
CSc 372, Fall 2006 Standard ML, Slide 115
W. H. Mitchell (whm@msweng.com)

More with functions

Functions as values

Functions as arguments

A flexible sort

Curried functions

CSc 372, Fall 2006 Standard ML, Slide 116
W. H. Mitchell (whm@msweng.com)

Functions as values

A fundamental characteristic of a functional language is that functions are values that can be
used as flexibly as values of other types.

In essence, the fun declaration creates a function value and binds it to a name. Additional
names can be bound to a function value with a val declaration.

- fun double(n) = 2*n;
val double = fn : int -> int

- val twice = double;
val twice = fn : int -> int

- twice;
val it = fn : int -> int

- twice 3;
val it = 6 : int

Note that unlike values of other types, no representation of a function is shown. Instead, "fn"
is displayed. (Think flexibly: What could be shown instead of only fn?)

CSc 372, Fall 2006 Standard ML, Slide 117
W. H. Mitchell (whm@msweng.com)

Functions as values, continued

Just as values of other types can appear in lists, so can functions:

- val convs = [floor, ceil, trunc];
val convs = [fn,fn,fn] : (real -> int) list

- hd convs;
val it = fn : real -> int

- it 4.3;
val it = 4 : int

- (hd (tl convs)) 4.3;
val it = 5 : int

What is the type of the list [hd]?

What is the type of [size, length]?

CSc 372, Fall 2006 Standard ML, Slide 118
W. H. Mitchell (whm@msweng.com)

Functions as values, continued

It should be no surprise that functions can be elements of a tuple:

- (hd, 1, size, "x", length);
val it = (fn,1,fn,"x",fn)
 : ('a list -> 'a) * int * (string -> int) * string * ('b list -> int)

- [it];
val it = [(fn,1,fn,"x",fn)]
 : (('a list -> 'a) * int * (string -> int) * string * ('b list -> int)) list

Using the "op" syntax we can work with operators as functions:

- swap(pair(op~, op^));
val it = (fn,fn) : (string * string -> string) * (int -> int)

- #2(it) 10; (* #n(tuple) produces the nth value of the tuple *)
val it = ~10 : int

What are some other languages that allow functions to be treated as values, at least to some
extent?

CSc 372, Fall 2006 Standard ML, Slide 119
W. H. Mitchell (whm@msweng.com)

Functions as arguments

A function may be passed as an argument to a function.

This function simply applies a given function to a value:

- fun apply(F,v) = F(v);
val apply = fn : ('a -> 'b) * 'a -> 'b

Usage:

- apply(size, "abcd");
val it = 4 : int

- apply(swap, (3,4));
val it = (4,3) : int * int

- apply(length, apply(m_to_n, (5,7)));
val it = 3 : int

A function that uses other functions as values is said to be a higher-order function.

Could apply be written in Java? In C?

CSc 372, Fall 2006 Standard ML, Slide 120
W. H. Mitchell (whm@msweng.com)

Functions as arguments, continued

Consider the following function:

fun f(f', x, 1) = f'(x)
 | f(f', x, n) = f(f', f'(x), n - 1)

What does it do?

What is its type?

Give an example of a valid use of the function.

CSc 372, Fall 2006 Standard ML, Slide 121
W. H. Mitchell (whm@msweng.com)

Functions as arguments, continued

Here is a function that applies a function to every element of a list and produces a list of the
results:

fun applyToAll(_, []) = []
 | applyToAll(f, x::xs) = f(x)::applyToAll(f, xs);

Usage:

- applyToAll(double, [10, 20, 30]);
val it = [20,40,60] : int list

- applyToAll(real, iota(5));
val it = [1.0,2.0,3.0,4.0,5.0] : real list

- applyToAll(length, [it, it@it]);
val it = [5,10] : int list

- applyToAll(implode,
applyToAll(rev,

applyToAll(explode, ["one", "two", "three])));
val it = ["eno","owt","eerht"] : string list

CSc 372, Fall 2006 Standard ML, Slide 122
W. H. Mitchell (whm@msweng.com)

Functions as arguments, continued

Here's a roundabout way to calculate the length of a list:

- val L = explode "testing";
val L = [#"t",#"e",#"s",#"t",#"i",#"n",#"g"] : char list

- fun one _ = 1;
val one = fn : 'a -> int

- sumInts(applyToAll(one, L));
val it = 7 : int

Problem: Create a list like ["x", "xx", "xxx", ... "xxxxxxxxxx"]. (One to ten "x"s.)

We'll see later that applyToAll is really the map function from the library, albeit in a slightly
different form.

