
CSC 372 Final Exam
Tuesday, May 8, 2018

READ THIS FIRST
Read this page now but do not turn this page until you are told to do so.  Go ahead and fill in your last name in the
box above.

This is a 100+-minute exam with a total of 100 points of regular questions and an extra credit section.  It will end
at 5:30pm.

The last five  minutes of the exam is a "seatbelts required" period to avoid distractions for those who are still
working.  If you finish before the "seatbelts required" period starts, you may turn in your exam and leave.  If not,
you must stay quietly seated—no "packing up"— until time is up for all.

You are allowed no reference materials whatsoever.

If you have a question, raise your hand.  One of us will come to you.  DO NOT leave your seat.

If you have a question that can be safely resolved with a minor assumption, like the name of a function or the order
of function arguments, state the assumption and proceed.

Don't make problems hard  by assuming that they need to do more than is specifically mentioned in the write-up or
that the solution that comes to mind is "too easy."

If you're stuck on a problem, please ask for a hint. Try to avoid leaving a problem completely blank—that's a sure
zero.

It is better to put forth a solution that violates stated restrictions than to leave it blank—a solution with violations
may still be worth partial credit.

When told to begin, double-check that your name is at the top of this page, and then put your initials in the lower
right hand corner of the top side of each sheet, checking to be sure your copy of the exam has all the pages.

BE SURE to enter your last name on the sign-out log when turning in your completed exam.

I believe that at least one student will be taking a make-up exam, so I won't be posting solutions on Piazza.  I'll
instead park a copy in this directory:

http://cs.arizona.edu/~whm/199341-more-videos-please/
Write it down!  Note the ~ in ~whm.  If any trouble, DO NOT post on Piazza!  Send me mail.

PLEASE, PLEASE, PLEASE RAISE YOUR
HAND IF YOU'RE STUMPED ON A PROBLEM!

Your last name

_________________________________

Last name of person sitting beside you

_________________________________
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Problem 1:  (6 points)

Cite three things about programming languages you learned by watching your classmates' video projects. Each of
the three should be about a different language and have a bit of depth, as described in the Piazza post that
announced this problem.

Problem 2:  (6 points)

Given the following Haskell function definition,

f xs ys = foldr (++) [] (map m (zip xs ys))
    where
        m (a,b) = [a,b]

What does the following expression produce?

f ['h','e','l','l','o'] "hello"

    a)  "hellohello"
    b)  ["hh","ee","ll","oo"]
    c)  [('h','h'),('e','e'),('l','l'),('o','o')]
    d)  "hheelllloo"
    e)  A type error of some sort.

Should your answer be wrong, showing your work or providing some explanation of your reasoning might earn
some partial credit.
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Problem 3:  (4 points)

Write a Haskell function again list, of type Eq t => [t] -> Bool, that returns True if and only if the
first element of list appears again elsewhere in the list.

again returns False if list has less than two elements.

RESTRICTION: You may NOT use the built-in function elem but you may write your own version of elem.

Examples:

> again [3,1,7,3,5]
True

> again [3,1,7]
False

> again [3]
False

> again []
False

Problem 4:  (3 points)

Write a Ruby iterator inorder(x,y,z) that yields the values x, y, and z in ascending order.  Assume that x, y,
and z can be sorted with Ruby's Enumerable#sort method.  inorder always returns nil.

>> inorder(10,2,4) { |x| print("x = #{x}\n") }
x = 2
x = 4
x = 10
=> nil

>> inorder(10,2,4) { puts "value" }
value
value
value
=> nil
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Problem 5:  (6 points)

This Ruby problem is similar to btw.pl from assignment 9. Write a Ruby iterator btw(a,sep) that yields
copies of  the array a with sep inserted between each element of a in turn.  btw(a,sep) returns a.

