
Functional Programming
with Haskell

CSC 372, Fall 2022
The University of Arizona

William H. Mitchell
whm@cs

CSC 372 Fall 2022, Haskell Slide 1

Paradigms

CSC 372 Fall 2022, Haskell Slide 2

Thomas Kuhn's The Structure of Scientific Revolutions (1962)
describes a paradigm as a scientific achievement that is...

• "...sufficiently unprecedented to attract an enduring group of
adherents away from competing modes of scientific activity."

• "...sufficiently open-ended to leave all sorts of problems for
the redefined group of practitioners to resolve."

Examples of works that documented paradigms:
• Newton's Principia
• Lavoisier's Chemistry
• Lyell's Geology

Paradigms

CSC 372 Fall 2022, Haskell Slide 3

Kuhn says a paradigm has:
• A world view
• A vocabulary
• A set of techniques for solving problems

A paradigm provides a conceptual framework for understanding and
solving problems.

Kuhn equates a paradigm shift with a scientific revolution.

Paradigms, continued

CSC 372 Fall 2022, Haskell Slide 4

Imperative programming is a very early paradigm that's still used.

Originated with machine-level programming:
• Instructions change memory locations or registers
• Branching instructions alter the flow of control

Examples of areas of study for those interested in the paradigm:
• Data types
• Operators
• Branching mechanisms and (later) control structures

Imperative programming fits well with the human mind's ability to
describe and understand processes as a series of steps.

The imperative programming paradigm

CSC 372 Fall 2022, Haskell Slide 5

Language-wise, imperative programming requires:
• "Variables"—data objects whose values can be changed
• Expressions to compute values
• Support for iteration—a “while” control structure, for example.
• Statements are sequentially executed

Support for imperative programming is very common.
• Java
• C
• C++
• Python
• and hundreds more
• but not Haskell

Typically, code in a Java method or Python function is imperative.

The imperative paradigm, continued

CSC 372 Fall 2022, Haskell Slide 6

An outgrowth of imperative programming was procedural
programming:
• Programs are composed of bodies of code (procedures) that

manipulate individual data elements or structures.
• Procedures encapsulate complexity.

Examples of areas of study:
• How to decompose a computation into procedures and calls
• Parameter-passing mechanisms in languages
• Scoping of variables and nesting of procedures
• Visualization of procedural structure

What does a language need to provide to support procedural
programming?

The procedural programming paradigm

CSC 372 Fall 2022, Haskell Slide 7

Support for procedural programming is very common.
• C
• Python
• Ruby
• and hundreds more

The procedural and imperative paradigms can be combined:
• Procedural programming: the set of procedures
• Imperative programming: the contents of procedures

Devising the set of functions for a C program is an example of
procedural programming.

Procedural programming is possible in Java but classes devolve into
collections of static methods and data

The procedural paradigm, continued

CSC 372 Fall 2022, Haskell Slide 8

The essence of the object-oriented programming paradigm:
Programs are a system of interacting objects.

Dan Ingalls said,
"Instead of a bit-grinding processor plundering data structures,
we have a universe of well-behaved objects that courteously ask
each other to carry out their various desires."

Examples of areas of study:
• How to model systems as interacting objects
• Managing dependencies between classes
• Costs and benefits of multiple inheritance
• Documentation of object-oriented designs

What does a language need to support OO programming?

The object-oriented programming paradigm

CSC 372 Fall 2022, Haskell Slide 9

Brief history of the rise of the object-oriented paradigm:
• Simula 67 recognized as first language to support objects
• Smalltalk created broad awareness of OO programming

(see https://archive.org/details/byte-magazine-1981-08)
• C++ started a massive shift to OO programming
• Java broadened the audience even further

Object-oriented programming fits Kuhn's paradigm definition well:
World view:

Systems are interacting objects. Pillars of OOP are
abstraction, encapsulation, inheritance, polymorphism.

Vocabulary:
Methods, instances, constructors, super/subclasses, and more

Techniques:
Model with classes, work out responsibilities and
collaborators, don't have public data, etc.

The object-oriented paradigm, continued

CSC 372 Fall 2022, Haskell Slide 10

https://archive.org/details/byte-magazine-1981-08

Language support for OOP has grown since mid-1980s.

Many languages support OO programming but don't force it.
• C++
• Python
• Ruby

Java forces at least a veneer of OO programming.

The OO and imperative paradigms can be combined:
• OO: the set of classes and their methods
• Imperative: the code inside methods

The object-oriented paradigm, continued

CSC 372 Fall 2022, Haskell Slide 11

Paradigms in a field of science are often incompatible.
Example: geocentric vs. heliocentric model of the universe

Imperative programming is used both with procedural and object-
oriented programming.

Is imperative programming really a paradigm?

Wikipedia's Programming_paradigm has this:
Programming paradigms are a way to classify programming
languages based on their features. Languages can be classified
into multiple paradigms.

Are "programming paradigms" really paradigms by Kuhn's
definition or are they just characteristics?

Multiple paradigms(?)

CSC 372 Fall 2022, Haskell Slide 12

Programming paradigms can apply at different levels:

• Making a choice between procedural and object-oriented
programming fundamentally determines the nature of the high-
level structure of a program.

• The imperative paradigm is focused more on the small aspects of
programming—how code looks at the line-by-line level.

The procedural and object-oriented paradigms apply to
programming in the large.

The imperative paradigm applies to programming in the small.

Do co-existing paradigms imply they're solving fundamentally
different types of problems?

The level of a paradigm

CSC 372 Fall 2022, Haskell Slide 13

The programming paradigms we know affect how we approach
problems.

• If we use the procedural paradigm, we'll first think about
breaking down a computation into a series of steps.

• If we use the object-oriented paradigm, we'll first think about
modeling the problem with a set of objects and then consider
their interactions.

• If we know only imperative programming, code inside methods
and functions will be imperative.

The influence of paradigms

CSC 372 Fall 2022, Haskell Slide 14

Recall these language requirements for imperative programming:

• "Variables"—data objects whose values can be changed

• Expressions to compute values

• Support for iteration—a “while” control structure, for example.

• Statements are sequentially executed

Imperative programming revisited

CSC 372 Fall 2022, Haskell Slide 15

Here's an imperative solution in Java to sum the integers in an array:

int sum(int a[])
{

int sum = 0;
for (int i = 0; i < a.length; i++)

sum += a[i];

return sum;
}

How does it exemplify imperative programming?
• The values of sum and i change over time.
• An iterative control structure is at the heart of the

computation.
• Statements are executed in sequence

Imperative summation

CSC 372 Fall 2022, Haskell Slide 16

With Java's "enhanced for", also known as a for-each loop, we can
avoid array indexing.

int sum(int a[])
{

int sum = 0;
for (int val: a)

sum += val;

return sum;
}

Is this an improvement? If so, why?

Can we write sum in a non-imperative way?

Imperative summation, continued

CSC 372 Fall 2022, Haskell Slide 17

We can use recursion to get rid of loops and assignments, but...ouch!

int sum(int a[])
{

return sum(a, 0);
}

int sum(int a[], int i)
{

if (i == a.length)
return 0;

else
return a[i] + sum(a, i+1);

}

Which of the three versions is the easiest to believe it is correct?
(simple for-loop, enhanced for-loop, or icky recursion)

Non-imperative summation

CSC 372 Fall 2022, Haskell Slide 18

A recursive solution is far simpler in Python:
def sumnums(nums):

if len(nums) == 0:
return 0

else:
return nums[0] + sumnums(nums[1:])

Any loops or assignments?

What feature of Python enables this cleaner solution?

Could we do better with recursion in Java by using a java.util.List?

Challenge: If you know C, write a non-imperative version of strlen.

Non-imperative summation, cont.

CSC 372 Fall 2022, Haskell Slide 19

Expressions:
Value, type, side effect

CSC 372 Fall 2022, Haskell Slide 20

An expression is a sequence of symbols that can be evaluated to produce a
value.

Here are some Java expressions:
'x'
i + j * k
f(args.length * 2) + n

Here are three questions we can ask about an expression:

• What value does the expression produce?

• What's the type of that value?

• Does the expression have any side effects?

Mnemonic aid for the trio: Imagine you're wearing a vest that's reversed.
"vest" reversed is "t-se-v": type/side-effect/value.

Value, type, and side effect

CSC 372 Fall 2022, Haskell Slide 21

What is the value of the following expressions?
3 + 4 # Java

12 / 5 # Java

[1][-1] # Python

s = 3 + 4 + "5" # Java

"a,bb,c3".split(",") # Java

list({1:2,3:4,5:6}) # Python

Value

CSC 372 Fall 2022, Haskell Slide 22

What is the type of each of the following expressions?
3 + 4 # Java

12 / 5 # Java

[(1,2)][-1] # Python

s = 3 + 4 + "5" # Java

"a,bb,c3".split(",") # Java

['x'].append(3) # Python

How can we determine the type of an expression in Python? In Java?

Type

When we ask,
"What's the type of this
expression?"

we're actually asking,
"What's the type of the value
produced by this expression?"

CSC 372 Fall 2022, Haskell Slide 23

If we're learning a language and want to find out if something
is an expression, what might we do?

For example, which of the following are expressions in Java?
x += 4
1 < 2 ? 3 : 4
new Object[] {1,2}
System.out.println("hello!")

Which of the following are expressions in Python?
x = 5
1 if 2 < 3 else 4
print(print(print(print)))
7 in range(5)

Sidebar: A litmus test for expressions?

CSC 372 Fall 2022, Haskell Slide 24

Evaluating some expressions causes other things to happen in
addition to computing a value.

jshell> ArrayList<Integer> L = new ArrayList<>();
L ==> []

jshell> L.add(7)
$2 ==> true

jshell> L
L ==> [7] // L.add(7) has the side-effect of adding 7 to L

A side-effect is something that happens in addition to the
computation of an expression's value. It must be "observable".

Side effects

CSC 372 Fall 2022, Haskell Slide 25

What is the value, type, and side effect of these expressions?
>>> print(1,2,3) # Python

>>> type(print(print))

>>> print(print(1), print(2))

Side effects, continued

CSC 372 Fall 2022, Haskell Slide 26

What is the value of the following Java expression?
i++

The value of i++ is i, whatever i is.

Does i++ have a side effect?

Evaluating i++ has a side effect of incrementing i.

Let's experiment with JShell!

Side effects, continued

CSC 372 Fall 2022, Haskell Slide 27

In Java, given
int x = 3, y = 4, z;

what's the value and what are the side effects of the following?
z = x++ * --y

Remember: In Java, = is an operator whose value is the value
assigned.

