
CSc 372, Fall 2006 Standard ML, Slide 81
W. H. Mitchell (whm@msweng.com)

Pattern matching with lists

In a pattern, :: can be used to describe a value. Example:

fun len ([]) = 0
 | len (x::xs) = 1 + len(xs)

The first pattern is the basis case and matches an empty list.

The second pattern requires a list with at least one element. The head is bound to x and the
tail is bound to xs.

Problem: Noting that x is never used, improve the above implementation.

Problem: Write a function sum_evens(L) that returns the sum of the even values in L, an int
list.

Problem: Write a function drop2(L) that returns a copy of L with the first two values
removed. If the length of L is less than 2, return L.

CSc 372, Fall 2006 Standard ML, Slide 82
W. H. Mitchell (whm@msweng.com)

Pattern matching, continued

What's an advantage of using a pattern to work with a list rather than the hd and tl functions?

Hint: Consider the following two implementations of sum:

fun sum(L) = hd(L) + sum(tl(L));

fun sum(x::xs) = x + sum(xs);

CSc 372, Fall 2006 Standard ML, Slide 83
W. H. Mitchell (whm@msweng.com)

Practice

Problem: Write a function member(v, L) that produces true iff v is contained in the list L.

- member(7, [3, 7, 15]);
val it = true : bool

Problem: Write a function contains(s, c) that produces true iff the char c appears in the
string s.

Problem: Write a function maxint(L) that produces the largest integer in the list L. Raise the
exception Empty if the list has no elements.

CSc 372, Fall 2006 Standard ML, Slide 84
W. H. Mitchell (whm@msweng.com)

Pattern construction

A pattern can be:

• A literal value such as 1, "x", true (but not a real)

• An identifier

• An underscore

• A tuple composed of patterns

• A list of patterns in [] form

• A list of patterns constructed with :: operators

Note the recursion.

CSc 372, Fall 2006 Standard ML, Slide 85
W. H. Mitchell (whm@msweng.com)

Pattern construction, continued

Unfortunately, a pattern cannot contain an arbitrary expression:

- fun f(n > 0) = n (* not valid! *)
 | f(n) = n;
stdIn:1.5-2.13 Error: non-constructor applied to argument in pattern: >

Note "non-constructor" in the message. In a pattern, operators like :: are known as
constructors.

An identifier cannot appear more than once in a pattern:

- fun equals(x, x) = true (* not valid! *)
 | equals(_) = false;
stdIn:1.5-3.24 Error: duplicate variable in pattern(s): x

CSc 372, Fall 2006 Standard ML, Slide 86
W. H. Mitchell (whm@msweng.com)

Practice

What bindings result from the following val declarations?

val [[(x, y)]] = [[(1, 2)]];

val [[x, y]] = [[1, 2, 3]];

val [(x,y)::z] = [[(1, (2 ,3))]];

val (x, (y::ys, x)) = (1, ([2,3,4], (1, 2)));

CSc 372, Fall 2006 Standard ML, Slide 87
W. H. Mitchell (whm@msweng.com)

A batch of odds and ends

let expressions

Producing output

Common problems

CSc 372, Fall 2006 Standard ML, Slide 88
W. H. Mitchell (whm@msweng.com)

let expressions

A let expression can be used to create name/value bindings for use in a following expression
to improve clarity and/or efficiency.

One way to write a function:

fun calc(x, y, z) = f1(g(x + y) - h(z)) + f2(g(x + y) - h(z))

An alternative with let:

fun calc(x,y,z) =
 let
 val diff = g(x+y) - h(z)
 in
 f1(diff) + f2(diff)
 end

Would it be practical for a compiler to make the above transformation automatically, using
CSE (common subexpression elimination)?

CSc 372, Fall 2006 Standard ML, Slide 89
W. H. Mitchell (whm@msweng.com)

let expressions, continued

General form of a let expression:

let
declaration1
declaration2
...
declarationN

in
expression

end

The value of expression is the value produced by the overall let expression. The
name/value binding(s) established in the declaration(s) are only accessible in expression.