Examples:

>> btw([1,2,3,4,5], "---") { |x| p x }
[1, "---", 2, 3, 4, 5]
[1, 2, "---", 3, 4, 5]
[1, 2, 3, "---", 4, 5]
[1, 2, 3, 4, "---", 5]
=> [1, 2, 3, 4, 5]

>> btw([10,20], "---") { |x| p x }
[10, "---", 20]
=> [10, 20]

>> btw([10], "---") { |x| p x }
=> [10]

>> btw([], "---") { |x| p x }
=> []
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Problem 6:  (5 points)

This problem is similar to re.rb on assignment 7.  Write a method zip_re that returns a regular expression that
matches the city/state/zip line of postal addresses, like these:

Tucson, AZ 85750
Beverly Hills, CA  90210
Walkertown, NC 27051

Use the following rules:
    •   City names start with a capital, contain any mix of letters and spaces, and end with a lower-case letter.
    •   A comma immediately follows the city; one or more spaces can follow the comma.
    •   The state is always two capital letters; one or more spaces can follow the state.
    •   The zip code is always five digits.
    •   Use anchors to ensure that no extraneous characters before or after the address are matched.

When the match is successful, the named groups city, state, and zip should contain those respective values.

Examples:

>> zip_re =~ "Tucson, AZ 85750"
=> 0

>> $~
=> #<MatchData "Tucson, AZ 85750" city:"Tucson" state:"AZ" 
     zip:"85750">

>> zip_re =~ "Beverly Hills, CA  90210"
=> 0

>> $~
=> #<MatchData "Beverly Hills, CA  90210" city:"Beverly Hills"
     state:"CA" zip:"90210">

>> zip_re =~ "Walkertown NC 27051" (has missing comma)
=> nil

Here's a reminder of how named groups work:

>> /(?<before>.+)-(?<after>.+)/ =~ "test-this" => 0

>> $~  => #<MatchData "test-this" before:"test" after:"this">
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Problem 7:  (9 points)

For this problem you are to write a Ruby program that implements a very simple simple line-oriented calculator. 
It supports three commands/operations:

variable=integer
Assigns the integer value to the specified variable.

var1=var2+var3
        Assigns the sum of var2 and var3 to var1.

/vars
        Print all variables and their values.  Simplification: Variables can be printed in any order.

Use these assumptions to keep things simple:
    •   Input lines are always well-formed.  Calc does no error handling whatsoever.
    •   Input lines never contain any whitespace.
    •   Variables names are always a single lower-case letter.
    •   Variables are always assigned a value before being used.
        
An example of interaction follows.  User input is in bold.

$ ruby calc.rb
calc> x=7
calc> y=-3
calc> z=x+y
calc> /vars
x: 7
y: -3
z: 4
calc> x=z+z
calc> /vars
x: 8
y: -3
z: 4
calc> ^D

Use print "calc> " to print the prompt.
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Problem 8:  (5 points)

In this problem you are to implement a Ruby class named Rope that represents a length of rope that can be cut into
two pieces.

An instance of Rope is made with an integer length:
>> r = Rope.new 7

A rope can be cut, but only once, and only if the length to be cut, an integer, is less than the length of the rope:
>> r.cut(10) => false
>> r.cut(2) => true
>> r.cut(1) => false

The method pieces returns an array that represents the current state of the rope:
>> r.pieces => [5, 2]
>> r2 = Rope.new(50)
>> r2.pieces => [50]
>> r2.cut 1 => true
>> r2.pieces => [49, 1]
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Problem 9:  (3 points)

Write a Prolog predicate ints_atoms(+L,-E) that first instantiates E to each integer in L, and then instantiates
E to each atom in L.  Example:

?- ints_atoms([3,a,3+4,[1],b,7,q(1),z,10],E).
E = 3 ;
E = 7 ;
E = 10 ;
E = a ;
E = b ;
E = z ;
false.

Remember that integer(+X) succeeds iff X is an integer.  Similary, atom(+X) succeeds iff X is an atom.

Problem 10:  (5 points)

Write a predicate middle(+List, -M) that instantiates M to the middle element of the list L.  middle fails if
the list has an even number of elements.

RESTRICTIONS:
   •  Just like on append.pl on assignment 9, the only predicates you can use are length and append. 
   •  middle cannot be recursive.

Remember that \==, ==, =, <, is, !, and many more are predicates, too, and not allowed!  Raise your hand if in
doubt!

You can use the [E1, E2, ..., En] syntax for lists.

Examples:

?- middle([5,1,7,2,4],M).
M = 7 ;
false.

?- middle([1,2,3,4],M).
false.
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Problem 11:  (7 points)

For this problem you are to write a Prolog predicate sumneq(+L, -Sum).  The first argument, L, is a list of
vp/2 structures where both terms are integers.  sumneq looks for vp structures with unequal terms, like
vp(3,4) and vp(-10,2), but not vp(3,3).  For each vp structure with unequal terms, sumneq computes the
product of those two integer terms and then instantiates Sum to the sum of all those products.