Side effects, continued

CSC 372 Fall 2022, Haskell Slide 28

Which of these Java expressions have a side effect?
x + 3 * y

x += 3 * y

s.length() > 2 || s.charAt(1) == '#'

Side effects, continued

CSC 372 Fall 2022, Haskell Slide 29

Fact: If a particular print expression
produces different results before/after
an expression, the expression had a
side effect.

print(x)
f()
print(x)

Some Python to ponder wrt. side effects:
"testing".upper()

input("Value? ")

[1,2,3].append(4)

base.launch_missles()

Side effects, continued

CSC 372 Fall 2022, Haskell Slide 30

Side effects are the hallmark of imperative programing.

Code written in an imperative style is essentially an orchestration of
side effects.

Recall:
int sum = 0;
for (int i = 0; i < a.length; i++)

sum += a[i];

Can we program without side effects?

The hallmark of imperative programming

CSC 372 Fall 2022, Haskell Slide 31

The Functional Paradigm

CSC 372 Fall 2022, Haskell Slide 32

"Functional programming is so called because its fundamental
operation is the application of functions to arguments."

—John Hughes, Why Functional Programming Matters

"Generally speaking, however, functional programming can be
viewed as a style of programming in which the basic method of
computation is the application of functions to arguments."

—Graham Hutton, Programming in Haskell

It seems that a competing name years ago was "applicative
programming".

The term "function-oriented programming" crosses my mind.

What is Functional Programming?

CSC 372 Fall 2022, Haskell Slide 33

https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

A key characteristic of the functional paradigm is writing functions
that are like pure mathematical functions.

Pure mathematical functions:

• Always produce the same value for given input(s)

• Have no side effects

• Can be easily combined to produce more powerful functions

• Are often specified with cases and expressions

The functional programming paradigm

CSC 372 Fall 2022, Haskell Slide 34

Other characteristics of the functional paradigm:

• Values are never changed but lots of new values are created.

• Recursion is used in place of iteration.

• Functions are values. Functions are put into data structures,
passed to functions, and returned from functions. Lots of
temporary functions are created.

Based on the above, how well would the following languages
support functional programming?
• Java?
• Python?
• C?

Functional programming, continued

CSC 372 Fall 2022, Haskell Slide 35

Haskell basics

CSC 372 Fall 2022, Haskell Slide 36

Haskell is a lazy and pure functional programming language.
Lazy: Only evaluates expressions when needed
Pure: Expressions never have any side effects
But, I/O is performed with monadic effects

Haskell is statically typed, with a very elaborate type system.

Haskell not object-oriented in any way.

Designed by a committee, formed in 1987, with the goal of creating
a standard language for research into functional programming.

First version appeared in 1990. Latest version is known as Haskell
2010. Here is the Haskell 2010 Report, which I'll call "H10".
http://haskell.org/definition/haskell2010.pdf

What is Haskell?

CSC 372 Fall 2022, Haskell Slide 37

http://haskell.org/definition/haskell2010.pdf

Website: haskell.org

Here are three books I can recommend:
Learn You a Haskell for Great Good!, by Miran Lipovača
http://learnyouahaskell.com (Known as LYAH.)

Haskell: The Craft of Functional Programming, 3rd edition, by
Simon Thompson. (2nd edition is pretty good, too.)

Real World Haskell, by O'Sullivan, Stewart, and Goerzen
http://book.realworldhaskell.org (I'll call it RWH.)

There's a big pile of stuff at haskell.org/documentation, but it's
a big pile!

For the curious: A History of Haskell: Being Lazy With Class

Haskell resources

CSC 372 Fall 2022, Haskell Slide 38

https://haskell.org/
https://learning.oreilly.com/library/view/learn-you-a/9781457100406/
http://learnyouahaskell.com/
https://learning.oreilly.com/library/view/real-world-haskell/9780596155339
http://book.realworldhaskell.org/
https://haskell.org/documentation
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/history.pdf

Haskell 8.6.5 is installed on lectura and if you wish, you can simply work
with ghci there.

To get Haskell for your machine, start at haskell.org/ghcup

The GHCup page shows copy-and-paste command lines for UNIX-like
platforms (curl ... | sh), and for Windows PowerShell that start an
installer.

The installer will offer options to install HLS and stack. HLS can be
handy if you're using VSCode, vim, or Emacs. You won't need stack for
what we're doing. On Windows, you'll also be asked about MSys2, and it
appears the installation won't proceed without it.

The latest version of Haskell appears to be 9.4.1 but 8.10.7 gets installed
by default and that seems to be what's recommended by the Haskell folks.

Getting Haskell

CSC 372 Fall 2022, Haskell Slide 39

https://haskell.org/ghcup/
https://haskell-language-server.readthedocs.io/en/stable/

We'll usually interact with Haskell by running ghci in a terminal
window on UNIX-like machines or in a PowerShell or cmd.exe
window on Windows.

% ghci
GHCi, version 8.10.7...
Prelude> 3 + 4
7

Prelude> ^D (control-D to quit)
%

With no arguments, ghci starts a read-eval-print loop (REPL):
Expressions typed at the prompt (Prelude>) are evaluated and
the result is printed.

Interacting with Haskell

CSC 372 Fall 2022, Haskell Slide 40

When ghci starts up on UNIX-like systems it looks for the file
~/.ghci – a .ghci file in the user's home directory.

I have these two lines in my ~/.ghci file on both my Mac and
on lectura:

:set prompt "> "
import Text.Show.Functions

The first line simply sets the prompt to "> " and that's just my
preference.

The second line is very important:
• It loads a module that lets function values be shown in

as <function>, instead of producing an error.
• Without it, lots of examples in these slides won't work!

The ~/.ghci file

CSC 372 Fall 2022, Haskell Slide 41

Fact: ~/.ghci must not be group- or world-writable! (Why?)

If you see something like this,
*** WARNING: /home/whm/.ghci is writable by
someone else, IGNORING!
Suggested fix: execute

'chmod go-w /home/whm/.ghci'
the suggested fix should work.

Details on .ghci can be found by Googling for "the .ghci file"
but much of what turns up is quite old.

Use ghci -ignore-dot-ghci ... to suppress loading of the
.ghci file.

~/.ghci, continued

CSC 372 Fall 2022, Haskell Slide 42

On Windows, instead of looking for a ~/.ghci file, ghci looks
for ghc\ghci.conf in your "app data" directory.

If you're using cmd.exe, do this to see where your app data is:
C:\>set appdata
APPDATA=C:\Users\whm\AppData\Roaming

If you're using PowerShell, do this:
% $env:APPDATA
C:\Users\whm\AppData\Roaming

Combing the two paths, the full path to the file for me is
C:\Users\whm\AppData\Roaming\ghc\ghci.conf

~/.ghci, continued

CSC 372 Fall 2022, Haskell Slide 43

For two assignment points of extra credit:

1. Run ghci somewhere and try ten Haskell expressions with some degree of
variety and not simply the ones on the following slide.

2. Demonstrate that you've got import Text.Show.Functions in your ~/.ghci or
ghc.conf file, as described on slide 41, by showing that typing negate produces
<function>, like this:

Prelude> negate
<function>

3. Capture the interaction (both expressions and results) and put it in a plain text
file, eca1.txt. No need for your name, NetID, etc. in the file. No need to edit
out errors.

4. On lectura, turn in eca1.txt with the following command:
% turnin 372-eca1 eca1.txt

Due: At the start of the next lecture after the lecture in which I present this slide.

Extra Credit Assignment 1

CSC 372 Fall 2022, Haskell Slide 44

Haskell by Observation

CSC 372 Fall 2022, Haskell Slide 45

3 + 4
3 * 4.5
it + it
it /= 3
3 > 4 || 5 < 7
not 3 < 4
2^200
2**0.5
"abc" + 3

"ab" ++ "xy"
it!!3
replicate 5 '.'
words "U of A"
map length it
[1..10]
map (*10) [1,3..10]
(+) 3 4
:help

Let's see what we can learn about Haskell by trying some
expressions:

Functions and function types

CSC 372 Fall 2022, Haskell Slide 46

In Haskell, juxtaposition indicates a function call:

> negate 3
-3

> even 5
False

> pred 'C'
'B'

> signum 2
1

Calling functions

Note: These functions and many
more are defined in the Haskell
"Prelude", which is loaded by
default when ghci starts up.

CSC 372 Fall 2022, Haskell Slide 47

Function call with juxtaposition is left-associative.

signum negate 2 means (signum negate) 2

> signum negate 2
<interactive>:11:1: error:

• Non type-variable argument ...
...

We add parentheses to call negate 2 first:
> signum (negate 2)
-1

Calling functions, continued

CSC 372 Fall 2022, Haskell Slide 48

Function call has higher precedence than any operator.

> negate 3+4

negate 3 + 4 means (negate 3) + 4. Use parens to force + first:

> negate (3 + 4)
-7

> signum (negate (3 + 4))
-1

Calling functions, continued

CSC 372 Fall 2022, Haskell Slide 49

Haskell's Data.Char module has functions for working with
characters. We'll use it to start learning about function types.

> import Data.Char (import the Data.Char module)

> isLower 'b'

> toUpper 'a'

> ord 'A'

> chr 66

> Data.Char.ord 'G' (uses a qualified name)

The Data.Char module

CSC 372 Fall 2022, Haskell Slide 50

We can use ghci's :type command to see what the type of a
function is:

> :type isLower
isLower :: Char -> Bool

The type Char -> Bool says that isLower is a function that
1. Takes an argument of type Char
2. Produces a result of type Bool

The text
isLower :: Char -> Bool

is read as "isLower has type Char to Bool"

Function types, continued

CSC 372 Fall 2022, Haskell Slide 51

Recall:
> toUpper 'a'
'A'
> ord 'A'
65
> chr 66
'B'

What are the types of those three functions?
> :t toUpper

> :t ord

> :t chr

Function types, continued

CSC 372 Fall 2022, Haskell Slide 52

What are the types of the following Java methods?
jshell> Character.isLetter('4')
$1==> false

jshell> Character.toUpperCase('a')
$2 ==> 'A'

% javap java.lang.Character | grep "isLetter(\|toUpperCase("
public static boolean isLetter(char);
public static boolean isLetter(int);
public static char toUpperCase(char);
public static int toUpperCase(int);

Important:
• Java: common to think of a method's return type as the method's type
• Haskell: a function's type includes both the type of argument(s) and the

return type

Sidebar: Contrast with Java

CSC 372 Fall 2022, Haskell Slide 53

Like most languages, Haskell requires that expressions be type-
consistent (or well-typed).

Here is an example of an inconsistency:
> chr 'x'
<interactive>:1:5: error:

• Couldn't match expected type ‘Int’ with actual type ‘Char’
• In the first argument of ‘chr’, namely ‘'x'’

...

> :t chr
chr :: Int -> Char

> :t 'x'
'x' :: Char

chr requires its argument to be an Int but we gave it a Char. We
can say that chr 'x' is ill-typed.