CSc 372, Fall 2006 Standard ML, Slide 123
W. H. Mitchell (whm@msweng.com)

Functions that produce functions

Consider a function that applies two specified functions to the same value and returns the
function producing the larger integer result:

- fun larger(f1, f2, x) = if f1(x) > f2(x) then f1 else f2;
val larger = fn : ('a -> int) * ('a -> int) * 'a -> 'a -> int

- val g = larger(double, square, 5);
val g = fn : int -> int

- g(5);
val it = 25 : int

- val h = larger(sum, len, [0, 0, 0]);
val h = fn : int list -> int

- h([10,20,30]);
val it = 3 : int

- (larger(double, square, ~4)) (10);
val it = 100 : int

CSc 372, Fall 2006 Standard ML, Slide 124
W. H. Mitchell (whm@msweng.com)

A flexible sort

Recall order(ed)_pair, insert, and sort from tally (slide 112). They work together to sort a
(char * int) list.

fun ordered_pair((_, v1), (_, v2)) = v1 > v2

fun insert(v, []) = [v]
 | insert(v, x::xs) = if ordered_pair(v,x) then v::x::xs else x::insert(v, xs)

fun sort([]) = []
 | sort(x::xs) = insert(x, sort(xs))

Consider eliminating ordered_pair and instead supplying a function to test whether the
values in a 2-tuple are the desired order.

CSc 372, Fall 2006 Standard ML, Slide 125
W. H. Mitchell (whm@msweng.com)

A flexible sort, continued

Here are versions of insert and sort that use a function to test the order of elements in a 2-
tuple:

fun insert(v, [], isInOrder) = [v]
 | insert(v, x::xs, isInOrder) =
 if isInOrder(v,x) then v::x::xs
 else x::insert(v, xs, isInOrder)

fun sort([], isInOrder) = []
 | sort(x::xs, isInOrder) = insert(x, sort(xs, isInOrder), isInOrder)

Types:

- insert;
val it = fn : 'a * 'a list * ('a * 'a -> bool) -> 'a list

- sort;
val it = fn : 'a list * ('a * 'a -> bool) -> 'a list

What C library function does this version of sort resemble?

CSc 372, Fall 2006 Standard ML, Slide 126
W. H. Mitchell (whm@msweng.com)

A flexible sort, continued

Sorting integers:

- fun intLessThan(a,b) = a < b;
val intLessThan = fn : int * int -> bool

- sort([4,10,7,3], intLessThan);
val it = [3,4,7,10] : int list

We might sort (int * int) tuples based on the sum of the two values:

fun sumLessThan((a1, a2), (b1, b2)) = a1 + a2 < b1 + b2;

- sort([(1,1), (10,20), (2,~2), (3,5)], sumLessThan);
val it = [(2,~2),(1,1),(3,5),(10,20)] : (int * int) list

Problem: Sort an int list list based on the largest value in each of the int lists. Sorting

[[3,1,2],[50],[10,20],[4,3,2,1]]

would yield

[[3,1,2],[4,3,2,1],[10,20],[50]]

CSc 372, Fall 2006 Standard ML, Slide 127
W. H. Mitchell (whm@msweng.com)

Curried functions

It is possible to define a function in curried form:

- fun add x y = x + y; (Two arguments, x and y, not (x,y), a 2-tuple)
val add = fn : int -> int -> int

The function add can be called like this:

- add 3 5;
val it = 8 : int

Note the type of add: int -> (int -> int) (Remember that -> is right-associative.)

What add 3 5 means is this:

- (add 3) 5;
val it = 8 : int

add is a function that takes an int and produces a function that takes an int and produces an
int. add 3 produces a function that is then called with the argument 5.

Is add(3,5) valid?

CSc 372, Fall 2006 Standard ML, Slide 128
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

For reference: fun add x y = x + y. The type is int -> (int -> int).

More interesting than add 3 5 is this:

- add 3;
val it = fn : int -> int

- val plusThree = add 3;
val plusThree = fn : int -> int

The name plusThree is bound to a function that is a partial instantiation of add. (a.k.a.
partial application)

- plusThree 5;
val it = 8 : int

- plusThree 20;
val it = 23 : int

- plusThree (plusThree 20);
val it = 26 : int

CSc 372, Fall 2006 Standard ML, Slide 129
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

For reference:

fun add x y = x + y

As a conceptual model, think of this expression:

val plusThree = add 3

as producing a result similar to this:

fun plusThree(y) = 3 + y

The idea of a partially applicable function was first described by Moses Schönfinkel. It was
further developed by Haskell B. Curry. Both worked wtih David Hilbert in the 1920s.

What prior use have you made of partially applied functions?

CSc 372, Fall 2006 Standard ML, Slide 130
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

For reference:

- fun add x y = x + y;
val add = fn : int -> int -> int

- val plusThree = add 3;
val plusThree = fn : int -> int

Analogy: A partially instantiated function is like a machine with a hardwired input value.

