
CSc 372, Fall 2006 Standard ML, Slide 179
W. H. Mitchell (whm@msweng.com)

Data structures with datatype

A shape datatype

An expression model

An infinite lazy list

CSc 372, Fall 2006 Standard ML, Slide 180
W. H. Mitchell (whm@msweng.com)

A simple datatype

New types can be defined with the datatype declaration. Example:

- datatype Shape =
 Circle of real
 | Square of real
 | Rectangle of real * real
 | Point;
datatype Shape
 = Circle of real | Point | Rectangle of real * real | Square of real

This defines a new type named Shape. An instance of a Shape is a value in one of four
forms:

A Circle, consisting of a real (the radius)

A Square, consisting of a real (the length of a side)

A Rectangle, consisting of two reals (width and height)

A Point, which has no data associated with it. (Debatable, but good for an example.)

CSc 372, Fall 2006 Standard ML, Slide 181
W. H. Mitchell (whm@msweng.com)

Shape: a new type

At hand:

datatype Shape =
 Circle of real
 | Square of real
 | Rectangle of real * real
 | Point

This declaration defines four constructors. Each constructor specifies one way that a Shape
can be created.

Examples of constructor invocation:

- val r = Rectangle (3.0, 4.0);
val r = Rectangle (3.0,4.0) : Shape

- val c = Circle 5.0;
val c = Circle 5.0 : Shape

- val p = Point;
val p = Point : Shape

CSc 372, Fall 2006 Standard ML, Slide 182
W. H. Mitchell (whm@msweng.com)

Shape, continued

A function to calculate the area of a Shape:

- fun area(Circle radius) = Math.pi * radius * radius
 | area(Square side) = side * side
 | area(Rectangle(width, height)) = width * height
 | area(Point) = 0.0;
val area = fn : Shape -> real

Usage:

- val r = Rectangle(3.4,4.5);
val r = Rectangle (3.4,4.5) : Shape

- area(r);
val it = 15.3 : real

- area(Circle 1.0);
val it = 3.14159265359 : real

Speculate: What will happen if the case for Point is omitted from area?

CSc 372, Fall 2006 Standard ML, Slide 183
W. H. Mitchell (whm@msweng.com)

Shape, continued

A Shape list can be made from any combination of Circle, Point, Rectangle, and Square
values:

- val c = Circle 2.0;
val c = Circle 2.0 : Shape

- val shapes = [c, Rectangle (1.5, 2.5), c, Point, Square 1.0];
val shapes = [Circle 2.0,Rectangle (1.5,2.5),Circle 2.0,Point,Square 1.0]
 : Shape list

We can use map to calculate the area of each Shape in a list:

- map area shapes;
val it = [12.5663706144,3.75,12.5663706144,0.0,1.0] : real list

What does the following function do?

- val f = (foldr op+ 0.0) o (map area);
val f = fn : Shape list -> real

CSc 372, Fall 2006 Standard ML, Slide 184
W. H. Mitchell (whm@msweng.com)

A model of expressions using datatype

Here is a set of types that can be used to model a family of ML-like expressions:

datatype ArithOp = Plus | Times | Minus | Divide;

type Name = string (* Makes Name a synonym for string *)

datatype Expression =
 Let of (Name * int) list * Expression
 | E of Expression * ArithOp * Expression
 | Seq of Expression list
 | Con of int
 | Var of Name;

Note that it is recursive—an Expression can contain other Expressions.

Problem: Write some valid expressions.

CSc 372, Fall 2006 Standard ML, Slide 185
W. H. Mitchell (whm@msweng.com)

Expression, continued

The expression 2 * 4 is described in this way:

E(Con 2, Times, Con 4))

Consider a function that evaluates expressions:

- eval(E(Con 2, Times, Con 4));
val it = 8 : int

The Let expression allows integer values to be bound to names. The pseudo-code

let a=10, b=20, c=30
in a + (b * c)

can be expressed like this:

- eval(Let([("a",10),("b",20),("c",30)],
 E(Var "a", Plus, E(Var "b", Times, Var "c"))));
val it = 610 : int

CSc 372, Fall 2006 Standard ML, Slide 186
W. H. Mitchell (whm@msweng.com)

Expression, continued

Let expressions may be nested. The pseudo-code:

let a = 1, b = 2
in a + ((let b = 3 in b*3) + b)

can be expressed like this:

- eval(Let([("a",1),("b",2)],
 E(Var "a", Plus,
 E(Let([("b",3)], (* this binding overrides the first binding of "b" *)

 E(Var "b", Times, Con 3)), Plus, Var "b"))));
val it = 12 : int

The Seq expression allows sequencing of expressions and produces the result of the last
expression in the sequence:

- eval(Seq [Con 1, Con 2, Con 3]);
val it = 3 : int

Problem: Write eval.