Type consistency

CSC 372 Fall 2022, Haskell Slide 54

State whether each expression is well-typed and if so, its type.

'a'

isUpper

isUpper 'a'

not (isUpper 'a')

not not (isUpper 'a')

toUpper (ord 97)

isUpper (toUpper (chr 'a'))

isUpper (intToDigit 100)

Type consistency, continued

For reference:
'a' :: Char

chr :: Int -> Char

digitToInt :: Char -> Int

intToDigit :: Int -> Char

isUpper :: Char -> Bool

not :: Bool -> Bool

ord :: Char -> Int

toUpper :: Char -> Char

CSC 372 Fall 2022, Haskell Slide 55

ghci uses the haskeline package to provide line-editing.

A few handy bindings:
TAB completes identifiers
^A Start of line
^E End of line
^L Clear the screen
^R Incremental search through previously typed lines

Windows: Use Home and End for start- and end-of-line

More:
https://github.com/judah/haskeline/wiki/KeyBindings

Sidebar: Key bindings in ghci

CSC 372 Fall 2022, Haskell Slide 56

https://github.com/judah/haskeline/wiki/KeyBindings

ghci provides a REPL (read-eval-print loop) for Haskell.

How does a REPL help us learn a language?

What are some other languages that have a REPL available?

What characteristics does a language need to support a REPL?

If there's no REPL for a language, how hard is it to write one?

Sidebar: Using a REPL to help learn a language

CSC 372 Fall 2022, Haskell Slide 57

Type classes

CSC 372 Fall 2022, Haskell Slide 58

Recall the negate function:

> negate 5
-5

> negate 5.0
-5.0

Speculate: What's the type of negate?

What's the type of negate?

CSC 372 Fall 2022, Haskell Slide 59

"A type is a collection of related values." —Hutton

Bool, Char, and Int are examples of Haskell types.

Haskell also has type classes.

Type class:
A collection of types that support a specified set of operations.

Num is one of the many type classes defined in the Prelude.

Important:
The names of types and type classes are always capitalized.

Haskell's type classes are unrelated to classes in the OO sense.

Type classes

CSC 372 Fall 2022, Haskell Slide 60

> :info Num
type Num :: * -> Constraint
class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
abs :: a -> a
signum :: a -> a
fromInteger :: Integer -> a

instance Num Word
instance Num Integer
instance Num Int
instance Num Float
instance Num Double

The Num type class

A type must support all of
these operations to be an
instance of Num

These five types are all instances
of Num: If we need a Num, we
can use a value of type Word, or
of type Integer, or of type Int,
or Float or Double.

CSC 372 Fall 2022, Haskell Slide 61

Here's the type of negate:
> :type negate
negate :: Num a => a -> a

The type of negate is specified using a type variable, a.

The portion a -> a specifies that negate returns a value having
the same type as its argument.

"If you give me an X, I'll give you back an X."

The portion Num a => is a class constraint. It specifies that the
type a must be an instance of the type class Num.

How can we state the type of negate in English?

Type classes, continued

CSC 372 Fall 2022, Haskell Slide 62

What type do integer literals have?
> :type 3
3 :: Num p => p

> :type -27
-27 :: Num p => p

Why are integer literals typed with a class constraint rather
than just Int or Integer?

Type classes, continued

CSC 372 Fall 2022, Haskell Slide 63

What's the type of a decimal fraction?

> :type 3.4
3.4 :: Fractional a => a

Will negate 3.4 work?

> :type negate
negate :: Num a => a -> a

> negate 3.4

Type classes, continued

CSC 372 Fall 2022, Haskell Slide 64

Type classes, continued

Adapted from http://en.wikibooks.org/wiki/Haskell/Classes_and_types

Haskell type classes form a hierarchy. The Prelude has these:

X

CSC 372 Fall 2022, Haskell Slide 65

http://en.wikibooks.org/wiki/Haskell/Classes_and_types

Type classes, continued
Num

Int, Integer,
Float, Double

Fractional
Float,

Double

The arrow from Num to Fractional means that a Fractional can
be used as a Num.

Given
negate :: Num a => a -> a

and
5.0 :: Fractional a => a

then
negate 5.0 is valid.

Excerpt:

CSC 372 Fall 2022, Haskell Slide 66

Type classes, continued
Num

Int, Integer,
Float, Double

Fractional
Float,

Double

What does the diagram show us other than the relationship between
Num and Fractional?

Excerpt:

CSC 372 Fall 2022, Haskell Slide 67

The Prelude has a truncate to integer function:
> truncate 7.999
7

What does the type of truncate tell us?
truncate :: (Integral b, RealFrac a) => a -> b

Explore the Integral and RealFrac type classes with :info.

Type classes, continued

CSC 372 Fall 2022, Haskell Slide 68

:info Type shows the classes that Type is an instance of.

> :info Int
type Int :: *
data Int = GHC.Types.I# GHC.Prim.Int#
instance Eq Int
instance Ord Int
instance Show Int
instance Read Int
instance Enum Int
instance Num Int
instance Real Int
instance Bounded Int
instance Integral Int

Try :info for each of the classes.

Type classes, continued

CSC 372 Fall 2022, Haskell Slide 69

Contrast Int with Num:
> :info Num
...
instance Num Word
instance Num Integer
instance Num Int
instance Num Float
instance Num Double

In LYAH, Type Classes 101 has a good description of the Prelude's
type classes.

Note:
Type classes are not required for functional programming but
because Haskell makes extensive use of them, we must learn
about them.

Remember:
Haskell's type classes are unrelated to classes in the OO sense.

Type classes, continued

CSC 372 Fall 2022, Haskell Slide 70

http://learnyouahaskell.com/types-and-typeclasses

In essence, negate :: Num a => a -> a describes many
functions:

negate :: Integer -> Integer
negate :: Int -> Int
negate :: Float -> Float
negate :: Double -> Double
...and more...

negate is a polymorphic function. It handles values of many
forms.

If a function's type has any type variables, it is a polymorphic
function.

Does Java have polymorphic methods? Does C? Python?

negate is polymorphic

CSC 372 Fall 2022, Haskell Slide 71

Consider this excerpt from Bounded:

> :info Bounded
class Bounded a where
minBound :: a
maxBound :: a
...

What sort of things are minBound and maxBound?

How can we use them?

A mystery

CSC 372 Fall 2022, Haskell Slide 72

The construct ::type is an expression type signature.

A usage of it:
> minBound::Char

> maxBound::Int

> maxBound::Bool

> maxBound::Integer

Polymorphic values

CSC 372 Fall 2022, Haskell Slide 73

We can use :set +t to direct ghci to automatically show types:
> :set +t

> 3
3
it :: Num p => p

> 3 + 4.5
7.5
it :: Fractional a => a

> abs
<function>
it :: Num a => a -> a

Use :unset +t to turn off display of types.

:set +t

CSC 372 Fall 2022, Haskell Slide 74

:type, :info and :set +t are three introspective tools that we can use
to help learn Haskell.

When learning a language, look for such tools early on.

Some type-related tools in other languages:
Python: type(expr) and repr(expr)

JavaScript: typeof(expr)

PHP: var_dump(expr1, expr2, ...)

C: sizeof(expr)

Java: getClass(); /var in jshell.

What's a difference between ghci's :type and Java's getClass()?

Sidebar: LHtLaL––introspective tools

CSC 372 Fall 2022, Haskell Slide 75

Here's a Java program that makes use of the "boxing" mechanism to show
the type of values, albeit with wrapper types for primitives.

public class exprtype {
public static void main(String args[]) {
showtype(3 + 'a');
showtype(3 + 4.0);
showtype("(2<F".toCharArray());
showtype("a,b,c".split(","));
showtype(new HashMap());

}
private static void showtype(Object o) {
System.out.println(o.getClass());

}}
Output:

class java.lang.Integer
class java.lang.Double
class [C
class [Ljava.lang.String;
class java.util.HashMap (Note: no String or Integer––type erasure!)

Sidebar, continued

CSC 372 Fall 2022, Haskell Slide 76

More on functions

CSC 372 Fall 2022, Haskell Slide 77

A function can be defined at the REPL prompt. Example:

> double x = x * 2
double ::Num a => a -> a (:set +t is in effect)

> double 5
10
it ::Num a => a

> double 2.7
5.4
it ::Fractional a => a

General form of a function definition for the moment:
function-name parameter = expression

Function and parameter names must begin with a lowercase letter or
an underscore.

Writing simple functions

CSC 372 Fall 2022, Haskell Slide 78

Two more functions:

> neg x = -x
neg :: Num a => a -> a (:set +t is in effect)

> toCelsius temp = (temp - 32) * 5/9
toCelsius :: Fractional a => a -> a

The determination of types based on the operations performed is
known as type inferencing. (More on it later!)

Problem: Write isPositive x which returns True iff x is positive.

Simple functions, continued

CSC 372 Fall 2022, Haskell Slide 79

We can use :: type to constrain a function's type:

> neg x = -x :: Int
neg :: Int -> Int

> toCelsius temp = (temp - 32) * 5/9 :: Double
toCelsius :: Double -> Double

:: type has low precedence; parentheses are required for this:
> isPositive x = x > (0::Int)
isPositive :: Int -> Bool

Note that :: type applies to an expression, not a function.

We'll use :: type to simplify some following examples.

Simple functions, continued

CSC 372 Fall 2022, Haskell Slide 80

We can put function definitions in a file.

The file simple.hs has four function definitions:

% cat simple.hs
double x = x * 2 :: Int
neg x = -x :: Int
isPositive x = x > (0::Int)
toCelsius temp = (temp - 32) * 5/9 :: Double

We'll use the extension .hs for Haskell source files.

Generally, code from the slides will be (poorly organized) here:
https://www2.cs.arizona.edu/classes/cs372/fall22/haskell
/cs/www/classes/cs372/fall22/haskell (on lectura)

Sidebar: loading functions from a file

CSC 372 Fall 2022, Haskell Slide 81

https://www2.cs.arizona.edu/classes/cs372/fall22/haskell/

Assuming simple.hs is in the current directory, we can load it with
:load and see what we got with :browse.

% ghci
> :load simple (assumes .hs suffix)
[1 of 1] Compiling Main ...
Ok, one module loaded.

> :browse
double :: Int -> Int
neg :: Int -> Int
isPositive :: Int -> Bool
toCelsius :: Double -> Double

Sidebar, continued

CSC 372 Fall 2022, Haskell Slide 82

ghci is clumsy to type! I've got an hs alias in my ~/.bashrc:
alias hs=ghci

I specify the file I'm working with as an argument to hs.
% hs simple
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, one module loaded.
> ... experiment ...

After editing in a different window, I use :r to reload the file.
> :r
[1 of 1] Compiling Main (simple.hs, interpreted)
Ok, one module loaded.
> ...experiment some more...

Lather, rinse, repeat.