This model assumes that data flows from left to right.

CSc 372, Fall 2006 Standard ML, Slide 131
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

Consider another function:

- fun f a b c = a*2 + b*3 + c*4;
val f = fn : int -> int -> int -> int

- val f_a = f 1;
val f_a = fn : int -> int -> int

fun f_a(b,c) = 1*2 + b*3 + c*4

- val f_a_b = f_a 2;
val f_a_b = fn : int -> int

fun f_a_b(c) = 1*2 + 2*3 + c*4
 8 + c*4;

- f_a_b 3;
val it = 20 : int

- f_a 5 10;
val it = 57 : int

CSc 372, Fall 2006 Standard ML, Slide 132
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

At hand:

- fun f a b c = a*2 + b*3 + c*4;
val f = fn : int -> int -> int -> int

Note that the expression

f 10 20 30;

is evaluated like this:

((f 10) 20) 30

In C, it's said that "declaration mimics use"—a declaration like int f() means that if you see
the expression f(), it is an int. We see something similar with ML function declarations:

fun add(x,y) = x + y Call: add (3, 4)

fun add x y = x + y Call: add 3 4

CSc 372, Fall 2006 Standard ML, Slide 133
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

Problem: Define a curried function named mul to multiply two integers. Using a partial
application, use a val binding to create a function equivalent to fun double(n) = 2 * n.

Here is a curried implementation of m_to_n (slide 76):

- fun m_to_n m n = if m > n then [] else m :: (m_to_n (m+1) n);
val m_to_n = fn : int -> int -> int list

Usage:

- m_to_n 1 7;
val it = [1,2,3,4,5,6,7] : int list

- val L = m_to_n ~5 5;
val L = [~5,~4,~3,~2,~1,0,1,2,3,4,5] : int list

Problem: Create the function iota, described on slide 78. (iota(3) produces [1,2,3].)

CSc 372, Fall 2006 Standard ML, Slide 134
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

What's happening here?

- fun add x y = x + y;
val add = fn : int -> int -> int

- add double(3) double(4);
Error: operator and operand don't agree [tycon mismatch]
 operator domain: int * int
 operand: int -> int
 in expression:
 add double

CSc 372, Fall 2006 Standard ML, Slide 135
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

Problem—fill in the blanks:

fun add x y z = x + y + z;

val x = add 1;

val xy = x 2;

xy 3;

xy 10;

x 0 0;

CSc 372, Fall 2006 Standard ML, Slide 136
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

Here is sort from slide 125:

fun sort([], isInOrder) = []
 | sort(x::xs, isInOrder) = insert(x, sort(xs, isInOrder), isInOrder)

A curried version of sort:

fun sort _ [] = []
 | sort isInOrder (x::xs) = insert(x, (sort isInOrder xs), isInOrder)

Usage:

- val intSort = sort intLessThan;
val int_sort = fn : int list -> int list

- int_sort [4,2,1,8];
val it = [1,2,4,8] : int list

Why does the curried form have the function as the first argument?

CSc 372, Fall 2006 Standard ML, Slide 137
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

Functions in the ML standard library (the "Basis") are often curried.

String.isSubstring returns true iff its first argument is a substring of the second argument:

- String.isSubstring;
val it = fn : string -> string -> bool

- String.isSubstring "tan" "standard";
val it = true : bool

We can create a partial application that returns true iff a string contains "tan":

- val hasTan = String.isSubstring "tan";
val hasTan = fn : string -> bool

- hasTan "standard";
val it = true : bool

- hasTan "library";
val it = false : bool

See the Resources page on the website for a link to documentation for the Basis.

CSc 372, Fall 2006 Standard ML, Slide 138
W. H. Mitchell (whm@msweng.com)

Curried functions, continued

In fact, the curried form is syntactic sugar. An alternative to fun add x y = x + y is this:

- fun add x =
 let

 fun add' y = x + y
in
 add'
end

val add = fn : int -> int -> int (Remember associativity: int -> (int -> int))

A call such as add 3 produces an instance of add' where x is bound to 3. That instance is
returned as the value of the let expression.

- add 3;
val it = fn : int -> int

- it 4;
val it = 7 : int

- add' 3 4;
val it = 7 : int

CSc 372, Fall 2006 Standard ML, Slide 139
W. H. Mitchell (whm@msweng.com)

List processing idioms with functions

Mapping

Anonymous functions

Predicate based functions

Reduction/folding

travel, revisited

CSc 372, Fall 2006 Standard ML, Slide 140
W. H. Mitchell (whm@msweng.com)

Mapping

The applyToAll function seen earlier applies a function to each element of a list and
produces a list of the results. There is a built-in function called map that does the same
thing.