- val result = let val x = 1 val y = 2 in x + y end;
val result = 3 : int

- x;
stdIn:2.1 Error: unbound variable or constructor: x

CSc 372, Fall 2006 Standard ML, Slide 90
W. H. Mitchell (whm@msweng.com)

let expressions, continued

A cute example of let from Ullman, p.78:

fun hundredthPower(x:real) =
 let
 val four = x*x*x*x
 val twenty = four*four*four*four*four
 in
 twenty*twenty*twenty*twenty*twenty
 end

Usage:

- hundredthPower(10.0);
val it = 1.0E100 : real

CSc 372, Fall 2006 Standard ML, Slide 91
W. H. Mitchell (whm@msweng.com)

let expressions, continued

A function to count the number of even and odd values in a list of integers and return the
result as int * int:

fun count_eo([]) = (0,0)
 | count_eo(x::xs) =

let
val (even,odd) = count_eo(xs)

in
if x mod 2 = 0 then (even+1,odd)

else (even,odd+1)
end

Usage:

- count_eo([7,3,5,2]);
val it = (1,3) : int * int

- count_eo([2,4,6,8]);
val it = (4,0) : int * int

Would it be as easy to write without the let?

CSc 372, Fall 2006 Standard ML, Slide 92
W. H. Mitchell (whm@msweng.com)

let expressions, continued

Imagine a function remove_min(L) that produces a tuple consisting of the smallest integer in
L and a copy of L with that integer removed:

- remove_min([3,1,4,2]);
val it = (1,[3,2,4]) : int * int list

- remove_min([3,2,4]);
val it = (2,[3,4]) : int * int list

- remove_min([3,4]);
val it = (3,[4]) : int * int list

- remove_min([4]);
val it = (4,[]) : int * int list

CSc 372, Fall 2006 Standard ML, Slide 93
W. H. Mitchell (whm@msweng.com)

let expressions, continued

remove_min can be used to write a function that sorts a list:

fun remsort([]) = []
 | remsort(L) =
 let
 val (min, remain) = remove_min(L)
 in
 min::remsort(remain)
 end

Usage:

- remsort([3,1,4,2]);
val it = [1,2,3,4] : int list

CSc 372, Fall 2006 Standard ML, Slide 94
W. H. Mitchell (whm@msweng.com)

let expressions, continued

A common technique is to define “helper” functions inside a function using a let expression.

Consider a function that returns every Nth element in a list:

- every_nth([10,20,30,40,50,60,70], 3);
val it = [30,60] : int list

Implementation:

fun every_nth(L, n) =
 let
 fun select_nth([],_,_) = []
 | select_nth(x::xs, elem_num, n) =
 if elem_num mod n = 0 then
 x::select_nth(xs, elem_num+1, n)
 else
 select_nth(xs, elem_num+1, n)
 in
 select_nth(L, 1, n)
 end;

CSc 372, Fall 2006 Standard ML, Slide 95
W. H. Mitchell (whm@msweng.com)

Simple output

The print function writes its argument, a string, to standard output.

- print("abc");
abcval it = () : unit

- print("i = " ^ Int.toString(i) ^ "\n"); (* assume i = 7 *)
i = 7
val it = () : unit

A function to print the integers from 1 through N:

fun printN(n) =
 let
 fun printN'(0) = ""
 | printN'(n) = printN'(n - 1) ^ Int.toString(n) ^ "\n"
 in
 print(printN'(n))
 end

Note the similarity between this function and countTo, on slide 37 (1...2...3). Could a
generalization provide both behaviors?

CSc 372, Fall 2006 Standard ML, Slide 96
W. H. Mitchell (whm@msweng.com)

Simple output, continued

Imagine a function to print name/value pairs:

- print_pairs([("x",1), ("y",10), ("z",20)]);
x 1
y 10
z 20
val it = () : unit

Problem: Write it!

CSc 372, Fall 2006 Standard ML, Slide 97
W. H. Mitchell (whm@msweng.com)

Common problems

When loading source code sml typically cites the line and position in the line of any errors
that are encountered:

% cat -n errors.sml (-n produces numbered output)
 1 fun count_eo([]) = (0,0)
 2 | count_eo(x::xs) =
 3 let
 4 (even,odd) = count_eo(xs)
 5 in
 6 if x mud 2 = 0 then (even+1,odd)
 7 else (even,Odd+1)
 8 end

Loading:

- use "errors.sml";
[opening errors.sml]
errors.sml:4.5 Error: syntax error: inserting VAL
errors.sml:6.10-6.13 Error: unbound variable or constructor: mud
errors.sml:7.31-7.34 Error: unbound variable or constructor: Odd