My solution is one clause.  It uses findall, member, sumlist and other predicates.

Examples:

?- sumneq([vp(3,2),vp(5,5),vp(3,1)],Sum).
Sum = 9.

?- sumneq([vp(1,1),vp(3,3),vp(-1,-2),vp(10,10)],Sum).
Sum = 2.

?- sumneq([vp(1,1)],Sum).
Sum = 0.

?- sumneq([],Sum).
Sum = 0.
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Problem 12:  (7 points)

Write a predicate updown(+Ints, -Atom) that instantiates Atom to a series of atoms in turn, based on the
integers in Ints.  Example:

?- updown([3,1,5], A).
A = 'up three' ;
A = 'down three' ;
A = 'up one' ;
A = 'down one' ;
A = 'up five' ;
A = 'down five'.

Specifically, for each integer in Ints, first an 'up...' and then a 'down ...' is generated.

Integers outside of the range 1-10 inclusive are silently excluded:

?- updown([7,11,372,5],A).
A = 'up seven' ;
A = 'down seven' ;
A = 'up five' ;
A = 'down five'.

Assume that ten n/2 facts are present:

n(one,1).
n(two,2).
...
n(ten,10).

My solution uses atom_concat/3:

?- atom_concat(hello,world,A).
A = helloworld.

NOTE: Be sure that your solution generates all values, not just the first value.
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Problem 13:  (10 points)

This is the problem like connect and pit-crossing that you were told to expect.

Write a Prolog predicate seating(+Host, +Guests, -Seating) that determines the seating for a dinner
party to be attended by some number of conservatives and liberals.

Guests is a list of con(Name,Dist) and lib(Name,Dist) structures where Name is the person's name and
Dist is how far from the center they are (always an integer greater than zero).  Host is a con/2 or lib/2
structure as well. Examples:

lib(jane,1). % liberal, distance 1 from the center
con(jim,3). % conservative, 3 from the center
lib(tom,2). % liberal, 2 from the center

Two people can be seated beside each other if (1) both are liberals, or (2) both are conservatives, or (3) the sum of
their distances is four or less.

Given the three people above here's the seating situation:
jane and tom can sit beside each each other (both are liberals)
jane and jim can sit beside each other (differing beliefs, but total distance is <= 4)
tom and jim cannot sit beside each other (differing beliefs and total distance is > 4)

Two important points:
1. The table being used is round, so the first person seated, which is always the host, must able to sit beside the

last person seated.
2. All guests must be seated.  If there is no possible seating, seating fails.

Here's a simple case—a two-person party with a conservative host, John, and a liberal guest, Jane, but with a total
distance that is less than or equal to four:

?- seating(con(john,1), [lib(jane,3)], S).
S = [con(john, 1), lib(jane, 3)].

In the following case, we can seat Jane between Mark and Bob:

?- seating(con(dave,4), [lib(jane,1), con(mark,2), con(bob,2)], S).
S = [con(dave, 4), con(mark, 2), lib(jane, 1), con(bob, 2)].

In some cases, seating is not possible.  Here's a case where there's nobody that can sit beside Jane:

?- seating(con(dave,4), [lib(jane,1), con(mark,4), con(bob,4)], S).
false.

Here's a larger example:

?- seating(con(a,4), [lib(b,1), con(c,2), con(d,3), lib(e,2)], S).
S = [con(a, 4), con(c, 2), lib(e, 2), lib(b, 1), con(d, 3)].

There is space for your solution on the next page.
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(Space for solution for seating)

For reference:
seating(+Host, +Guests, -Seating) 

?- seating(con(dave,4), [lib(jane,1), con(mark,2), con(bob,2)], S).
S = [con(dave, 4), con(mark, 2), lib(jane, 1), con(bob, 2)].

?- seating(con(dave,4), [lib(jane,1)], S).
false.

?- seating(con(dave,3), [lib(jane,1)], S).
S = [con(dave, 3), lib(jane, 1)].

select/3 is select(?Element, ?List, ?Remaining)

Remember:
    •   The host is seated first.
    •   Because the table is round, the last person seated must be able to sit beside the host.
    •   If all guests can't be seated, seating fails.
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Problem 14:  (10 points) (one point each unless otherwise indicated)

The following questions and problems are related to Prolog.

