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Pattern matching with lists

In a pattern, :: can be used to describe a value.   Example:

fun len ([ ]) = 0
 |    len (x::xs) = 1 + len(xs)

The first pattern is the basis case and matches an empty list.

The second pattern requires a list with at least one element.  The head is bound to x and the
tail is bound to xs.

Problem: Noting that x is never used, improve the above implementation.

Problem: Write a function sum_evens(L) that returns the sum of the even values in L, an int
list.

Problem: Write a function drop2(L) that returns a copy of L with the first two values
removed.  If the length of L is less than 2, return L. 
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Pattern matching, continued

What's an advantage of using a pattern to work with a list rather than the hd and tl functions?  

Hint:  Consider the following two implementations of sum:

fun sum(L) = hd(L) + sum(tl(L));

fun sum(x::xs) = x + sum(xs);
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Practice

Problem: Write a function member(v, L)  that produces true iff  v is contained in the list L.

- member(7,  [3, 7, 15]);
val it = true : bool

Problem: Write a function contains(s, c) that produces true iff the char c appears in the
string s.

Problem: Write a function maxint(L) that produces the largest integer in the list L.  Raise the
exception Empty if the list has no elements.
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Pattern construction

A pattern can be:

• A literal value such as 1, "x", true (but not a real)

• An identifier

• An underscore

• A tuple composed of patterns

• A list of patterns in [ ] form

• A list of patterns constructed with :: operators

Note the recursion.
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Pattern construction, continued

Unfortunately, a pattern cannot contain an arbitrary expression: 

- fun f(n > 0) = n (* not valid! *)
    |   f(n) = n;
stdIn:1.5-2.13 Error: non-constructor applied to argument in pattern: >

Note "non-constructor" in the message.  In a pattern, operators like :: are known as
constructors.

An identifier cannot appear more than once in a pattern:

- fun equals(x, x) = true (* not valid! *)
     |  equals(_) = false;
stdIn:1.5-3.24 Error: duplicate variable in pattern(s): x
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Practice

What bindings result from the following val declarations?

val [ [ (x, y) ] ] = [ [ ( 1, 2) ] ];

val [ [ x, y ] ] = [ [ 1, 2, 3 ] ];

val [(x,y)::z] = [ [ ( 1, (2 ,3) ) ] ];

val (x, ( y::ys, x ) ) = (1, ([2,3,4], (1, 2) ) );
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A batch of odds and ends

let expressions

Producing output

Common problems
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let expressions

A let expression can be used to create name/value bindings for use in a following expression
to improve clarity and/or efficiency.

One way to write a function:

fun calc(x, y, z) = f1(g(x + y) - h(z)) + f2(g(x + y) - h(z))

An alternative with let:

fun calc(x,y,z) =
    let
        val diff = g(x+y) - h(z)
    in
        f1(diff) + f2(diff)
    end

Would it be practical for a compiler to make the above transformation automatically, using
CSE (common subexpression elimination)?
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let expressions, continued

General form of a let expression:

let
declaration1
declaration2
...
declarationN

in
expression

end

The value of expression is the value produced by the overall let expression.  The
name/value binding(s) established in the declaration(s) are only accessible in expression.

- val result = let val x = 1 val y = 2 in x + y end;
val result = 3 : int

- x;
stdIn:2.1 Error: unbound variable or constructor: x
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let expressions, continued

A cute example of let from Ullman, p.78:

fun hundredthPower(x:real) =
  let
    val four = x*x*x*x
    val twenty = four*four*four*four*four
  in
    twenty*twenty*twenty*twenty*twenty
  end

Usage:

- hundredthPower(10.0);
val it = 1.0E100 : real
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let expressions, continued

A function to count the number of even and odd values in a list of integers and return the
result as int * int:

fun count_eo([ ]) = (0,0)
 |  count_eo(x::xs) =

let
val (even,odd) = count_eo(xs)

in
if x mod 2 = 0 then (even+1,odd)

else (even,odd+1)
end

Usage:

- count_eo([7,3,5,2]);
val it = (1,3) : int * int

- count_eo([2,4,6,8]);
val it = (4,0) : int * int

Would it be as easy to write without the let?



CSc 372, Fall 2006                     Standard ML, Slide 92
W. H. Mitchell (whm@msweng.com)

let expressions, continued

Imagine a function remove_min(L) that produces a tuple consisting of the smallest integer in
L and a copy of L with that integer removed:

- remove_min([3,1,4,2]);
val it = (1,[3,2,4]) : int * int list

- remove_min([3,2,4]);
val it = (2,[3,4]) : int * int list

- remove_min([3,4]);
val it = (3,[4]) : int * int list

- remove_min([4]);
val it = (4,[]) : int * int list
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let expressions, continued

remove_min can be used to write a function that sorts a list:

fun remsort([ ]) = []
 |  remsort(L) =
        let
            val (min, remain) = remove_min(L)
        in
            min::remsort(remain)
        end

Usage:

- remsort([3,1,4,2]);
val it = [1,2,3,4] : int list
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let expressions, continued

A common technique is to define “helper” functions inside a function using a let expression.