CSc 372, Fall 2006 Standard ML, Slide 98
W. H. Mitchell (whm@msweng.com)

Common problems, continued

Infinite recursion:

fun sum(0) = 0
 | sum(n) = n + sum(n);

Usage:

- sum(5);
...no response...
^C
Interrupt

CSc 372, Fall 2006 Standard ML, Slide 99
W. H. Mitchell (whm@msweng.com)

Common problems, continued

Type mismatch when calling a function:

- fun double(n) = n*2;
val double = fn : int -> int

- fun f(x) = double(3.0 * x);
stdIn:3.27 Error: operator and operand don't agree [tycon mismatch]
 operator domain: int
 operand: real
 in expression:
 double (3.0 * x)

Type mismatch when recursively calling a function:

- fun f(x,y) = f(x);
Error: operator and operand don't agree [circularity]
 operator domain: 'Z * 'Y
 operand: 'Z
 in expression:
 f x

CSc 372, Fall 2006 Standard ML, Slide 100
W. H. Mitchell (whm@msweng.com)

Common problems, continued

A non-exhaustive match warning can indicate incomplete reasoning, typically a missing basis
case to terminate recursion:

- fun len(x::xs) = 1 + len(xs);
Warning: match nonexhaustive
 x :: xs => ...

- len([1,2,3]);
uncaught exception nonexhaustive match failure
 raised at: stdIn:368.3

Use of fun instead of | (or-bar) for a function case:

- fun f(1) = "one"
 fun f(n) = "other";
Warning: match nonexhaustive
 1 => ...

val f = <hidden-value> : int -> string
val f = fn : 'a -> string

CSc 372, Fall 2006 Standard ML, Slide 101
W. H. Mitchell (whm@msweng.com)

 Larger Examples

expand

travel

tally

CSc 372, Fall 2006 Standard ML, Slide 102
W. H. Mitchell (whm@msweng.com)

expand

Consider a function that expands a string in a trivial packed representation:

- expand("x3y4z");
val it = "xyyyzzzz" : string

- expand("123456");
val it = "244466666" : string

Fact: The digits 0 through 9 have the ASCII codes 48 through 57. A character can be
converted to an integer by subtracting from it the ASCII code for 0. Therefore,

fun ctoi(c) = ord(c) - ord(#"0")

fun is_digit(c) = #"0" <= c andalso c <= #"9"

- ctoi(#"5");
val it = 5 : int

- is_digit(#"x");
val it = false : bool

CSc 372, Fall 2006 Standard ML, Slide 103
W. H. Mitchell (whm@msweng.com)

expand, continued

One more function:

fun repl(x, 0) = []
 | repl(x, n) = x::repl(x, n-1)

What does it do?

Finally, expand:

fun expand(s) =
 let
 fun expand'([]) = []
 | expand'([c]) = [c]
 | expand'(c1::c2::cs) =
 if is_digit(c1) then
 repl(c2, ctoi(c1)) @ expand'(cs)
 else
 c1 :: expand'(c2::cs)
 in
 implode(expand'(explode(s)))
 end;

CSc 372, Fall 2006 Standard ML, Slide 104
W. H. Mitchell (whm@msweng.com)

travel

Imagine a robot that travels on an infinite grid of cells. The robot's movement is directed by
a series of one character commands: n, e, s, and w.

In this problem we will consider a function travel of type string -> string that moves the
robot about the grid and determines if the robot ends up where it started (i.e., did it get
home?) or elsewhere (did it get lost?).

1

2

R

If the robot starts in square R the command string nnnn leaves the robot in the square marked
1. The string nenene leaves the robot in the square marked 2. nnessw and news move the
robot in a round-trip that returns it to square R.

CSc 372, Fall 2006 Standard ML, Slide 105
W. H. Mitchell (whm@msweng.com)

travel, continued

Usage:

- travel("nnnn");
val it = "Got lost" : string

- travel("nnessw");
val it = "Got home" : string

How can we approach this problem?