Sidebar: My usual edit-run cycle

CSC 372 Fall 2022, Haskell Slide 83

If you don't see "Compiling",
the file hasn't changed!

Functions with multiple
arguments

CSC 372 Fall 2022, Haskell Slide 84

Here's a function that produces the sum of its two arguments:
add x y = x + y :: Int

Here's how we call it: (no commas or parentheses!)
> add 3 5
8

Problem: Use add to compute the sum of 5, 3, 9, 4.

Functions with multiple arguments

CSC 372 Fall 2022, Haskell Slide 85

The Prelude has a min function:
> min 6 2
2

Problem: Define a function min3 that computes the minimum
of three values.

> min3 5 2 10
2

Solution:

Exercise

CSC 372 Fall 2022, Haskell Slide 86

Consider the following expression:
f a b + g f(x) y

Fully parenthesize it to show the order of operations

Exercise

CSC 372 Fall 2022, Haskell Slide 87

Recall add:
add x y = x + y :: Int

Here is its type:
> :type add
add :: Int -> Int -> Int

Int -> Int -> Int is a type expression. It describes a type.

The operator -> is right-associative. Let's add parentheses:
Int -> (Int -> Int)

But what does that mean?

The type of add

CSC 372 Fall 2022, Haskell Slide 88

For reference, here's add and its type, with parentheses added:
> add x y = x + y :: Int
add :: Int -> (Int -> Int)

add is a function that takes an integer as an argument and
produces a function as its result!

add 3 5 means (add 3) 5
Call add with the value 3, producing a nameless function.
Call that nameless function with the value 5.

What does add (add 5 3) (add 9 4) mean?

Multiple arguments, continued

CSC 372 Fall 2022, Haskell Slide 89

Recall min3, but let's restrict it to Ints:
> min3 a b c = min a (min b c) :: Int

What's the type of min3?
> :t min3

How should the type expression be parenthesized to reflect
associativity?

What does min3 7 4 9 mean?

The type of min3

CSC 372 Fall 2022, Haskell Slide 90

Partial application

CSC 372 Fall 2022, Haskell Slide 91

When we give a function fewer arguments than it requires, the
resulting value is a partial application. It is a function.

We can bind a name to a partial application like this:
> plusThree = add 3
plusThree :: Int -> Int

The name plusThree now references a function that takes an
Int and returns an Int.

What will plusThree 5 produce?
> plusThree 5

Partial application

CSC 372 Fall 2022, Haskell Slide 92

At hand:
> add x y = x + y :: Int
add :: Int -> (Int -> Int) -- parens added

> plusThree = add 3
plusThree :: Int -> Int

Imagine add and plusThree as machines with inputs and outputs:

Weak analogy: plusThree is like a calculator where you've clicked
3, then +, and handed it to somebody.

Partial application, continued

plusThree

3 add

CSC 372 Fall 2022, Haskell Slide 93

> p7 = add 7
p7 :: Int -> Int
> m3 = add (-3)
> p7 5

> m3 it

> add 4

> :type it

> it 10

> add it

Examples!

CSC 372 Fall 2022, Haskell Slide 94

At hand:
> add x y = x + y :: Int
add :: Int -> Int -> Int

REPLACEMENTS! Discard 94 in the old set

Formula for displacement (s) of a falling object:
s = ½at2 (a is acceleration due to gravity, t is time)

Haskell:
> s a t = 0.5 * a * t * t
> s 32 1 # one second of falling towards earth
16.0 # 16 feet
> s 32 2 # two seconds...
64.0
> s 5.31 2 # two seconds of falling towards the moon
10.62

How can we make some use partial application?
(i.e., How can we use our brand new tool?!)

A little physics

CSC 372 Fall 2022, Haskell Slide 95

At hand: (in gravity.hs)
> s a t = 0.5 * a * t * t

And...
> sEarth = s 32 # sEarth is a partial application

32 is "wired-in" for a
> sMoon = s 5.31
> sEarth 1
16.0
> sEarth 2
64.0
> sMoon 1
2.655
> sMoon 2
10.62

A little physics, continued

CSC 372 Fall 2022, Haskell Slide 96

Recall map:
> words "a test for words"
["a","test","for","words"]

> map length it
[1,4,3,5]

> map sEarth [1..5]
[16.0,64.0,144.0,256.0,400.0]

> map sMoon [1..5]
[2.655,10.62,23.895,42.48,66.375]

> map (s 80) [1..5]
[40.0,160.0,360.0,640.0,1000.0]

Another peek ahead!

CSC 372 Fall 2022, Haskell Slide 97

> hwrap t s = "<" ++ t ++ ">" ++ s ++ "</" ++ t ++ ">"

> hwrap "code" "print(3)"
"<code>print(3)</code>"

> bold = hwrap "b"

> uline = hwrap "u"

> bold "test"
"test"

> bold "Not" ++ " again, " ++ bold (uline "never!")
"Not again, <u>never!</u>"

Another example

CSC 372 Fall 2022, Haskell Slide 98

Given
wrap c s = c ++ s ++ c

and the following binding, what does f look like?
f = wrap "*"

Process:
Replace RHS with eqn. for function to partially apply (FtPA):

f = wrap c s = c ++ s ++ c
Remove =, name of FtPA (wrap), and first parameter (c):

f s = c ++ s ++ c
Replace occurrences of c with FtPA's argument ("*")

f s = "*" ++ s ++ "*"
Let's try f:

> f "test"
"*test*"

A modeling algorithm

CSC 372 Fall 2022, Haskell Slide 99

Consider:
> wrap c s = c ++ s ++ c
wrap :: [a] -> [a] -> [a]
> min3 x y z = min x (min y z)
min3 :: Ord a => a -> a -> a -> a

These functions are said to be defined in curried form, which allows
partial application of arguments.

LYAH nails it:
... functions in Haskell are curried by default, which
means that a function that seems to take several
parameters actually takes just one parameter and returns
a function that takes the next parameter and so on.

Partial application, continued

CSC 372 Fall 2022, Haskell Slide 100

A little history:
• The idea of partially applying a function was first

described by Moses Schönfinkel. (?)

• It was further developed by Haskell B. Curry.

• Both worked with David Hilbert in the 1920s.

What prior use have you made of partially applied
functions?

Partial application, continued

CSC 372 Fall 2022, Haskell Slide 101

• The general form of a function definition (for now):
name param1 param2 ... paramN = expression

• A function with a type like Int -> Char -> Char takes two
arguments, an Int and a Char. It produces a Char.

• Remember that -> is a right-associative type operator.
Int -> Char -> Char means Int -> (Char -> Char)

• A function call like
f x y z

means
((f x) y) z

and (conceptually) causes two temporary, unnamed functions to
be created.

Some key points about functions

CSC 372 Fall 2022, Haskell Slide 102

• Calling a function with fewer arguments than it requires
creates a partial application, a function value.

• There's really nothing special about a partial application––
it's just another function.

Key points, continued

CSC 372 Fall 2022, Haskell Slide 103

A fundamental characteristic of a functional language:
Functions are values that can be used as flexibly as values of
other types.

The following creates a function and binds the name add to it.
> add x y = x + y

The following binds the name plus to the expression add.
> plus = add

Either name can be used to reference the function value:
> add 3 4
7
> plus 5 6
11

Functions are values

...code...

add, plus

CSC 372 Fall 2022, Haskell Slide 104

>>> def add(x,y): return x + y

>>> add(3,4)

>>> plus = add
>>> plus(5,10)

>>> len, print = print, len

>>> len("testing")

>>> print("testing")

Functions are values in Python, too!

CSC 372 Fall 2022, Haskell Slide 105

Functions are said to be first-class values if a language allows
them to be used in all* contexts where other values are allowed.

Examples in Python:
return len
[min,max,sum]
f(repr,str)
write = print

Wikipedia:
In programming language design, a first-class citizen (also
type, object, entity, or value) in a given programming
language is an entity which supports all the operations
generally available to other entities. ... (8/30/2022)

First-class values

CSC 372 Fall 2022, Haskell Slide 106

I consider "functions are values" to be synonymous with
"functions are first-class whatevers".

If a language treats functions as values, then you can do some
amount of functional programming in that language.

Java: No! (Yes, there are lambdas, but still I say "No!")
Python: Yes!
C: Yes!
Icon: Yes!
Racket: Yes!
JavaScript: Yes!
Ruby: Long answer...
Bash: Long answer...

"Functions are values"

CSC 372 Fall 2022, Haskell Slide 107

What does the following suggest to you?
> :info add
add :: Num a => a -> a -> a

> :info +
class Num a where
(+) :: a -> a -> a
...

infixl 6 +

Operators in Haskell are simply functions that have a symbolic
name bound to them.

infixl 6 + indicates that the symbol + can be used as a infix
operator that is left associative and has precedence level 6.

Use :info to explore these operators: ==, >, +, *,||, ^, ^^ and **.

Function/operator equivalence

CSC 372 Fall 2022, Haskell Slide 108

To use an operator like a function, enclose it in parentheses:
> (+) 3 4
7

Conversely, we can use a function like an operator by
enclosing it in backquotes:

> 3 `add` 4

> 11 `rem` 3

Speculate: do `add` and `rem` have precedence and
associativity?

Function/operator equivalence, continued

CSC 372 Fall 2022, Haskell Slide 109

We can define new operators in Haskell!

% cat plusper.hs
infixl 6 +%
x +% percentage = x + x * percentage / 100

Usage:
> 100 +% 1

> 12 +% 25

The characters ! # $ % & * + . / < = > ? @ \ ^ | - ~ : and
others can be used in custom operators.

Haskell's standard modules define LOTS of custom operators.

Sidebar: Custom operators

CSC 372 Fall 2022, Haskell Slide 110

Precedence Left associative
operators

Non associative
operators

Right associative
operators

9 !! .

8 ^, ^^, **

7 *, /, `div`, `mod`,
`rem`, `quot`

6 +, -

5 :, ++

4 ==, /=, <, <=,
>, >=, `elem`,
`notElem`

3 &&

2 ||

1 >>, >>=

0 $, $!, `seq`

Reference: Operators from the Prelude

Note: From page 51 in Haskell 2010 report
CSC 372 Fall 2022, Haskell Slide 111

Type Inferencing

CSC 372 Fall 2022, Haskell Slide 112

Imagine we're observing someone in a foreign setting.

What do we infer if someone picks up a bottle of something
and ...

...squirts it on their food?

...squirts it into their mouth?

...squirts it onto some gears?

...squirts onto a pile of wood and then sets it on fire?

Observation and inference

CSC 372 Fall 2022, Haskell Slide 113

Here's add again:
> add x y = x + y
> :t add
add :: Num a => a -> a -> a
> :info +
class Num a where
(+) :: a -> a -> a
...