(1) Write a sentence that expresses the relationship between the terms "fact", "clause", and "rule".

(2) Prolog goals were modeled using the "Four port model".  What are the four ports?

(3) If a predicate with three clauses is being evaluated and the first clause fails, what does Prolog do?

(4) What's the most important fundamental difference between a Prolog predicate like length/2 and a
function/method of the same name in Haskell, Ruby, or Java?

(5) What did you find hardest to understand about Prolog?

(6) In your mind, what's the most interesting thing about Prolog?

(7) What does the predicate trace/0 do?

(8) Write a Prolog clause that would generate a singleton warning.

(9) (Two points) What does the findall predicate do?
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Problem 15:  (2 points)

The following questions about SNOBOL4 are one point each.  You may answer as many as you want but the
maximum score on this problem is 2 points.

(1) Write a SNOBOL4 program that copies standard input to standard output, just like the cat command. 
(For a point of extra credit, implement tac instead, copying lines in reverse order—last line first, first line
last.  Hint: remember that char(10) produces a newline character.)

(2) Write a SNOBOL4 expression that concatenates the strings held in the three variables x, y, and z.

(3) In the following SNOBOL4 statement, which would start in column 1, what does the ". x" mean?

        loop    line span(&digits) . x        :f(p)

(4) In the SNOBOL4 statement above, what does :f(p) mean?

 
(5) Tell me something else of significance about SNOBOL4.

Problem 16:  (2 points)

The following questions about Icon are one point each.  You may answer as many as you want but the maximum
score on this problem is 2 points.

(1) Briefly describe Icon.

(2) What is the output of the following Icon expression?  write(2 > 3, 2+3, !"abc")

(3) What was a fundamental design goal of Icon's string scanning mechanism?

(4) What's something that Prolog and Icon have in common?

(5) Tell me something else of significance about Icon.
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Problem 17:  (10 points) (one point each unless otherwise indicated)

Answer the following general questions.

(1) This is a "matching" problem. Draw a line connecting each of the following language facilities on the left
with the best characterization of primitives vs. idioms/techniques for that language on the right.

Icon's string scanning                  Many primitives but few idioms/techniques
        Regular expressions in Ruby         Few primitives but many idioms/techniques
        SNOBOL4 patterns                        Few primitives and few techniques

(2) What is a fundamental characteristic of a statically typed language?

(3) What is the essence of the duck typing mindset?

(4) With programming languages in general, what's the fundamental difference between a statement and an
expression?

(5) What is the basic idea of type inferencing?

(6) In any language you know, write an expression that has both a value and a side-effect.  Cite the language, too.

(7) What is a fundamental benefit provided by a REPL?

(8) Tell me something about the concept of paradigms that is unrelated to programming paradigms in particular.

(9) (Two points) Which of the three main languages we covered this semester are you most glad we covered, and
why?
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Extra Credit Section (½ point each unless otherwise noted)

(1) The slides had some quotes from prior 372 students.  What's something you remember about one of them?

(2) What does the Prolog predicate =..(?Struct, ?List) do?

(3) What is the Chomsky hierarchy a hierarchy of?

(4) What's an example of a list that Prolog can sort but that Ruby and Python 3 can't?

(5) (One point) Present a brief argument either in favor of keeping Prolog as a 372 language or replacing it.

(6) Pick a nickname for one of the five languages we studied and explain why it's appropriate.

(7) Put the five languages we studied in order by their age, oldest first.

(8) What's a piece of wisdom from Ralph Griswold that whm passed along to you?

(9) What is a non-control, non-alphanumeric character and its ASCII code?

(10) Where in Gould-Simpson could leftover 372 handouts be found?

(11) The TAs were required to learn all of your names.  What are the TAs' names?  (First and last!)

(12) Late in the semester the class was invited to a sporting outing.  What was the sport?

(13) Finish this sentence: "If I only remember one thing about 372 it will be ...".

(14) (Zero points) whm booked his best of time of the semester ascending  the steps to the eighth floor before Sunday's
practice session!  What was his time?  (a) 25 seconds  (b) 50 seconds  (c) 1:40  (d) 3:20  (e) 6:40

16

Page 16 of  16