Consider a function that returns every Nth element in a list:

- every_nth([10,20,30,40,50,60,70], 3);
val it = [30,60] : int list

Implementation:

fun every_nth(L, n) =
  let
    fun select_nth([ ],_,_) = [ ]
      |  select_nth(x::xs, elem_num, n) =
          if elem_num mod n = 0 then
             x::select_nth(xs, elem_num+1, n)
          else
             select_nth(xs, elem_num+1, n)
  in
    select_nth(L, 1, n)
  end;
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Simple output

The print function writes its argument, a string, to standard output.

- print("abc");
abcval it = () : unit

- print("i = " ^ Int.toString(i) ^ "\n");   (* assume i = 7 *)
i = 7
val it = () : unit

A function to print the integers from 1 through N:

fun printN(n) =
    let
        fun printN'(0) = ""
           |  printN'(n) = printN'(n - 1) ^ Int.toString(n) ^ "\n"
  in
      print(printN'(n))
  end

Note the similarity between this function and countTo, on slide 37  (1...2...3).  Could a
generalization provide both behaviors?
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Simple output, continued

Imagine a function to print name/value pairs:

- print_pairs([("x",1), ("y",10), ("z",20)]);
x 1
y 10
z 20
val it = () : unit

Problem: Write it!
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Common problems

When loading source code sml typically cites the line and position in the line of any errors
that are encountered:

% cat -n errors.sml    ( -n produces numbered output )
     1  fun count_eo([ ]) = (0,0)
     2   |  count_eo(x::xs) =
     3    let
     4      (even,odd) = count_eo(xs)
     5    in
     6      if x mud 2 = 0 then (even+1,odd)
     7                     else (even,Odd+1)
     8    end

Loading:

- use "errors.sml";
[opening errors.sml]
errors.sml:4.5 Error: syntax error: inserting  VAL
errors.sml:6.10-6.13 Error: unbound variable or constructor: mud
errors.sml:7.31-7.34 Error: unbound variable or constructor: Odd
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Common problems, continued

Infinite recursion:

fun sum(0) = 0
  |   sum(n) = n + sum(n);

Usage:

- sum(5);
...no response...
^C
Interrupt
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Common problems, continued

Type mismatch when calling a function:

- fun double(n) = n*2;
val double = fn : int -> int

- fun f(x) = double(3.0 * x);
stdIn:3.27 Error: operator and operand don't agree [tycon mismatch]
  operator domain: int
  operand:         real
  in expression:
    double (3.0 * x)

Type mismatch when recursively calling a function:

- fun f(x,y) = f(x);
Error: operator and operand don't agree [circularity]
  operator domain: 'Z * 'Y
  operand:         'Z
  in expression:
    f x
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Common problems, continued

A non-exhaustive match warning can indicate incomplete reasoning, typically a missing basis
case to terminate recursion:

- fun len(x::xs) = 1 + len(xs);
Warning: match nonexhaustive
          x :: xs => ...

- len([1,2,3]);
uncaught exception nonexhaustive match failure
  raised at: stdIn:368.3

Use of fun instead of  |  (or-bar) for a function case:

- fun f(1) = "one"
  fun f(n) = "other";
Warning: match nonexhaustive
          1 => ...

val f = <hidden-value> : int -> string
val f = fn : 'a -> string
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 Larger Examples

expand

travel

tally 
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expand

Consider a function that expands a string in a trivial packed representation:

- expand("x3y4z");
val it = "xyyyzzzz" : string

- expand("123456");
val it = "244466666" : string

Fact: The digits 0 through 9 have the ASCII codes 48 through 57.  A character can be
converted to an integer by subtracting from it the ASCII code for 0.  Therefore,

fun ctoi(c) = ord(c) - ord(#"0")

fun is_digit(c) = #"0" <= c andalso c <= #"9"

- ctoi(#"5");
val it = 5 : int

- is_digit(#"x");
val it = false : bool
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expand, continued

One more function:

fun repl(x, 0) = []
   |  repl(x, n) = x::repl(x, n-1)

What does it do?