What did Haskell infer via knowledge and observation?
• Both arguments must have same type.
• That type must be an instance of the Num class.
• A value of that same type is returned.

What did Haskell infer?

CSC 372 Fall 2022, Haskell Slide 114

Haskell does type inferencing:
• The types of values are inferred based on the operations

performed on the values.
• Inferences are based on an assumption of no errors.

Example:
> isCapital c = c >= 'A' && c <= 'Z'
isCapital :: Char -> Bool

Process:
1. c is being compared to 'A' and 'Z'
2. 'A' and 'Z' are of type Char
3. c must be a Char
4. The result of &&, of type Bool, is returned

Type inferencing

CSC 372 Fall 2022, Haskell Slide 115

Recall ord in the Data.Char module:
> :t ord
ord :: Char -> Int

What type will be inferred for f below?
f x y = ord x == y

Type inferencing, continued

CSC 372 Fall 2022, Haskell Slide 116

Recall this example:
> isPositive x = x > 0
isPositive :: (Num a, Ord a) => a -> Bool

:info shows that > operates on types that are instances of Ord:
> :info >
class Eq a => Ord a where
(>) :: a -> a -> Bool
...

1. Because x is an operand of >, Haskell infers that the type of x
must be a member of the Ord type class.

2. Because x is being compared to 0, Haskell also infers that the
type of x must be an instance of the Num type class.

Type inferencing, continued

CSC 372 Fall 2022, Haskell Slide 117

If a contradiction is reached during type inferencing, it's an error.

The function below uses x as both a Num and a Char.
> g x y = x > 0 && x > '0'
<interactive>:1:13: error:

• No instance for (Num Char) arising from the literal ‘0’
• In the second argument of ‘(>)’, namely ‘0’

In the first argument of ‘(&&)’, namely ‘x > 0’
In the expression: x > 0 && x > '0'

What does the error "No instance for (Num Char)" mean?

Type inferencing, continued

CSC 372 Fall 2022, Haskell Slide 118

Type Specifications for Functions

CSC 372 Fall 2022, Haskell Slide 119

Even though Haskell has type inferencing, a common practice
is to specify the types of functions.

Here's a file with several functions, each preceded by its type:
% cat typespecs.hs
min3::Ord a => a -> a -> a -> a
min3 x y z = min x (min y z)

isCapital :: Char -> Bool
isCapital c = c >= 'A' && c <= 'Z'

isPositive :: (Num a, Ord a) => a -> Bool
isPositive x = x > 0

Type specifications for functions

CSC 372 Fall 2022, Haskell Slide 120

Sometimes type specifications can backfire.

What's a ramification of the difference between the types of add1
and add2?

add1::Num a => a -> a -> a
add1 x y = x + y

add2::Integer -> Integer -> Integer
add2 x y = x + y

Challenge: Without using ::type, show an expression that works
with add1 but fails with add2.

Type specifications, continued

CSC 372 Fall 2022, Haskell Slide 121

Two pitfalls related to type specifications for functions:
• Specifying a type, such as Integer, rather than a type class, such as
Num, may make a function's type needlessly specific, like add2 on
the previous slide.

• In some cases the type can be plain wrong without the mistake being
obvious, leading to a baffling problem. (An "Ishihara".)

Recommendation:
• Try writing functions without a type specification and see what type

gets inferred.
• If the inferred type looks reasonable, and the function works as

expected, add a specification for that type.

Type specifications can prevent Haskell's type inferencing mechanism
from making a series of bad inferences that lead one far away from the
actual source of an error.

Type specification for functions, continued

CSC 372 Fall 2022, Haskell Slide 122

Indentation

CSC 372 Fall 2022, Haskell Slide 123

A Haskell source file is a series of declarations. Here's a file with two
declarations:

% cat indent1.hs
add::Integer -> Integer -> Integer
add x y = x + y

Rule: A declaration can be continued across multiple lines by indenting
subsequent lines more than the first line of the declaration.

These two weaving declarations are poor style but are valid:
add

::
Integer-> Integer-> Integer

add x y
=

x
+ y

Continuation with indentation

CSC 372 Fall 2022, Haskell Slide 124

Rule: A line that starts in the same column as did the previous
declaration ends that previous declaration and starts a new one.

% cat indent2.hs
add::Integer -> Integer -> Integer
add x y =
x + y

% ghci indent2
...
indent2.hs:3:1: error:

parse error (possibly incorrect indentation ...)
|

3 | x + y
| ^

Note that 3:1 indicates line 3, column 1.

Indentation, continued

CSC 372 Fall 2022, Haskell Slide 125

Guards

CSC 372 Fall 2022, Haskell Slide 126

Recall this characteristic of mathematical functions:
"Are often specified with cases and expressions."

This function definition uses guards to specify three cases:
sign x | x < 0 = -1

| x == 0 = 0
| otherwise = 1

Notes:
• This definition would be found in a file, not typed in ghci.
• sign x appears just once. First guard might be on next line.
• The guards appear between | and =, and produce Bools.
• What is otherwise?

Guards

CSC 372 Fall 2022, Haskell Slide 127

Problem: Using guards, define a function smaller, like min:
> smaller 7 10
7

> smaller 'z' 'a'
'a'

Guards, continued

CSC 372 Fall 2022, Haskell Slide 128

Problem: Write a function weather that classifies a given
temperature as hot if 80+, else nice if 70+, and cold otherwise.

> weather 95
"Hot!"
> weather 32
"Cold!"
> weather 75
"Nice"

Hint: guards are tried in turn.

Guards, continued

CSC 372 Fall 2022, Haskell Slide 129

if-else

CSC 372 Fall 2022, Haskell Slide 130

Here's an example of Haskell's if-else:

> if 1 < 2 then 3 else 4
3

How does it compare to Java's if-else?

Haskell's if-else

CSC 372 Fall 2022, Haskell Slide 131

Java's if-else is a statement. It cannot be used where a value is
required.

Does Java have an analog to Haskell's if-else?

Java's if-else statement has an else-less form but Haskell's if-else
does not. Why doesn't Haskell allow it?

Java's if-else vs. Java's conditional operator provides a good
example of a statement vs. an expression.

Pythonistas: Is there an if-else expression in Python?

Sidebar: Java's if-else

System.out.println(if (1 < 2) 3; else 4;); // (?)

CSC 372 Fall 2022, Haskell Slide 132

"A statement changes the state of the program while an
expression wants to express itself. "
― Victor Nguyen, CSC 372, Spring 2014

An Original Thought

CSC 372 Fall 2022, Haskell Slide 133

Which of the versions of sign below is better?

sign x
| x < 0 = -1
| x == 0 = 0
| otherwise = 1

sign x = if x < 0 then -1
else if x == 0 then 0

else 1

• We'll later see that patterns add a third possibility for expressing
cases.

• For now, prefer guards over if-else.

Guards vs. if-else

CSC 372 Fall 2022, Haskell Slide 134

A Little Recursion

CSC 372 Fall 2022, Haskell Slide 135

A recursive function is a function that calls itself either directly or
indirectly.

Computing the factorial of a integer (N!) is a classic example of
recursion.

> factorial 40

Write factorial in Haskell. (p.s. 0! is 1)

What is the type of factorial?

Recursion

CSC 372 Fall 2022, Haskell Slide 136

One way to manually trace through a recursive computation is
to underline a call, then rewrite the call with a textual
expansion.

factorial 4

4 * factorial 3

4 * 3 * factorial 2

4 * 3 * 2 * factorial 1

4 * 3 * 2 * 1 * factorial 0

4 * 3 * 2 * 1 * 1

Recursion, continued

factorial n
| n == 0 = 1
| otherwise = n * factorial (n – 1)

CSC 372 Fall 2022, Haskell Slide 137

Lists

CSC 372 Fall 2022, Haskell Slide 138

In Haskell, a list is a sequence of values of the same type.

Here's one way to make a list.
> [7, 3, 8]
[7,3,8]
it :: Num a => [a]

> ['x', 10]

We can say that Haskell lists are homogeneous.

List basics

CSC 372 Fall 2022, Haskell Slide 139

The function length returns the number of elements in a list:
> length [3,4,5]

> length []

What's the type of length?
> :type length

With no class constraint specified, [a] indicates that length
operates on lists containing elements of any type.

List basics, continued

CSC 372 Fall 2022, Haskell Slide 140

The head function returns the first element of a list.
> head [3,4,5]

What's the type of head?

Here's what tail does. How would you describe it?
> tail [3,4,5]
[4,5]

What's the type of tail?

Important: head and tail are good for learning about lists but we'll
almost always use patterns to access parts of a list!

List basics, continued

CSC 372 Fall 2022, Haskell Slide 141

The ++ operator concatenates two lists, producing a new list.

> [3,4] ++ [10,20,30]

> it ++ reverse(it)

What are the types of ++ and reverse?

> :type (++)

> :type reverse

List basics, continued

CSC 372 Fall 2022, Haskell Slide 142

Haskell has an arithmetic sequence notation:

> [1..20]

it :: (Enum a, Num a) => [a]

> [-5,-3..20]

> [10..5]

List basics, continued

CSC 372 Fall 2022, Haskell Slide 143

Here are sum and product:

> sum [1..10]

> product [1..5]

Problem: Write a factorial function.

Solution:

List basics, continued

CSC 372 Fall 2022, Haskell Slide 144

Here are drop and take:
> drop 3 [1..10]

> take 5 [1.0,1.2..2]

List basics, continue

CSC 372 Fall 2022, Haskell Slide 145

Problem:
Write halves lst that returns a list with the two halves of
lst, a list. If lst's length is odd, the second "half" is longer.

> halves [1..10]
[[1,2,3,4,5],[6,7,8,9,10]]

> halves [1]
[[],[1]]

halves will be a little repetitious because we don't have the
where clause in our toolbox yet.

Problem: halves

CSC 372 Fall 2022, Haskell Slide 146

Solution: (halves.hs)

Solution: halves

CSC 372 Fall 2022, Haskell Slide 147

The !! operator produces a list's Nth element, zero-based:

> [10,20..100] !! 3

> :type (!!)

Speculate: do negative indexes work?
> [10,20..100] !! (-2)

Important:
Much use of !! might indicate you're writing a Java, Python, C,
etc. program in Haskell!

List basics, continued

CSC 372 Fall 2022, Haskell Slide 148

Haskell lists are values and can be compared as values:
> [3,4] == [1+2, 2*2]

> [3] ++ [] ++ [4] == [3,4]

> tail (tail [3,4,5,6]) == [last [4,5]] ++ [6]

Conceptually, how many lists are created by each of the above?

A Haskell or Python programmer would be shocked by Java's
verbose and clumsy list handling.

Comparing lists

CSC 372 Fall 2022, Haskell Slide 149

Lists are compared lexicographically:
• Corresponding elements are compared until an inequality is

found.
• The inequality determines the result of the comparison.

