reverse the order of
strings in the list. (Example: f ["one","two","three"] would produce ["eerht","owt","eno"].)

CSc 372, Fall 2006 Standard ML, Slide 165
W. H. Mitchell (whm@msweng.com)

Composition, continued

Problem: Create two functions second and third, which produce the second and third
elements of a list, respectively:

- second([4,2,7,5]);
val it = 2 : int

- third([4,2,7,5]);
val it = 7 : int

Problem: The function xrepl(x, n) produces a list with n copies of x:

- xrepl(1, 5);
val it = [1,1,1,1,1] : int list

Create a function repl(s, n), of type string * int -> string, that produces a string consisting of
n copies of s. For example, repl("abc", 2) = "abcabc".

Problem: Compute the sum of the odd numbers between 1 and 100, inclusive. Use only
composition and applications of op+, iota, isEven, foldr, filter, and not (bool -> bool).

CSc 372, Fall 2006 Standard ML, Slide 166
W. H. Mitchell (whm@msweng.com)

Another way to understand composition

Composition can be explored by using
functions that simply echo their call.

Example:

- fun f(s) = "f(" ^ s ^ ")";
val f = fn : string -> string

- f("x");
val it = "f(x)" : string

Two more:

fun g(s) = "g(" ^ s ^ ")";

fun h(s) = "h(" ^ s ^ ")";

Compositions:

- val fg = f o g;
val fg = fn : string -> string

- fg("x");
val it = "f(g(x))" : string

- val ghf = g o h o f;
val ghf = fn : string -> string

- ghf("x");
val it = "g(h(f(x)))" : string

- val q = fg o ghf;
val q = fn : string -> string

- q("x");
val it = "f(g(g(h(f(x)))))" : string

CSc 372, Fall 2006 Standard ML, Slide 167
W. H. Mitchell (whm@msweng.com)

"Computed" composition

Because composition is just an operator and functions are just values, we can write a function
that computes a composition. compN f n composes f with itself n times:

- fun compN f 1 = f
 | compN f n = f o compN f (n-1);
val compN = fn : ('a -> 'a) -> int -> 'a -> 'a

Usage:

- val f = compN double 3;
val f = fn : int -> int

- f 10;
val it = 80 : int

- compN double 10 1;
val it = 1024 : int

- map (compN double) (iota 5);
val it = [fn,fn,fn,fn,fn] : (int -> int) list

Could we create compN using folding?

CSc 372, Fall 2006 Standard ML, Slide 168
W. H. Mitchell (whm@msweng.com)

Manipulation of operands

Consider this function:

- fun c f x y = f (x,y);
val c = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

Usage:

- c op+ 3 4;
val it = 7 : int

- c op^ "a" "bcd";
val it = "abcd" : string

What is it doing?

What would be produced by the following partial applications?

c op+

c op^

CSc 372, Fall 2006 Standard ML, Slide 169
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

Here's the function again, with a revealing name:

- fun curry f x y = f (x,y);
val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

Consider:

- op+;
val it = fn : int * int -> int

- val add = curry op+;
val add = fn : int -> int -> int

- val addFive = add 5;
val addFive = fn : int -> int

- map addFive (iota 10);
val it = [6,7,8,9,10,11,12,13,14,15] : int list

- map (curry op+ 5) (iota 10);
val it = [6,7,8,9,10,11,12,13,14,15] : int list

CSc 372, Fall 2006 Standard ML, Slide 170
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

For reference:

- fun curry f x y = f (x,y);
val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

For a moment, think of a partial application as textual substitution:

val add = curry op+ is like fun add x y = op+(x, y)

val addFive = curry op+ 5 is like fun addFive y = op+(5, y)

Bottom line:

If we have a function that takes a 2-tuple, we can easily produce a curried version of the
function.

CSc 372, Fall 2006 Standard ML, Slide 171
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

Recall repl from slide 165:

- repl("abc", 4);
val it = "abcabcabcabc" : string

Let's create some partial applications of a curried version of it:

- val stars = curry repl "*";
val stars = fn : int -> string

- val arrows = curry repl " ---> ";
val arrows = fn : int -> string

- stars 10;
val it = "**********" : string

- arrows 5;
val it = " ---> ---> ---> ---> ---> " : string

- map arrows (iota 3);
val it = [" ---> "," ---> ---> "," ---> ---> ---> "] : string list

CSc 372, Fall 2006 Standard ML, Slide 172
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

Sometimes we have a function that is curried but we wish it were not curried. For example, a
function of type 'a -> 'b -> 'c that would be more useful if it were 'a * 'b -> 'c.