CSc 372, Fall 2006 Standard ML, Slide 187
W. H. Mitchell (whm@msweng.com)

Expression, continued

Solution:

fun lookup(nm, nil) = 0
 | lookup(nm, (var,value)::bs) = if nm = var then value else lookup(nm, bs);

fun eval(e) =
let

fun eval'(Con i, _) = i
 | eval'(E(e1, Plus, e2), bs) = eval'(e1, bs) + eval'(e2, bs)
 | eval'(E(e1, Minus, e2), bs) = eval'(e1, bs) - eval'(e2, bs)
 | eval'(E(e1, Times, e2), bs) = eval'(e1, bs) * eval'(e2, bs)
 | eval'(E(e1,Divide,e2), bs) = eval'(e1, bs) div eval'(e2,bs)
 | eval'(Var v, bs) = lookup(v, bs)
 | eval'(Let(nbs, e), bs) = eval'(e, nbs @ bs)
 | eval'(Seq([]), bs) = 0
 | eval'(Seq([e]), bs) = eval'(e, bs)
 | eval'(Seq(e::es), bs) = (eval'(e,bs); eval'(Seq(es),bs))
in

eval'(e, [])
end;

How can eval be improved?

CSc 372, Fall 2006 Standard ML, Slide 188
W. H. Mitchell (whm@msweng.com)

An infinite lazy list

A lazy list is a list where values are created as needed.

Some functional languages, like Haskell, use lazy evaluation—values are not computed until
needed. In Haskell the infinite list 1, 3, 5, ... can be created like this: [1,3 ..].

% hugs
Hugs> head [1,3 ..]
1

Hugs> head (drop 10 [1,3 ..])
21

Of course, you must be careful with an infinite list:

Hugs> length [1,3 ..]
(...get some coffee...check mail...^C)
{Interrupted!}

Hugs> reverse [1,3 ..]
ERROR - Garbage collection fails to reclaim sufficient space

Adapted from ML for the Working Programmer L.C. Paulson1

CSc 372, Fall 2006 Standard ML, Slide 189
W. H. Mitchell (whm@msweng.com)

An infinite lazy list, continued

ML does not use lazy evaluation but we can approach it with a data structure that includes a
function to compute results only when needed.

Here is a way to create an infinite head/tail list with a datatype:

datatype 'a InfList = Nil
 | Cons of 'a * (unit -> 'a InfList)

fun head(Cons(x, _)) = x;
fun tail(Cons(_, f)) = f();1

Note that 'a is used to specify that values of any (one) type can be held in the list.

A Cons constructor serves as a stand-in for op::, which can't be overloaded.

Similarly, we provide head and tail functions that mimic hd and tl but operate on a Cons.

CSc 372, Fall 2006 Standard ML, Slide 190
W. H. Mitchell (whm@msweng.com)

An infinite lazy list, continued

datatype 'a InfList = Nil
 | Cons of 'a * (unit -> 'a InfList)

fun head(Cons(x,_)) = x;
fun tail(Cons(_,f)) = f();

Here's what we can do with it:

- fun byTen n = Cons(n, fn() => byTen(n+10));
val byTen = fn : int -> int InfList

- byTen 100;
val it = Cons (100,fn) : int InfList

- tail it;
val it = Cons (110,fn) : int InfList

- tail it;
val it = Cons (120,fn) : int InfList

Try it!

CSc 372, Fall 2006 Standard ML, Slide 191
W. H. Mitchell (whm@msweng.com)

An infinite lazy list, continued

More fun:

fun toggle "on" = Cons("on", fn() => toggle("off"))
 | toggle "off" = Cons("off", fn() => toggle("on"))

- toggle "on";
val it = Cons ("on",fn) : string InfList

- tail it;
val it = Cons ("off",fn) : string InfList

- tail it;
val it = Cons ("on",fn) : string InfList

- tail it;
val it = Cons ("off",fn) : string InfList

Problem: Write drop(L,n):

- drop(byTen 100, 5);
val it = Cons (150,fn) : int InfList

CSc 372, Fall 2006 Standard ML, Slide 192
W. H. Mitchell (whm@msweng.com)

An infinite lazy list, continued

Problem: Create a function repeatValues(L) that infinitely repeats the values in L.

- repeatValues;
val it = fn : 'a list -> 'a InfList

- repeatValues (explode "pdq");
val it = Cons (#"p",fn) : char InfList

- tail it;
val it = Cons (#"d",fn) : char InfList

- tail it;
val it = Cons (#"q",fn) : char InfList

- tail it;
val it = Cons (#"p",fn) : char InfList

- tail it;
val it = Cons (#"d",fn) : char InfList

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