CSc 372, Fall 2006 Standard ML, Slide 106
W. H. Mitchell (whm@msweng.com)

travel, continued

One approach:

1. Map letters into integer 2-tuples representing X and Y displacements on a Cartesian
plane.

2. Sum the X and Y displacements to yield a net displacement.

Example:

Argument value: "nnee"
Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
Sum of tuples: (2,2)

Another:

Argument value: "nnessw"
Mapped to tuples: (0,1) (0,1) (1,0) (0,-1) (0,-1) (-1,0)
Sum of tuples: (0,0)

CSc 372, Fall 2006 Standard ML, Slide 107
W. H. Mitchell (whm@msweng.com)

travel, continued

A couple of building blocks:

fun mapmove(#"n") = (0,1)
 | mapmove(#"s") = (0,~1)
 | mapmove(#"e") = (1,0)
 | mapmove(#"w") = (~1,0)

fun sum_tuples([]) = (0,0)
 | sum_tuples((x,y)::ts) =

let
val (sumx, sumy) = sum_tuples(ts)

in
(x+sumx, y+sumy)

end

CSc 372, Fall 2006 Standard ML, Slide 108
W. H. Mitchell (whm@msweng.com)

travel, continued

The grand finale:

fun travel(s) =
 let
 fun mk_tuples([]) = []
 | mk_tuples(c::cs) = mapmove(c)::mk_tuples(cs)

 val tuples = mk_tuples(explode(s))

 val disp = sum_tuples(tuples)

 in
if disp = (0,0) then

"Got home"
else

"Got lost"
 end

Note that mapmove and sum_tuples are defined at the outermost level. mk_tuples is
defined inside a let. Why?

CSc 372, Fall 2006 Standard ML, Slide 109
W. H. Mitchell (whm@msweng.com)

Larger example: tally

Consider a function tally that prints the number of occurrences of each character in a string:

- tally("a bean bag");
a 3
b 2
 2
g 1
n 1
e 1
val it = () : unit

Note that the characters are shown in order of decreasing frequency.

How can this problem be approached?

CSc 372, Fall 2006 Standard ML, Slide 110
W. H. Mitchell (whm@msweng.com)

tally, continued

Implementation:

(*
 * inc_entry(c, L)
 *
 * L is a list of (char * int) tuples that indicate how many times a
 * character has been seen.
 *
 * inc_entry() produces a copy of L with the count in the tuple
 * containing the character c incremented by one. If no tuple with
 * c exists, one is created with a count of 1.
 *)
 fun inc_entry(c, []) = [(c, 1)]
 | inc_entry(c, (char, count)::entries) =
 if c = char then
 (char, count+1)::entries
 else
 (char, count)::inc_entry(c, entries)

CSc 372, Fall 2006 Standard ML, Slide 111
W. H. Mitchell (whm@msweng.com)

tally, continued

(* mkentries(s) calls inc_entry() for each character in the string s *)

fun mkentries(s) =
 let
 fun mkentries'([], entries) = entries
 | mkentries'(c::cs, entries) =
 mkentries'(cs, inc_entry(c, entries))
 in
 mkentries'(explode s, [])
 end

(* fmt_entries(L) prints, one per line, the (char * int) tuples in L *)

fun fmt_entries(nil) = ""
 | fmt_entries((c, count)::es) =
 str(c) ^ " " ^ Int.toString(count) ^ "\n" ^ fmt_entries(es)

CSc 372, Fall 2006 Standard ML, Slide 112
W. H. Mitchell (whm@msweng.com)

tally, continued

(*
 * sort, insert, and order_pair work together to provide an insertion sort
 *
 * insert(v, L) produces a copy of the int list L with the int v in the
 * proper position. Values in L are descending order.
 *
 * sort(L) produces a sorted copy of L by using insert() to place
 * values at the proper position.
 *
 *)
fun insert(v, []) = [v]
 | insert(v, x::xs) =
 if order_pair(v,x) then v::x::xs
 else x::insert(v, xs)

fun sort([]) = []
 | sort(x::xs) = insert(x, sort(xs))

fun order_pair((_, v1), (_, v2)) = v1 > v2

CSc 372, Fall 2006 Standard ML, Slide 113
W. H. Mitchell (whm@msweng.com)

tally, continued

With all the pieces in hand, tally itself is a straightforward sequence of calls.

(*
 * tally: make entries, sort the entries, and print the entries
 *)
fun tally(s) = print(fmt_entries(sort(mkentries(s))))

CSc 372, Fall 2006 Standard ML, Slide 114
W. H. Mitchell (whm@msweng.com)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