Consider a curried function:

- fun f x y = g(x,y*2);
val f = fn : int -> int -> int

Imagine that we'd like to map f onto an (int * int) list. We can't! (Why?)

Problem: Write an uncurry function so that this works:

- map (uncurry f) [(1,2), (3,4), (5,6)];

Important: The key to understanding functions like curry and uncurry is that without
partial application they wouldn't be of any use.

CSc 372, Fall 2006 Standard ML, Slide 173
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

The partial instantiation curry repl "x" creates a function that produces some number of "x"s,
but suppose we wanted to first supply the replication count and then supply the string to
replicate.

Example:

- five; (Imagine that 'five s' will call 'repl(s, 5)'.)
val it = fn : string -> string

- five "*";
val it = "*****" : string

- five "<x>";
val it = "<x><x><x><x><x>" : string

CSc 372, Fall 2006 Standard ML, Slide 174
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

Consider this function:

- fun swapArgs f x y = f y x;
val swapArgs = fn : ('a -> 'b -> 'c) -> 'b -> 'a -> 'c

Usage:

- fun cat s1 s2 = s1 ^ s2;
val cat = fn : string -> string -> string

- val f = swapArgs cat;
val f = fn : string -> string -> string

- f "a" "b";
val it = "ba" : string

- map (swapArgs (curry op^) "x") ["just", "a", "test"];
val it = ["justx","ax","testx"] : string list

CSc 372, Fall 2006 Standard ML, Slide 175
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

- val curried_repl = curry repl;
val curried_repl = fn : string -> int -> string

- val swapped_curried_repl = swapArgs curried_repl;
val swapped_curried_repl = fn : int -> string -> string

- val five = swapped_curried_repl 5;
val five = fn : string -> string

- five "*";
val it = "*****" : string

- five "<->";
val it = "<-><-><-><-><->" : string

Or,
- val five = swapArgs (curry repl) 5;
val five = fn : string -> string

- five "xyz";
val it = "xyzxyzxyzxyzxyz" : string

CSc 372, Fall 2006 Standard ML, Slide 176
W. H. Mitchell (whm@msweng.com)

Example: optab

Function optab(F, N, M) prints a table showing the result of F(n,m) for each value of n and
m from 1 to N and M, respectively. F is always an int * int -> int function.

Example:

- optab;
val it = fn : (int * int -> int) * int * int -> unit

- optab(op*, 5, 7);
 1 2 3 4 5 6 7
 1 1 2 3 4 5 6 7
 2 2 4 6 8 10 12 14
 3 3 6 9 12 15 18 21
 4 4 8 12 16 20 24 28
 5 5 10 15 20 25 30 35
val it = () : unit

CSc 372, Fall 2006 Standard ML, Slide 177
W. H. Mitchell (whm@msweng.com)

optab, continued

val repl = concat o xrepl;

fun rightJustify width value =

repl(" ", width-size(value)) ^ value

fun optab(F, nrows, ncols) =
 let
 val rj = rightJustify 4 (* assumes three-digit results at most *)

 fun intsToRow (L) = concat(map (rj o Int.toString) L) ^ "\n"

 val cols = iota ncols

 fun mkrow nth = intsToRow(nth::(map (curry F nth) cols))

 val rows = map mkrow (iota nrows)
 in
 print((rj "") ^ intsToRow(cols) ^ concat(rows))
 end

- optab(add, 3, 4);
 1 2 3 4
 1 2 3 4 5
 2 3 4 5 6
 3 4 5 6 7
val it = () : unit

CSc 372, Fall 2006 Standard ML, Slide 178
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Standard ML, Slide 179
W. H. Mitchell (whm@msweng.com)

Data structures with datatype

A shape datatype

An expression model

An infinite lazy list

CSc 372, Fall 2006 Standard ML, Slide 180
W. H. Mitchell (whm@msweng.com)

A simple datatype

New types can be defined with the datatype declaration. Example:

- datatype Shape =
 Circle of real
 | Square of real
 | Rectangle of real * real
 | Point;
datatype Shape
 = Circle of real | Point | Rectangle of real * real | Square of real

This defines a new type named Shape. An instance of a Shape is a value in one of four
forms:

A Circle, consisting of a real (the radius)

A Square, consisting of a real (the length of a side)

A Rectangle, consisting of two reals (width and height)

A Point, which has no data associated with it. (Debatable, but good for an example.)