- map;
val it = fn : ('a -> 'b) -> 'a list -> 'b list

- map size ["just", "testing"];
val it = [4,7] : int list

- map sumInts [[1,2,3],[5,10,20],[]];
val it = [6,35,0] : int list

Mapping is one of the idioms of functional programming.

There is no reason to write a function that performs an operation on each value in a list.
Instead create a function to perform the operation on a single value and then map that
function onto lists of interest.

CSc 372, Fall 2006 Standard ML, Slide 141
W. H. Mitchell (whm@msweng.com)

Mapping, continued

Contrast the types of applyToAll and map. Which is more useful?

- applyToAll;
val it = fn : ('a -> 'b) * 'a list -> 'b list

- map;
val it = fn : ('a -> 'b) -> 'a list -> 'b list

Consider a partial application of map:

- val sizes = map size;
val sizes = fn : string list -> int list

- sizes ["ML", "Ruby", "Prolog"];
val it = [2,4,6] : int list

- sizes ["ML", "Icon", "C++", "Prolog"];
val it = [2,4,3,6] : int list

CSc 372, Fall 2006 Standard ML, Slide 142
W. H. Mitchell (whm@msweng.com)

Mapping, continued

Here's one way to generate a string with all the ASCII characters:

- implode (map chr (m_to_n 0 127));
val it =
 "\^@\^A\^B\^C\^D\^E\^F\a\b\t\n\v\f\r\^N\^O\^P\^Q\^R\^S\^T\^U\^V\^W\^X\^Y\^Z\^[
\^\\^]\^^\^_ !\"#$%&'()*+,-./0123456789:;<=>?@ABCDE#"
 : string

(Note that the full value is not shown—the trailing # indicates the value was truncated for
display.)

Problem: Write a function equalsIgnoreCase of type string * string -> bool. The function
Char.toLower (char -> char) converts upper-case letters to lower case and leaves other
characters unchanged.

CSc 372, Fall 2006 Standard ML, Slide 143
W. H. Mitchell (whm@msweng.com)

Mapping with curried functions

It is common to map with a partial application:

- val addTen = add 10;
val addTen = fn : int -> int

- map addTen (m_to_n 1 10);
val it = [11,12,13,14,15,16,17,18,19,20] : int list

- map (add 100) (m_to_n 1 10);
val it = [101,102,103,104,105,106,107,108,109,110] : int list

The partial application "plugs in" one of the addends. The resulting function is then called
with each value in the list in turn serving as the other addend.

Remember that map is curried, too:

- val addTenToAll = map (add 10);
val addTenToAll = fn : int list -> int list

- addTenToAll [3,1,4,5];
val it = [13,11,14,15] : int list

CSc 372, Fall 2006 Standard ML, Slide 144
W. H. Mitchell (whm@msweng.com)

Mapping with anonymous functions

Here's another way to define a function:

- val double = fn(n) => n * 2;
val double = fn : int -> int

The expression being evaluated, fn(n) => n * 2, is a simple example of a match expression.
It provides a way to create a function "on the spot".

If we want to triple the numbers in a list, instead of writing a triple function we might do this:

- map (fn(n) => n * 3) [3, 1, 5, 9];
val it = [9,3,15,27] : int list

The function created by fn(n) => n * 3 never has a name. It is an anonymous function. It is
created, used, and discarded.

The term match expression is ML-specific. A more general term for an expression that
defines a nameless function is a lambda expression.

CSc 372, Fall 2006 Standard ML, Slide 145
W. H. Mitchell (whm@msweng.com)

Mapping with anonymous functions, continued

Explain the following:

- map (fn(s) => (size(s), s)) ["just", "try", "it"];
val it = [(4,"just"),(3,"try"),(2,"it")] : (int * string) list

Problem: Recall this mapping of a partial application:

- map (add 100) (m_to_n 1 10);
val it = [101,102,103,104,105,106,107,108,109,110] : int list

Do the same thing but use an anonymous function instead.

CSc 372, Fall 2006 Standard ML, Slide 146
W. H. Mitchell (whm@msweng.com)

Predicate-based functions

The built-in function List.filter applies function F to each element of a list and produces a list
of those elements for which F produces true. Here's one way to write filter:

- fun filter F [] = []
 | filter F (x::xs) = if (F x) then x::(filter F xs)

 else (filter F xs);
val filter = fn : ('a -> bool) -> 'a list -> 'a list

It is said that F is a predicate—inclusion of a list element in the result is predicated on
whether F returns true for that value.

Problem: Explain the following.