Example:
> [1,2,3] < [1,2,4]

Why?

Comparing lists, continued

CSC 372 Fall 2022, Haskell Slide 150

We can make lists of lists.
> x = [[1], [2,3,4], [5,6]]
x :: Num a => [[a]]

Note the type: x is a list of Num a => [a] lists.

What's the length of x?
> length x

Wait! Is x homogeneous?

Lists of Lists

CSC 372 Fall 2022, Haskell Slide 151

More examples:
> x = [[1], [2,3,4], [5,6]]

> head x

> tail x

> x !! 1 !! 2

> head (head (tail (tail x)))

Lists of lists, continued

CSC 372 Fall 2022, Haskell Slide 152

Earlier I showed you this:
length :: [a] -> Int

Around version 7.10 length was generalized to this:
length :: Foldable t => t a -> Int

We're going to think of Foldable t => t a as meaning [a].

Instead of sum :: (Num a, Foldable t) => t a -> a
Pretend this sum :: Num a => [a] -> a

Instead of minimum :: (Ord a, Foldable t) => t a -> a
Pretend this minimum :: Ord a => [a] -> a

I lied!

CSC 372 Fall 2022, Haskell Slide 153

Strings in Haskell are simply lists of characters.

> "testing"
"testing"
it :: [Char]

> ['a'..'z']

> ["just", "a", "test"]
["just","a","test"]

What's the beauty of this?

Strings are [Char]

CSC 372 Fall 2022, Haskell Slide 154

All list functions work on strings, too!

> asciiLets = ['A'..'Z'] ++ ['a'..'z']

> length asciiLets

> reverse (drop 26 asciiLets)

> :type elem
elem :: Eq a => a -> [a] -> Bool

> isAsciiLet c = c `elem` asciiLets

Strings, continued

CSC 372 Fall 2022, Haskell Slide 155

The Prelude defines String as [Char] (a type synonym).
> :info String
type String = [Char]

A number of functions operate on Strings. Here are two:
> :type words
words :: String -> [String]

> :type unwords
unwords :: [String] -> String

What's the following doing?
> unwords (tail (words "Just some words!"))

Strings, continued

CSC 372 Fall 2022, Haskell Slide 156

Like most functional languages, Haskell's lists are "cons" lists.

A "cons" list has two parts:
head: a value
tail: a list of values (possibly empty)

The : ("cons") operator creates a list from a value and a list of
values of that same type (or an empty list).

> 5 : [10, 20,30]
[5,10,20,30]

What's the type of the cons operator?
> :type (:)

"cons" lists

CSC 372 Fall 2022, Haskell Slide 157

The cons (:) operation forms a new list from a value and a list.

> a = 5
> b = [10,20,30]
> c = a:b

5

[10,20,30]

> d = tail (tail c)

[20,30]

"cons" lists, continued

10

20

30

a
5

b

5

c

d

CSC 372 Fall 2022, Haskell Slide 158

A cons node can be referenced by multiple cons nodes.

> a = 5
> b = [10,20,30]
> c = a:b
> d = tail (tail c)

> e=2:d

> f=1:c

"cons" lists, continued

10

20

30

a
5

b

5

c

d

2

e

1

f

CSC 372 Fall 2022, Haskell Slide 159

What are the values of the following expressions?
> 1:[2,3]

> 1:2

> chr 97:chr 98:chr 99:[]

> []:[]

> [1,2]:[]

> []:[1]

"cons" lists, continued

cons is right associative

CSC 372 Fall 2022, Haskell Slide 160

It's important to understand that tail does not create a new list.
Instead it simply returns an existing cons node.

> a = [5,10,20,30]

> h = head a
> h
5

> t = tail a
> t
[10,20,30]

> t2 = tail (tail t)
> t2
[30]

head and tail visually

10

20

30

5

a

th
5

t2

CSC 372 Fall 2022, Haskell Slide 161

What operations are likely fast with cons lists?
•
•
•

What operations are likely slower?
•
•

With cons lists, what does list concatenation involve?
> m=[1..10000000]
> length (m++[0])
10000001

A little on performance

CSC 372 Fall 2022, Haskell Slide 162

The head of a list is a one-element list.

The tail of a list is a list.

The tail of an empty list is an empty list.

length (tail (tail x)) == (length x) – 2

A cons list is essentially a singly-linked list.

A doubly-linked list might help performance in some cases.

Changing an element in a list might affect the value of many lists.

True or false?

CSC 372 Fall 2022, Haskell Slide 163

Here's a function that produces a list with a range of integers:
> fromTo first last = [first..last]

> fromTo 10 15
[10,11,12,13,14,15]

Problem:
Write a recursive version of fromTo that uses the cons
operator to build up its result.

fromTo

CSC 372 Fall 2022, Haskell Slide 164

One solution:

Evaluation of fromTo 1 3 via substitution and rewriting:
fromTo 1 3
1 : fromTo (1+1) 3
1 : fromTo 2 3
1 : 2 : fromTo (2+1) 3
1 : 2 : fromTo 3 3
1 : 2 : 3 : fromTo (3+1) 3
1 : 2 : 3 : fromTo 4 3
1 : 2 : 3 : []

fromTo, continued

The Enum type class has
enumFromTo and more.

CSC 372 Fall 2022, Haskell Slide 165

Do :set +s to get timing and memory information, and make
some lists. Try these:

fromTo 1 10
f = fromTo -- So we can type f instead of fromTo
f 1 1000
f = fromTo 1 -- Note partial application
f 1000
x = f 1000000
length x
take 5 (f 1000000)

fromTo, continued

CSC 372 Fall 2022, Haskell Slide 166

Here's a simple example of a list comprehension:
> [x^2 | x <- [1..10]]
[1,4,9,16,25,36,49,64,81,100]

In English:
Make a list of the squares of x where x takes on each of the values
from 1 through 10.

List comprehensions are very powerful but in the interest of time and
staying focused on the core concepts of functional programming, we're
not going to cover them.

Chapter 5 in Hutton has some very interesting examples of practical
computations with list comprehensions.

What are other languages with list comprehensions?

List comprehensions

CSC 372 Fall 2022, Haskell Slide 167

A little output

CSC 372 Fall 2022, Haskell Slide 168

What can you tell me about show?
show :: Show a => a -> String

show produces a string representation of a value.
> show 10

> show [10,20]

> show show

Important: show does not produce output!
What's the Python analog for show?
Challenge: Write a Java analog for show.

Handy: the show function

CSC 372 Fall 2022, Haskell Slide 169

The putStr function outputs a string:
> putStr "just\ntesting\n"
just
testing

Type:
putStr :: String -> IO ()

• IO (), the type returned by putStr, is an action.
• An action is an interaction with the outside world.
• An interaction with the outside world is a side effect.
• An action can hold/produce a value. (simplistic)
• The construct () is read as "unit".
• The unit type has a single value, unit.
• Both the type and the value are written as ().
• Contrast: getChar :: IO Char

A little output

CSC 372 Fall 2022, Haskell Slide 170

For the time being, we'll use this approach for functions that
produce output:

• A helper function produces a ready-to-print string that
represents all the output to be produced by the function.

§ We'll often use show to create pieces of the string.
§ The string will often have embedded newlines.

• The top-level function calls the helper function to get a
string.

• The top-level function uses putStr to print that string
returned by the helper.

Our approach

CSC 372 Fall 2022, Haskell Slide 171

A Java analog to our approach for functions that produce output:

public class output {
public static void main(String args[]) {
System.out.print(computeOutput(args));
}

...
}

Why print instead of println?

Our approach, continued

CSC 372 Fall 2022, Haskell Slide 172

Let's write a function to print the integers from 1 to N:
> printN 3
1
2
3

First, write a helper, printN':
> printN' 3
"1\n2\n3\n"

Solution for printN':

printN

CSC 372 Fall 2022, Haskell Slide 173

At hand:
printN' n

| n == 0 = ""
| otherwise = printN' (n-1) ++ show n ++ "\n"

Usage:
> printN' 10
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n"

Let's write the top-level function:
> printN n = putStr (printN' n)
> :t printN
printN :: (Eq a, Num a, Show a) => a -> IO ()

printN, continued

CSC 372 Fall 2022, Haskell Slide 174

All together in a file:
% cat printN.hs
printN n = putStr (printN' n)

printN' n
| n == 0 = ""
| otherwise = printN' (n-1) ++ show n ++ "\n"

% ghci printN
> printN' 3
"1\n2\n3\n"

> printN 3
1
2
3

printN, continued

CSC 372 Fall 2022, Haskell Slide 175

Let's write charbox:
> charbox 5 3 '*'

> :t charbox
charbox :: Int -> Int -> Char -> IO ()

How can we approach it?

charbox

CSC 372 Fall 2022, Haskell Slide 176

Let's work out a sequence of computations with ghci:
> replicate 5 '*'

> it ++ "\n"

> replicate 2 it

> :t concat
concat :: [[a]] -> [a]

> concat it

> putStr it

charbox, continued

CSC 372 Fall 2022, Haskell Slide 177

Let's write charbox':
charbox'::Int -> Int -> Char -> String

Test:
> charbox' 3 2 '*'
"***\n***\n"

Now we're ready for the top-level function:
charbox::Int -> Int -> Char -> IO ()

• Should we have used a helper function charrow rowLen char?
• How does this approach contrast with how we'd write it in Java?

charbox, continued

CSC 372 Fall 2022, Haskell Slide 178

Patterns

CSC 372 Fall 2022, Haskell Slide 179

Imagine a function that computes the sum of a list's elements.
> sumElems [1..10]
55

> :type sumElems

Implementation:
sumElems list

| list == [] = 0
| otherwise = head list + sumElems (tail list)

• It works but it's not idiomatic Haskell.
• We should use patterns instead!

Motivation: Summing list elements

CSC 372 Fall 2022, Haskell Slide 180

In Haskell we can use patterns to bind names to elements of
data structures.

> [x,y] = [10,20]
> x

> y

> [inner] = [[2,3]]
> inner

Speculate: Given a list like [10,20,30] how could we use a
pattern to bind names to the head and tail of the list?

Patterns

CSC 372 Fall 2022, Haskell Slide 181

We can use the cons operator in a pattern.
> h:t = [10,20,30]

> h

> t

What values get bound by the following pattern?
> a:b:c:d = [10,20,30]
> [c,b,a]

> d

Patterns, continued

-- Why in a list?

-- Why did I do [c,b,a] instead of [d,c,b,a]?
CSC 372 Fall 2022, Haskell Slide 182

If some part of a structure is not of interest, we indicate that with
an underscore, known as the wildcard pattern.

> _ : (a : [b]) : c = [[1], [2, 3], [4]]
> a

> b

> c

No binding is done for the wildcard pattern.

The pattern mechanism is completely general—patterns can be
arbitrarily complex.