CSc 372, Fall 2006 Standard ML, Slide 181
W. H. Mitchell (whm@msweng.com)

Shape: a new type

At hand:

datatype Shape =
 Circle of real
 | Square of real
 | Rectangle of real * real
 | Point

This declaration defines four constructors. Each constructor specifies one way that a Shape
can be created.

Examples of constructor invocation:

- val r = Rectangle (3.0, 4.0);
val r = Rectangle (3.0,4.0) : Shape

- val c = Circle 5.0;
val c = Circle 5.0 : Shape

- val p = Point;
val p = Point : Shape

CSc 372, Fall 2006 Standard ML, Slide 182
W. H. Mitchell (whm@msweng.com)

Shape, continued

A function to calculate the area of a Shape:

- fun area(Circle radius) = Math.pi * radius * radius
 | area(Square side) = side * side
 | area(Rectangle(width, height)) = width * height
 | area(Point) = 0.0;
val area = fn : Shape -> real

Usage:

- val r = Rectangle(3.4,4.5);
val r = Rectangle (3.4,4.5) : Shape

- area(r);
val it = 15.3 : real

- area(Circle 1.0);
val it = 3.14159265359 : real

Speculate: What will happen if the case for Point is omitted from area?

CSc 372, Fall 2006 Standard ML, Slide 183
W. H. Mitchell (whm@msweng.com)

Shape, continued

A Shape list can be made from any combination of Circle, Point, Rectangle, and Square
values:

- val c = Circle 2.0;
val c = Circle 2.0 : Shape

- val shapes = [c, Rectangle (1.5, 2.5), c, Point, Square 1.0];
val shapes = [Circle 2.0,Rectangle (1.5,2.5),Circle 2.0,Point,Square 1.0]
 : Shape list

We can use map to calculate the area of each Shape in a list:

- map area shapes;
val it = [12.5663706144,3.75,12.5663706144,0.0,1.0] : real list

What does the following function do?

- val f = (foldr op+ 0.0) o (map area);
val f = fn : Shape list -> real

CSc 372, Fall 2006 Standard ML, Slide 184
W. H. Mitchell (whm@msweng.com)

A model of expressions using datatype

Here is a set of types that can be used to model a family of ML-like expressions:

datatype ArithOp = Plus | Times | Minus | Divide;

type Name = string (* Makes Name a synonym for string *)

datatype Expression =
 Let of (Name * int) list * Expression
 | E of Expression * ArithOp * Expression
 | Seq of Expression list
 | Con of int
 | Var of Name;

Note that it is recursive—an Expression can contain other Expressions.

Problem: Write some valid expressions.

CSc 372, Fall 2006 Standard ML, Slide 185
W. H. Mitchell (whm@msweng.com)

Expression, continued

The expression 2 * 4 is described in this way:

E(Con 2, Times, Con 4))

Consider a function that evaluates expressions:

- eval(E(Con 2, Times, Con 4));
val it = 8 : int

The Let expression allows integer values to be bound to names. The pseudo-code

let a=10, b=20, c=30
in a + (b * c)

can be expressed like this:

- eval(Let([("a",10),("b",20),("c",30)],
 E(Var "a", Plus, E(Var "b", Times, Var "c"))));
val it = 610 : int

CSc 372, Fall 2006 Standard ML, Slide 186
W. H. Mitchell (whm@msweng.com)

Expression, continued

Let expressions may be nested. The pseudo-code:

let a = 1, b = 2
in a + ((let b = 3 in b*3) + b)

can be expressed like this:

- eval(Let([("a",1),("b",2)],
 E(Var "a", Plus,
 E(Let([("b",3)], (* this binding overrides the first binding of "b" *)

 E(Var "b", Times, Con 3)), Plus, Var "b"))));
val it = 12 : int

The Seq expression allows sequencing of expressions and produces the result of the last
expression in the sequence:

- eval(Seq [Con 1, Con 2, Con 3]);
val it = 3 : int

Problem: Write eval.