- val f = List.filter (fn(n) => n mod 2 = 0);
val f = fn : int list -> int list

- f [5,10,12,21,32];
val it = [10,12,32] : int list

- length (f (m_to_n 1 100));
val it = 50 : int

CSc 372, Fall 2006 Standard ML, Slide 147
W. H. Mitchell (whm@msweng.com)

Predicate-based functions, continued

Another predicate-based function is List.partition:

- List.partition;
val it = fn : ('a -> bool) -> 'a list -> 'a list * 'a list

- List.partition (fn(s) => size(s) <= 3) ["a", "test", "now"];
val it = (["a","now"],["test"]) : string list * string list

String.tokens uses a predicate to break a string into tokens:

- Char.isPunct;
val it = fn : char -> bool

- String.tokens Char.isPunct "a,bc:def.xyz";
val it = ["a","bc","def","xyz"] : string list

Problem: What characters does Char.isPunct consider to be punctuation?

CSc 372, Fall 2006 Standard ML, Slide 148
W. H. Mitchell (whm@msweng.com)

Real-world application: A very simple grep

The UNIX grep program searches files for lines that contain specified text. Imagine a very
simple grep in ML:

- grep;
val it = fn : string -> string list -> unit list

- grep "sort" ["all.sml","flexsort.sml"];
all.sml:fun sort1([]) = []
all.sml: | sort1(x::xs) =
all.sml: insert(x, sort1(xs))
flexsort.sml:fun sort([], isInOrder) = []
flexsort.sml: | sort(x::xs, isInOrder) = insert(x, sort(xs, isInOrder), isInOrder)
val it = [(),()] : unit list

We could use SMLofNJ.exportFn to create a file that is executable from the UNIX
command line, just like the real grep.

CSc 372, Fall 2006 Standard ML, Slide 149
W. H. Mitchell (whm@msweng.com)

A simple grep, continued

Implementation

fun grepAFile text file =
 let

 val inputFile = TextIO.openIn(file);
val fileText = TextIO.input(inputFile);
val lines = String.tokens (fn(c) => c = #"\n") fileText
val linesWithText = List.filter (String.isSubstring text) lines
val _ = TextIO.closeIn(inputFile);

in
print(concat(map (fn(s) => file ^ ":" ^ s ^ "\n") linesWithText))

end;

fun grep text files = map (grepAFile text) files;

Notes:
• TextIO.openIn opens a file for reading.
• TextIO.input reads an entire file and returns it as a string.
• Study the use of anonymous functions, mapping, and partial application.
• No loops, no variables, no recursion at this level.

How much code would this be in Java? Do you feel confident the code above is correct?

CSc 372, Fall 2006 Standard ML, Slide 150
W. H. Mitchell (whm@msweng.com)

Reduction of lists

Another idiom is reduction of a list by repeatedly applying a binary operator to produce a
single value. Here is a simple reduction function:

- fun reduce F [] = raise Empty
 | reduce F [x] = x
 | reduce F (x::xs) = F(x, reduce F xs)
val reduce = fn : ('a * 'a -> 'a) -> 'a list -> 'a

Usage:

- reduce op+ [3,4,5,6];
val it = 18 : int

What happens:

op+(3, reduce op+ [4,5,6])
op+(4, reduce op+ [5,6])

op+(5, reduce op+ [6])

Or,
op+(3, op+(4, op+(5,6)))

CSc 372, Fall 2006 Standard ML, Slide 151
W. H. Mitchell (whm@msweng.com)

Reduction, continued

More examples:

- reduce op^ ["just", "a", "test"];
val it = "justatest" : string

- reduce op* (iota 5);
val it = 120 : int

Problem: How could a list like [[1,2],[3,4,5],[6]] be turned into [1,2,3,4,5,6]?

CSc 372, Fall 2006 Standard ML, Slide 152
W. H. Mitchell (whm@msweng.com)

Reduction, continued

Because reduce is curried, we can create a partial application:

- val concat = reduce op^; (* mimics built-in concat *)
val concat = fn : string list -> string

- concat ["xyz", "abc"];
val it = "xyzabc" : string

- val sum = reduce op+ ;
val sum = fn : int list -> int

- sum(iota 10);
val it = 55 : int

- val max = reduce (fn(x,y) => if x > y then x else y);
val max = fn : int list -> int

- max [5,3,9,1,2];
val it = 9 : int

CSc 372, Fall 2006 Standard ML, Slide 153
W. H. Mitchell (whm@msweng.com)

Reduction, continued

Another name for reduction is "folding"; There are two built-in reduction/folding functions:
foldl and foldr. Contrast their types with the implementation of reduce shown above:

- foldl;
val it = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

- foldr;
val it = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b

- reduce;
val it = fn : ('a * 'a -> 'a) -> 'a list -> 'a

Here's an example of foldr:

- foldr op+ 0 [5,3,9,2];
val it = 19 : int

What are the differences between reduce and foldr?

Speculate: What's the difference between foldl and foldr?