Finally, expand:

fun expand(s) =
    let
        fun expand'([ ]) = [ ]
         |  expand'([c]) = [c]
         |  expand'(c1::c2::cs) =
              if is_digit(c1) then
                  repl(c2, ctoi(c1)) @ expand'(cs)
              else
                  c1 :: expand'(c2::cs)
    in
        implode(expand'(explode(s)))
    end;
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travel

Imagine a robot that travels on an infinite grid of cells.  The robot's movement is directed by
a series of one character commands: n, e, s, and w.

In this problem we will consider a function travel of type string -> string that moves the
robot about the grid and determines if the robot ends up where it started (i.e., did it get
home?) or elsewhere (did it get lost?).

1

2

R

If the robot starts in square R the command string nnnn leaves the robot in the square marked
1.  The string nenene leaves the robot in the square marked 2.  nnessw and news move the
robot in a round-trip that returns it to square R.
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travel, continued

Usage:

- travel("nnnn");
val it = "Got lost" : string

- travel("nnessw");
val it = "Got home" : string

How can we approach this problem?
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travel, continued

One approach:

1. Map letters into integer 2-tuples representing X and Y displacements on a Cartesian
plane.

2. Sum the X and Y displacements to yield a net displacement.

Example:

Argument value: "nnee"
Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
Sum of tuples: (2,2)

Another:

Argument value: "nnessw"
Mapped to tuples: (0,1) (0,1) (1,0) (0,-1) (0,-1) (-1,0)
Sum of tuples: (0,0)
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travel, continued

A couple of building blocks:

fun mapmove(#"n") = (0,1)
  |   mapmove(#"s") = (0,~1)
  |   mapmove(#"e") = (1,0)
  |   mapmove(#"w") = (~1,0)

fun sum_tuples([ ]) = (0,0)
  |   sum_tuples((x,y)::ts) =

let
val (sumx, sumy) = sum_tuples(ts)

in
(x+sumx, y+sumy)

end
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travel, continued

The grand finale:

fun travel(s) =
    let
        fun mk_tuples([ ]) = [ ]
          |   mk_tuples(c::cs) = mapmove(c)::mk_tuples(cs)

        val tuples = mk_tuples(explode(s))

        val disp = sum_tuples(tuples)

    in
if disp = (0,0) then

"Got home"
else

"Got lost"
    end

Note that mapmove and sum_tuples are defined at the outermost level.  mk_tuples is
defined inside a let.  Why?
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Larger example: tally

Consider a function tally that prints the number of occurrences of each character in a string:

- tally("a bean bag");
a 3
b 2
   2
g 1
n 1
e 1
val it = () : unit

Note that the characters are shown in order of decreasing frequency.

How can this problem be approached?
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tally, continued

Implementation:

(*
 * inc_entry(c, L)
 *
 *     L is a list of (char * int) tuples that indicate how many times a
 *  character has been seen.
 *
 *     inc_entry() produces a copy of L with the count in the tuple
 *  containing the character c incremented by one.  If no tuple with
 *  c exists, one is created with a count of 1.
 *)
 fun inc_entry(c, [ ]) = [(c, 1)]
   |   inc_entry(c, (char, count)::entries) =
        if c = char then
            (char, count+1)::entries
        else
            (char, count)::inc_entry(c, entries)
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tally, continued

(* mkentries(s) calls inc_entry() for each character in the string s *)

fun mkentries(s) =
    let
        fun mkentries'([ ], entries) = entries
           |  mkentries'(c::cs, entries) =
              mkentries'(cs, inc_entry(c, entries))
    in
        mkentries'(explode s, [ ])
    end

(* fmt_entries(L) prints, one per line, the (char * int) tuples in L *)

fun fmt_entries(nil) = ""
   |  fmt_entries((c, count)::es) =
     str(c) ^ " " ^ Int.toString(count) ^ "\n" ^ fmt_entries(es)
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tally, continued

(*
 * sort, insert, and order_pair work together to provide an insertion sort
 *
 *    insert(v, L) produces a copy of the int list L with the int v in the
 * proper position.  Values in L are descending order.
 *
 *    sort(L) produces a sorted copy of L by using insert() to place
 *  values at the proper position.
 *
 *)
fun insert(v, [ ]) = [v]
   |  insert(v, x::xs) =
        if order_pair(v,x) then v::x::xs
                                  else x::insert(v, xs)

fun sort([ ]) = [ ]
   |  sort(x::xs) = insert(x, sort(xs))

fun order_pair((_, v1), (_, v2)) = v1 > v2
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tally, continued

With all the pieces in hand, tally itself is a straightforward sequence of calls.

(*
 * tally: make entries, sort the entries, and print the entries
 *)
fun tally(s) = print(fmt_entries(sort(mkentries(s))))
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