Patterns, continued

CSC 372 Fall 2022, Haskell Slide 183

A name can only appear once in a pattern.
> a:a:[] = [3,3]
<interactive>: error: Multiple declarations of ‘a’

A failed pattern isn't manifested until we try to see what's
bound to a name.

> a:b:[] = [1]
> a
*** Non-exhaustive patterns in a : b : []

...Spring 2018...
**** Exception: Irrefutable pattern failed for pattern
a : b : []

Patterns, continued

CSC 372 Fall 2022, Haskell Slide 184

Describe in English what must be on the right hand side for a
successful match.

a:b:c = ...

Does [[10,20]] match?
[20,30] ?
"abc" ?

[x:xs] = ...

Does words "a test" match?
[words "a test"] ?
[[]] ?
[[[]]] ?

Practice

CSC 372 Fall 2022, Haskell Slide 185

Recall our non-idiomatic sumElems:
sumElems list

| list == [] = 0
| otherwise = head list + sumElems (tail list)

Idiomatic:
sumElems [] = 0
sumElems (h:t) = h + sumElems t

Note that sumElems appears on both lines and that there are no
guards. sumElems has two clauses. (H10 4.4.3.1)

The parentheses in (h:t) are required!!

Do the types of the two versions differ?

Patterns in function definitions

CSC 372 Fall 2022, Haskell Slide 186

Here's a buggy version of sumElems:
buggySum [x] = x
buggySum (h:t) = h + buggySum t

What's the bug?
> buggySum [1..100]
5050

Patterns in functions, continued

CSC 372 Fall 2022, Haskell Slide 187

At hand:
buggySum [x] = x
buggySum (h:t) = h + buggySum t

If we use the -fwarn-incomplete-patterns option of ghci, we'll
get a warning when loading:

% ghci -fwarn-incomplete-patterns buggySum.hs
buggySum.hs:1:1: Warning:

Pattern match(es) are non-exhaustive
In an equation for ‘buggySum’: Patterns not matched: []
>

Suggestion: add a Bash alias! (See us if you don't know how to.)
alias ghci="ghci -fwarn-incomplete-patterns"

Patterns in functions, continued

CSC 372 Fall 2022, Haskell Slide 188

What's a little silly about the following list-summing function?

sillySum [] = 0
sillySum [x] = x
sillySum (h:t) = h + sillySum t

Patterns in functions, continued

CSC 372 Fall 2022, Haskell Slide 189

Consider a function that duplicates the head of a list:
> duphead [10,20,30]
[10,10,20,30]

Here's one way to write it, but it's repetitious:
duphead (x:xs) = x:x:xs

We can use an "as pattern" to bind a name to the list as a whole:
duphead all@(x:xs) = x:all

Can it be improved?

The term "as pattern" perhaps comes from Standard ML, which uses
an "as" keyword for the same purpose.

An "as pattern"

CSC 372 Fall 2022, Haskell Slide 190

Good coding style in Haskell:
Prefer patterns over guards
Prefer guards over if-else

Patterns––first choice!
sumElems [] = 0
sumElems (h:t) = h + sumElems t

Guards––second choice...
sumElems list

| list == [] = 0
| otherwise = head list + sumElems (tail list)

if-else––third choice...
sumElems list =

if list == [] then 0
else head list + sumElems (tail list)

Patterns, then guards, then if-else

And, these comparisons imply
that list's type must be an Eq!

CSC 372 Fall 2022, Haskell Slide 191

"Throughout the assignment I tried to keep in mind that I should use
patterns first then guards if patterns didn't work.

"However, as I was doing the assignment, I realized that sometimes I
couldn't see the patterns until I had written them as guards, so I would go
back and change them.

"As I continued with the assignment, this happened less because the more
code I wrote the more I was able to see patterns before I had them written
as guards."

―Kelsey McCabe, Spring 2016, a3/observations.txt

"...there were multiple cases where I solved a problem with guards and
failed multiple test cases, only to replace the logic with patterns and have
it work."

―Ryan Smith, Fall 2022, a3/observations.txt

Students wrote...

CSC 372 Fall 2022, Haskell Slide 192

Recall this example of guards:
weather temp | temp >= 80 = "Hot!"

| temp >= 70 = "Nice"
| otherwise = "Cold!"

Can we rewrite weather to have three clauses with patterns?

Design question: should patterns and guards be unified?

Patterns, then guards, then if-else

CSC 372 Fall 2022, Haskell Slide 193

An earlier general form of a function definition:
name param1 param2 ... paramN = expression

Revision: A function may have one or more clauses, of this form:
function-name pattern1 pattern2 ... patternN

{ | guard-expression1 } = result-expression1
...

{ | guard-expressionN } = result-expressionN

The set of clauses for name is the function binding for name. (See
4.4.3 in H10.)

If values in a call match the pattern(s) for a clause and a guard is
true, the corresponding expression is evaluated.

Revision: the general form of a function

CSC 372 Fall 2022, Haskell Slide 194

At hand, a more general form for functions:
function-name pattern1 pattern2 ... patternN

{ | guard-expression1 } = result-expression1
...

{ | guard-expressionN } = result-expressionN

How does
add x y = x + y

conform to the above specification?
•
•

Revision, continued

CSC 372 Fall 2022, Haskell Slide 195

If the patterns of a clause match but all guards fail, the next clause is
tried. Here's a contrived example:

f (h:_) | h < 0 = "negative head"
f list | length list > 3 = "too long"
f (_:_) = "ok"
f [] = "empty"

Usage:
> f [-1,2,3]

> f []

> f [1..10]

Pattern/guard interaction

How many clauses does f have?

What if 2nd and 3rd clauses swapped?

What if 4th clause is removed?

CSC 372 Fall 2022, Haskell Slide 196

Recursive functions on lists

CSC 372 Fall 2022, Haskell Slide 197

Problem: Write len x, which returns the length of list x.
> len []
0

> len "testing"
7

Solution:

Simple recursive list processing functions

CSC 372 Fall 2022, Haskell Slide 198

Problem: Write odds x, which returns a list having only the odd
numbers from the list x.

> odds [1..10]
[1,3,5,7,9]

> take 10 (odds [1,4..100])
[1,7,13,19,25,31,37,43,49,55]

Handy: odd :: Integral a => a -> Bool

Solution:

Simple list functions, continued

CSC 372 Fall 2022, Haskell Slide 199

Problem: write isElem x vals, like elem in the Prelude.
> isElem 5 [4,3,7]
False

> isElem 'n' "Bingo!"
True

> "quiz" `isElem` words "No quiz today!"
True

Solution:

Simple list functions, continued

CSC 372 Fall 2022, Haskell Slide 200

Problem: Write a function that returns a list's maximum value.
> maxVal "maximum"
'x'

> maxVal [3,7,2]
7

> maxVal (words "i luv this stuff")
"this"

Recall that the Prelude has max :: Ord a => a -> a -> a

One solution:

Simple list functions, continued

CSC 372 Fall 2022, Haskell Slide 201

C programmers:
• Write strlen in C in a functional style. (No loops or

assignments.)
• Do strcmp and strchr, too!
• Could you do strcpy, too?
• Mail us!

Python programmers:
• In a functional style write size(x), which returns the

number of elements in the string, list, or range x.
Restriction: You may not use type() or len().

• Mail us!

Sidebar: C and Python challenges

CSC 372 Fall 2022, Haskell Slide 202

Tuples

CSC 372 Fall 2022, Haskell Slide 203

A Haskell tuple is an ordered aggregation of two or more values of possibly
differing types.

> (1, "two", 3.0)
(1,"two",3.0)
it :: (Num a, Fractional c) => (a, [Char], c)

> (3 < 4, it)
(True,(1,"two",3.0))
it :: (Num a, Fractional c) => (Bool, (a, [Char], c))

> (head, tail, [words], putStr)

Tuples

CSC 372 Fall 2022, Haskell Slide 204

A function can return a tuple:
pair x y = (x,y)

What's the type of pair?

Usage:
> pair 3 4

> pair (3,4)

> it 5

Tuples, continued

CSC 372 Fall 2022, Haskell Slide 205

The Prelude has two functions that operate on 2-tuples.
> p = pair 30 "forty"

> p
(30,"forty")

> fst p

> snd p

Tuples, continued

CSC 372 Fall 2022, Haskell Slide 206

Recall: patterns used to bind names to list elements have
the same syntax as expressions to create lists.

Patterns for tuples have the same syntax as expressions to
create tuples.

Problem: Write middle, to extract a 3-tuple's second element.
> middle ("372", "GS 906", "Mitchell")
"GS 906"

> middle (1, [2], True)
[2]

(Solution on next slide. Don't peek! This means you!)

Tuples, continued

CSC 372 Fall 2022, Haskell Slide 207

At hand:
> middle (1, [2], True)
[2]

Solution:
middle (_, m, _) = m

What's the type of middle?

Will the following call work?
> middle(1,[(2,3)],4)

Tuples, continued

CSC 372 Fall 2022, Haskell Slide 208

Problem: Write a function swap that behaves like this:
> swap ('a',False)
(False,'a')

> swap (1,(2,3))
((2,3),1)

Solution:

What is the type of swap?

Tuples, continued

CSC 372 Fall 2022, Haskell Slide 209

Here's the type of zip from the Prelude:
zip :: [a] -> [b] -> [(a, b)]

Speculate: What does zip do? (Pythonistas: Silence please!)

> zip ["one","two","three"] [10,20,30]
[("one",10),("two",20),("three",30)]

> zip ['a'..'z'] [1..]

What's especially interesting about the second example?

Tuples, continued

CSC 372 Fall 2022, Haskell Slide 210

Problem: Write elemPos, which returns the zero-based
position of a value in a list, or -1 if not found.

> elemPos 'm' ['a'..'z']
12

Hint: Have a helper function do most of the work.

Solution:

Tuples, continued

CSC 372 Fall 2022, Haskell Slide 211

What's wrong below?
> x = ((1,2),(3,4,5))
> fst x
(1,2)

> snd x
(3,4,5)

> fst (snd x)
<interactive> error: Couldn't match expected type '(a, b0)'

with actual type '(Integer, Integer, Integer)'

What's wrong with fst (snd x)?

• We can write a function that handles a list of arbitrary length.
• We can't write a function that operates on a tuple of arbitrary "arity".*

What's wrong?

CSC 372 Fall 2022, Haskell Slide 212

SKIP!

:info Eq shows many lines like this:
...
instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b) => Eq (a, b)

Here's one of them. What does it mean?
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)

The Ord and Bounded type classes have similar instance
declarations.

The Eq type class and tuples

CSC 372 Fall 2022, Haskell Slide 213

Type-wise, lists are homogeneous; tuples are heterogeneous.

Using a tuple lets type-checking ensure that an exact number of
values is being aggregated, even if all values have the same type.