CSc 372, Fall 2006 Standard ML, Slide 154
W. H. Mitchell (whm@msweng.com)

Reduction, continued

At hand:

- foldr; (* foldl has same type *)
val it = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b
- reduce;
val it = fn : ('a * 'a -> 'a) -> 'a list -> 'a

Our reduce has two weaknesses: (1) It can't operate on an empty list. (2) The operation must
produce the same type as the list elements.

Consider this identity operation:

- foldr op:: [] [1,2,3,4];
val it = [1,2,3,4] : int list

Here are the op:: (cons) operations that are performed:

- op::(1, op::(2, op::(3, op::(4, []))));
val it = [1,2,3,4] : int list

Note that the empty list in op::(4, []) comes from the call. (Try it with [10] instead of [].)

CSc 372, Fall 2006 Standard ML, Slide 155
W. H. Mitchell (whm@msweng.com)

Reduction, continued

At hand:

- foldr op:: [] [1,2,3,4];
val it = [1,2,3,4] : int list

foldl (note the "L") folds from the left, not the right:

- foldl op:: [] [1,2,3,4];
val it = [4,3,2,1] : int list

Here are the op:: calls that are made:

- op::(4, op::(3, op::(2, op::(1, []))));
val it = [4,3,2,1] : int list

CSc 372, Fall 2006 Standard ML, Slide 156
W. H. Mitchell (whm@msweng.com)

Reduction, continued

In some cases foldl and foldr produce different results. In some they don't:

- foldr op^ "!" ["a","list","of","strings"];
val it = "alistofstrings!" : string

- foldl op^ "!" ["a","list","of","strings"];
val it = "stringsoflista!" : string

- foldr op+ 0 [5,3,9,2];
val it = 19 : int

- foldl op+ 0 [5,3,9,2];
val it = 19 : int

- foldl op@ [] [[1,2],[3],[4,5]];
val it = [4,5,3,1,2] : int list

- foldr op@ [] [[1,2],[3],[4,5]];
val it = [1,2,3,4,5] : int list

What characteristic of an operation leads to different results with foldl and foldr?

CSc 372, Fall 2006 Standard ML, Slide 157
W. H. Mitchell (whm@msweng.com)

travel, revisited

Here's a version of travel (slide 107) that uses mapping and reduction (folding) instead of
explicit recursion:

fun dirToTuple(#"n") = (0,1)
 | dirToTuple(#"s") = (0,~1)
 | dirToTuple(#"e") = (1,0)
 | dirToTuple(#"w") = (~1,0)

fun addTuples((x1 , y1), (x2, y2)) = (x1 + x2, y1 + y2);

fun travel(s) =
 let
 val tuples = map dirToTuple (explode s)
 val displacement = foldr addTuples (0,0) tuples
 in
 if displacement = (0,0) then "Got home"
 else "Got lost"
 end

How confident are we that it is correct? Would it be longer or shorter in Java?

CSc 372, Fall 2006 Standard ML, Slide 158
W. H. Mitchell (whm@msweng.com)

CSc 372, Fall 2006 Standard ML, Slide 159
W. H. Mitchell (whm@msweng.com)

Even more with functions

Composition

Manipulation of operands

CSc 372, Fall 2006 Standard ML, Slide 160
W. H. Mitchell (whm@msweng.com)

Composition of functions

Given two functions F and G, the composition of F and G is a function C that for all values
of x, C(x) = F(G(x)).

Here is a primitive compose function that applies two functions in turn:

- fun compose(F,G,x) = F(G(x));
val compose = fn : ('a -> 'b) * ('c -> 'a) * 'c -> 'b

Usage:

- length;
val it = fn : 'a list -> int

- explode;
val it = fn : string -> char list

- compose(length, explode, "testing");
val it = 7 : int

Could we create a function composeAll([f1, f2, ... fn], x) that would call f1(f2(...fn(x)))?

CSc 372, Fall 2006 Standard ML, Slide 161
W. H. Mitchell (whm@msweng.com)

The composition operator (o)

There is a composition operator in ML:

- op o; (* lower-case "Oh" *)
val it = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'b

Two functions can be composed into a new function:

- val strlen = length o explode;
val strlen = fn : string -> int

- strlen "abc";
val it = 3 : int

Consider the types with respect to the type of op o:

'a is 'a list
'b is int
'c is string

(('a list -> int) * (string -> 'a list)) -> (string -> int)

CSc 372, Fall 2006 Standard ML, Slide 162
W. H. Mitchell (whm@msweng.com)

Composition, continued

When considering the type of a composed function only the types of the leftmost and
rightmost functions come into play.

Note that the following three compositions all have the same type. (Yes, the latter two are
doing some "busywork"!)