CSc 372, Fall 2006 Standard ML, Slide 187
W. H. Mitchell (whm@msweng.com)

Expression, continued

Solution:

fun lookup(nm, nil) = 0
 | lookup(nm, (var,value)::bs) = if nm = var then value else lookup(nm, bs);

fun eval(e) =
let

fun eval'(Con i, _) = i
 | eval'(E(e1, Plus, e2), bs) = eval'(e1, bs) + eval'(e2, bs)
 | eval'(E(e1, Minus, e2), bs) = eval'(e1, bs) - eval'(e2, bs)
 | eval'(E(e1, Times, e2), bs) = eval'(e1, bs) * eval'(e2, bs)
 | eval'(E(e1,Divide,e2), bs) = eval'(e1, bs) div eval'(e2,bs)
 | eval'(Var v, bs) = lookup(v, bs)
 | eval'(Let(nbs, e), bs) = eval'(e, nbs @ bs)
 | eval'(Seq([]), bs) = 0
 | eval'(Seq([e]), bs) = eval'(e, bs)
 | eval'(Seq(e::es), bs) = (eval'(e,bs); eval'(Seq(es),bs))
in

eval'(e, [])
end;

How can eval be improved?

CSc 372, Fall 2006 Standard ML, Slide 188
W. H. Mitchell (whm@msweng.com)

An infinite lazy list

A lazy list is a list where values are created as needed.

Some functional languages, like Haskell, use lazy evaluation—values are not computed until
needed. In Haskell the infinite list 1, 3, 5, ... can be created like this: [1,3 ..].

% hugs
Hugs> head [1,3 ..]
1

Hugs> head (drop 10 [1,3 ..])
21

Of course, you must be careful with an infinite list:

Hugs> length [1,3 ..]
(...get some coffee...check mail...^C)
{Interrupted!}

Hugs> reverse [1,3 ..]
ERROR - Garbage collection fails to reclaim sufficient space

Adapted from ML for the Working Programmer L.C. Paulson1

CSc 372, Fall 2006 Standard ML, Slide 189
W. H. Mitchell (whm@msweng.com)

An infinite lazy list, continued

ML does not use lazy evaluation but we can approach it with a data structure that includes a
function to compute results only when needed.

Here is a way to create an infinite head/tail list with a datatype:

datatype 'a InfList = Nil
 | Cons of 'a * (unit -> 'a InfList)

fun head(Cons(x, _)) = x;
fun tail(Cons(_, f)) = f();1

Note that 'a is used to specify that values of any (one) type can be held in the list.

A Cons constructor serves as a stand-in for op::, which can't be overloaded.

Similarly, we provide head and tail functions that mimic hd and tl but operate on a Cons.

CSc 372, Fall 2006 Standard ML, Slide 190
W. H. Mitchell (whm@msweng.com)

An infinite lazy list, continued

datatype 'a InfList = Nil
 | Cons of 'a * (unit -> 'a InfList)

fun head(Cons(x,_)) = x;
fun tail(Cons(_,f)) = f();

Here's what we can do with it:

- fun byTen n = Cons(n, fn() => byTen(n+10));
val byTen = fn : int -> int InfList

- byTen 100;
val it = Cons (100,fn) : int InfList

- tail it;
val it = Cons (110,fn) : int InfList

- tail it;
val it = Cons (120,fn) : int InfList

Try it!

CSc 372, Fall 2006 Standard ML, Slide 191
W. H. Mitchell (whm@msweng.com)

An infinite lazy list, continued

More fun:

fun toggle "on" = Cons("on", fn() => toggle("off"))
 | toggle "off" = Cons("off", fn() => toggle("on"))

- toggle "on";
val it = Cons ("on",fn) : string InfList

- tail it;
val it = Cons ("off",fn) : string InfList

- tail it;
val it = Cons ("on",fn) : string InfList

- tail it;
val it = Cons ("off",fn) : string InfList

Problem: Write drop(L,n):

- drop(byTen 100, 5);
val it = Cons (150,fn) : int InfList

CSc 372, Fall 2006 Standard ML, Slide 192
W. H. Mitchell (whm@msweng.com)

An infinite lazy list, continued

Problem: Create a function repeatValues(L) that infinitely repeats the values in L.

- repeatValues;
val it = fn : 'a list -> 'a InfList

- repeatValues (explode "pdq");
val it = Cons (#"p",fn) : char InfList

- tail it;
val it = Cons (#"d",fn) : char InfList

- tail it;
val it = Cons (#"q",fn) : char InfList

- tail it;
val it = Cons (#"p",fn) : char InfList

- tail it;
val it = Cons (#"d",fn) : char InfList

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192