- length o explode;
val it = fn : string -> int

- length o explode o implode o explode;
val it = fn : string -> int

- length o rev o explode o implode o rev o explode;
val it = fn : string -> int

A COMMON ERROR is to say the type of length o explode is something like this:

string -> 'a list -> int (WRONG!!!)

Assuming a composition is valid, the type is based only on the input of the rightmost function
and the output of the leftmost function.

CSc 372, Fall 2006 Standard ML, Slide 163
W. H. Mitchell (whm@msweng.com)

Composition, continued

For reference:

- val strlen = length o explode;
val strlen = fn : string -> int

Analogy: Composition is like bolting machines together.

Because these machine models assume left to right data flow, explode comes first.

CSc 372, Fall 2006 Standard ML, Slide 164
W. H. Mitchell (whm@msweng.com)

Composition, continued

Recall order and swap:

fun order(x, y) = if x < y then (x, y) else (y, x)

fun swap(x, y) = (y, x)

A descOrder function can be created with composition:

- val descOrder = swap o order;
val descOrder = fn : int * int -> int * int

- descOrder(1,4);
val it = (4,1) : int * int

Problem: Using composition, create a function to reverse a string.

Problem: Create a function to reverse each string in a list of strings and reverse the order of
strings in the list. (Example: f ["one","two","three"] would produce ["eerht","owt","eno"].)

CSc 372, Fall 2006 Standard ML, Slide 165
W. H. Mitchell (whm@msweng.com)

Composition, continued

Problem: Create two functions second and third, which produce the second and third
elements of a list, respectively:

- second([4,2,7,5]);
val it = 2 : int

- third([4,2,7,5]);
val it = 7 : int

Problem: The function xrepl(x, n) produces a list with n copies of x:

- xrepl(1, 5);
val it = [1,1,1,1,1] : int list

Create a function repl(s, n), of type string * int -> string, that produces a string consisting of
n copies of s. For example, repl("abc", 2) = "abcabc".

Problem: Compute the sum of the odd numbers between 1 and 100, inclusive. Use only
composition and applications of op+, iota, isEven, foldr, filter, and not (bool -> bool).

CSc 372, Fall 2006 Standard ML, Slide 166
W. H. Mitchell (whm@msweng.com)

Another way to understand composition

Composition can be explored by using
functions that simply echo their call.

Example:

- fun f(s) = "f(" ^ s ^ ")";
val f = fn : string -> string

- f("x");
val it = "f(x)" : string

Two more:

fun g(s) = "g(" ^ s ^ ")";

fun h(s) = "h(" ^ s ^ ")";

Compositions:

- val fg = f o g;
val fg = fn : string -> string

- fg("x");
val it = "f(g(x))" : string

- val ghf = g o h o f;
val ghf = fn : string -> string

- ghf("x");
val it = "g(h(f(x)))" : string

- val q = fg o ghf;
val q = fn : string -> string

- q("x");
val it = "f(g(g(h(f(x)))))" : string

CSc 372, Fall 2006 Standard ML, Slide 167
W. H. Mitchell (whm@msweng.com)

"Computed" composition

Because composition is just an operator and functions are just values, we can write a function
that computes a composition. compN f n composes f with itself n times:

- fun compN f 1 = f
 | compN f n = f o compN f (n-1);
val compN = fn : ('a -> 'a) -> int -> 'a -> 'a

Usage:

- val f = compN double 3;
val f = fn : int -> int

- f 10;
val it = 80 : int

- compN double 10 1;
val it = 1024 : int

- map (compN double) (iota 5);
val it = [fn,fn,fn,fn,fn] : (int -> int) list

Could we create compN using folding?

CSc 372, Fall 2006 Standard ML, Slide 168
W. H. Mitchell (whm@msweng.com)

Manipulation of operands

Consider this function:

- fun c f x y = f (x,y);
val c = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

Usage:

- c op+ 3 4;
val it = 7 : int

- c op^ "a" "bcd";
val it = "abcd" : string

What is it doing?

What would be produced by the following partial applications?

c op+

c op^

CSc 372, Fall 2006 Standard ML, Slide 169
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

Here's the function again, with a revealing name:

- fun curry f x y = f (x,y);
val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

Consider:

- op+;
val it = fn : int * int -> int

- val add = curry op+;
val add = fn : int -> int -> int

- val addFive = add 5;
val addFive = fn : int -> int

- map addFive (iota 10);
val it = [6,7,8,9,10,11,12,13,14,15] : int list

- map (curry op+ 5) (iota 10);
val it = [6,7,8,9,10,11,12,13,14,15] : int list

CSc 372, Fall 2006 Standard ML, Slide 170
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

For reference:

- fun curry f x y = f (x,y);
val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

For a moment, think of a partial application as textual substitution:

val add = curry op+ is like fun add x y = op+(x, y)

val addFive = curry op+ 5 is like fun addFive y = op+(5, y)

Bottom line:

If we have a function that takes a 2-tuple, we can easily produce a curried version of the
function.

CSc 372, Fall 2006 Standard ML, Slide 171
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

Recall repl from slide 165:

- repl("abc", 4);
val it = "abcabcabcabc" : string

Let's create some partial applications of a curried version of it:

- val stars = curry repl "*";
val stars = fn : int -> string

- val arrows = curry repl " ---> ";
val arrows = fn : int -> string

- stars 10;
val it = "**********" : string

- arrows 5;
val it = " ---> ---> ---> ---> ---> " : string

- map arrows (iota 3);
val it = [" ---> "," ---> ---> "," ---> ---> ---> "] : string list

CSc 372, Fall 2006 Standard ML, Slide 172
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

Sometimes we have a function that is curried but we wish it were not curried. For example, a
function of type 'a -> 'b -> 'c that would be more useful if it were 'a * 'b -> 'c.

Consider a curried function:

- fun f x y = g(x,y*2);
val f = fn : int -> int -> int

Imagine that we'd like to map f onto an (int * int) list. We can't! (Why?)

Problem: Write an uncurry function so that this works:

- map (uncurry f) [(1,2), (3,4), (5,6)];

Important: The key to understanding functions like curry and uncurry is that without
partial application they wouldn't be of any use.

CSc 372, Fall 2006 Standard ML, Slide 173
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

The partial instantiation curry repl "x" creates a function that produces some number of "x"s,
but suppose we wanted to first supply the replication count and then supply the string to
replicate.

Example:

- five; (Imagine that 'five s' will call 'repl(s, 5)'.)
val it = fn : string -> string

- five "*";
val it = "*****" : string

- five "<x>";
val it = "<x><x><x><x><x>" : string

CSc 372, Fall 2006 Standard ML, Slide 174
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

Consider this function:

- fun swapArgs f x y = f y x;
val swapArgs = fn : ('a -> 'b -> 'c) -> 'b -> 'a -> 'c

Usage:

- fun cat s1 s2 = s1 ^ s2;
val cat = fn : string -> string -> string

- val f = swapArgs cat;
val f = fn : string -> string -> string

- f "a" "b";
val it = "ba" : string

- map (swapArgs (curry op^) "x") ["just", "a", "test"];
val it = ["justx","ax","testx"] : string list

CSc 372, Fall 2006 Standard ML, Slide 175
W. H. Mitchell (whm@msweng.com)

Manipulation of operands, continued

- val curried_repl = curry repl;
val curried_repl = fn : string -> int -> string

- val swapped_curried_repl = swapArgs curried_repl;
val swapped_curried_repl = fn : int -> string -> string

- val five = swapped_curried_repl 5;
val five = fn : string -> string

- five "*";
val it = "*****" : string

- five "<->";
val it = "<-><-><-><-><->" : string

Or,
- val five = swapArgs (curry repl) 5;
val five = fn : string -> string

- five "xyz";
val it = "xyzxyzxyzxyzxyz" : string

CSc 372, Fall 2006 Standard ML, Slide 176
W. H. Mitchell (whm@msweng.com)

Example: optab

Function optab(F, N, M) prints a table showing the result of F(n,m) for each value of n and
m from 1 to N and M, respectively. F is always an int * int -> int function.

Example:

- optab;
val it = fn : (int * int -> int) * int * int -> unit

- optab(op*, 5, 7);
 1 2 3 4 5 6 7
 1 1 2 3 4 5 6 7
 2 2 4 6 8 10 12 14
 3 3 6 9 12 15 18 21
 4 4 8 12 16 20 24 28
 5 5 10 15 20 25 30 35
val it = () : unit

CSc 372, Fall 2006 Standard ML, Slide 177
W. H. Mitchell (whm@msweng.com)

optab, continued

val repl = concat o xrepl;

fun rightJustify width value =

repl(" ", width-size(value)) ^ value

fun optab(F, nrows, ncols) =
 let
 val rj = rightJustify 4 (* assumes three-digit results at most *)

 fun intsToRow (L) = concat(map (rj o Int.toString) L) ^ "\n"

 val cols = iota ncols

 fun mkrow nth = intsToRow(nth::(map (curry F nth) cols))

 val rows = map mkrow (iota nrows)
 in
 print((rj "") ^ intsToRow(cols) ^ concat(rows))
 end

- optab(add, 3, 4);
 1 2 3 4
 1 2 3 4 5
 2 3 4 5 6
 3 4 5 6 7
val it = () : unit

CSc 372, Fall 2006 Standard ML, Slide 178
W. H. Mitchell (whm@msweng.com)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64