Example: A 3D point could be represented with a 3-element list
but using a 3-tuple guarantees points have three coordinates.

In our Haskell we can't write functions that operate on tuples of
arbitrary arity.

If there were Head First Haskell, it would no doubt have an
interview with List and Tuple, each arguing their own merit.

Lists vs. tuples

CSC 372 Fall 2022, Haskell Slide 214

Consider these two functions:
> add_c x y = x + y -- _c for curried arguments
add_c :: Num a => a -> a -> a

> add_t (x,y) = x + y -- _t for tuple argument
add_t :: Num a => (a, a) -> a

Usage:
> add_c 3 4
7

> add_t (3,4)
7

Which is better, add_c or add_t?

Sidebar: To curry or not to curry?

Important: Note the
difference in types!

CSC 372 Fall 2022, Haskell Slide 215

The where clause

CSC 372 Fall 2022, Haskell Slide 216

Intermediate values and/or helper functions can be defined using an
optional where clause for a function.

Here's a declaration that shows the syntax; the computation is not
meaningful.

f x
| x < 0 = g a + g b
| a > b = g b
| otherwise = c + 10

where {
a = x * 5;
b = a * 2 + x;
g t = log t + a;
c = a * 3;
}

The where clause

The where clause specifies bindings
that may be needed when evaluating
the guards and their associated
expressions.

Like variables defined in a method or
block in Java, a, b, c and g are not
visible outside the the function f.

CSC 372 Fall 2022, Haskell Slide 217

A Computer Science Tapestry by Owen Astrachan shows an
interesting way to raise a number to a power:

power base expo
| expo == 0 = 1.0
| even expo = semi * semi
| otherwise = base * semi * semi
where {

semi = power base (expo `div` 2)
}

Binding semi in a where clause avoids lots of repetition.

Exercise for the mathematically inclined: Figure out how it works.

The where clause, continued

CSC 372 Fall 2022, Haskell Slide 218

https://www2.cs.duke.edu/csed/tapestry

Recall:
> halves ['a'..'z']
("abcdefghijklm","nopqrstuvwxyz")

halves lst =
[take (length lst `div` 2) lst, drop (length lst `div` 2) lst]

Problem: Rewrite halves to be less repetitious. Also, have it return
a tuple instead of a list.

Solution:

Problem: halves

CSC 372 Fall 2022, Haskell Slide 219

The layout rule

CSC 372 Fall 2022, Haskell Slide 220

This is a valid declaration with a where clause:
f x = a + b + g a where { a = 1; b = 2; g x = -x }

The where clause has three declarations enclosed in braces
and separated by semicolons.

We can take advantage of Haskell's layout rule and write it like
this instead:

f x = a + b + g a
where

a = 1
b = 2
g x =

-x

Look Mom, no braces!

The layout rule for where (and more)

CSC 372 Fall 2022, Haskell Slide 221

At hand:
f x = a + b + g a

where
a = 1
b = 2
g x =

-x

The absence of a brace after where activates the layout rule.

The column position of the first token after where establishes
the column in which declarations in the where must start.

Note that the declaration of g is continued onto a second line;
if the minus sign were at or left of the line, it would be an error.

The layout rule, continued

Another example:

f x = a + b + g a where a = 1
b = 2
g x =

-x

CSC 372 Fall 2022, Haskell Slide 222

Don't confuse the layout rule with indentation-based continuation
of declarations! (See slides 124-125.)

The layout rule allows omission of braces and semicolons in
where, do, let, and of blocks. (We'll see do and let later.)

Indentation-based continuation applies
1. outside of where/do/let/of blocks
2. inside where/do/let/of blocks when the layout rule is

triggered by the absence of an opening brace.

The layout rule is also called the "off-side rule".

TAB characters are assumed to have a width of 8.

What other languages have rules of a similar nature?

The layout rule, continued

CSC 372 Fall 2022, Haskell Slide 223

Literals in patterns

CSC 372 Fall 2022, Haskell Slide 224

Literal values can be part or all of a pattern. Here's a 3-clause
binding for f:

f 1 = 10
f 2 = 20
f n = n

Usage:
> f 1
10

> f 3
3

Remember: Patterns are tried in the order specified.

Literals in patterns

For contrast, with guards:
f n
| n == 1 = 10
| n == 2 = 20
| otherwise = n

CSC 372 Fall 2022, Haskell Slide 225

Here's a function that classifies characters as parentheses (or not):
parens c

| c == '(' = "left"
| c == ')' = "right"
| otherwise = "neither"

Could we improve it by using patterns instead of guards?

Which is better?
Remember: Patterns, then guards, then if-else.

Literals in patterns, continued

CSC 372 Fall 2022, Haskell Slide 226

not is a function:
> :type not
not :: Bool -> Bool

> not True
False

Problem: Using literals in patterns, define not.

Solution:
not True = False
not _ = True -- Using wildcard avoids comparison

Literals in patterns, continued

CSC 372 Fall 2022, Haskell Slide 227

A pattern can be:

• A literal value such as 1, 'x', or True
• An identifier (bound to a value if there's a match)
• An underscore (the wildcard pattern)
• A tuple composed of patterns
• A list of patterns in square brackets (fixed size list)
• A list of patterns constructed with : operators
• Other things we haven't seen yet

Is the above a recursive definition?

Patterns can be arbitrarily complex.

3.17.1 in H10 shows the full syntax for patterns.

Pattern construction

CSC 372 Fall 2022, Haskell Slide 228

Errors

CSC 372 Fall 2022, Haskell Slide 229

What syntax errors do you see in the following file?

% cat -n haskell/synerrors.hs
1 F x =
2 | x < 0 == y + 10
3 | x != 0 = y + 20
4 otherwise = y + 30
5 where
6 g x:xs = x
7 y =
8 g [x] + 5
9 g2 x = 10

Syntax errors

CSC 372 Fall 2022, Haskell Slide 230

What syntax errors do you see in the following file?

% cat synerrors.hs
F x =

| x < 0 == y + 10
| x != 0 = y + 20
otherwise = y + 30

where
g x:xs = x
y =
g [x] + 5

g2 x = 10

Syntax errors, continued

Function name
starts with cap.

no = before guards

=, not ==
before result

use /= for
inequality

missing | before
otherwise

continuation should
be indented violates layout rule

Needs parens:
(x:xs)

CSC 372 Fall 2022, Haskell Slide 231

In my opinion, producing understandable messages for type errors is
what ghci is worst at.

If no polymorphic functions are involved, type errors are typically
easy to understand.

> :type chr
chr :: Int -> Char

> chr 'x'
Couldn't match expected type `Int' with actual

type `Char'
In the first argument of 'chr', namely 'x'
In the expression: chr 'x'
In an equation for 'it': it = chr 'x'

Type errors

CSC 372 Fall 2022, Haskell Slide 232

Code and error:
f x y

| x == 0 = []
| otherwise = f x

Couldn't match type 'p0 -> [a]' with '[a]'
Expected type: t -> [a]
Actual type: t -> p0 -> [a]

The first clause implies that f returns [a] but the second clause
returns a partial application, of type p0 -> [a], a contradiction.

Type errors, continued

CSC 372 Fall 2022, Haskell Slide 233

SKIP!

Code:
countEO (x:xs)

| odd x = (evens, odds+1)
| otherwise = (evens+1, odds)
where (evens,odds) = countEO

Error:
Couldn't match expected type '(a1, b)'

with actual type '[a] -> (a1, b)'
Probable cause: countEO is applied to too few arguments

In the expression: countEO

What's the problem?
It's expecting a tuple, (a1,b) but it's getting a function, [a] -> (a1,b)

Typically, instead of errors about too few (or too many) function
arguments, you get function types popping up in unexpected places.

Type errors, continued

CSC 372 Fall 2022, Haskell Slide 234

Here's an example of omitting an operator:
> add3 x y z = x + y z
> add3 4 5 6
<interactive>:9:1: error:
Non type variable argument in the constraint:
Num (t -> a) (Use FlexibleContexts to permit this)

Looking at the type of add3 sheds some light on the problem:
> :t add3
add3 :: Num a => a -> (t -> a) -> t -> a

A function type unexpectedly being inferred for y suggests we
should look at how y is being used.

Try it: See if a type declaration for add3 leads to a better error.

Type errors, continued

CSC 372 Fall 2022, Haskell Slide 235

Is there an error in the following?
f [] = []
f [x] = x
f (x:xs) = x : f xs

Occurs check: cannot construct the infinite type: a ~ [a]
Expected type: [a]
Actual type: [[a]] ("a is a list of as"--whm)

In the expression: x : f xs
In an equation for 'f': f (x : xs) = x : f xs

The second and third clauses are fine by themselves but together they
create a contradiction.

Technique: Comment out clauses (and/or guards) to find the
troublemaker, or incompatibilities between them.

Type errors, continued
A simple way to produce an
infinite type:

x = head x

CSC 372 Fall 2022, Haskell Slide 236

Recall ord :: Char -> Int.

Note this error:
> ord 5
No instance for (Num Char) arising from the literal `5'

The error "No instance for (TypeClass Type)" means that Type
(Char, in this case) is not an instance of TypeClass (Num).

> :info Num
....
instance Num Word
instance Num Integer
instance Num Int
instance Num Float
instance Num Double

Type errors, continued

instance Num Char doesn't appear

CSC 372 Fall 2022, Haskell Slide 237

> (mod 3478 10) / 10 -- Thanks to Ms. Barber for this one!
<interactive>:11:1: error:

• Ambiguous type variable ‘a0’ arising from a use of ‘print’
prevents the constraint ‘(Show a0)’ from being solved.
Probable fix: use a type annotation to specify what ‘a0’ should be.
These potential instances exist:

instance Show Ordering -- Defined in ‘GHC.Show’
instance Show Integer -- Defined in ‘GHC.Show’
instance Show a => Show (Maybe a) -- Defined in ‘GHC.Show’
...plus 23 others
...plus 13 instances involving out-of-scope types
(use -fprint-potential-instances to see them all)

• In a stmt of an interactive GHCi command: print it
> (mod 3478 10)
8
> :t it
it :: Integral a => a
> it / 1 -- produces the error

Really?

CSC 372 Fall 2022, Haskell Slide 238

If a language [implementation] has obscure error messages, collect
examples of errors and the message(s) produced.

You might also intentionally create error cases and catalog the errors
produced.

Where would you save that information?

"For this invention will produce forgetfulness in the minds of
those who learn to use it, because they will not practice their
memory. ..."—Socrates on writing

Sidebar: LHtLaL––Start an error collection!

CSC 372 Fall 2022, Haskell Slide 239

How can the following Python errors be produced?

KeyError: 3

TypeError: 'int' object is not callable

If you see the following, what does it mean?

LHtLaL, continued

CSC 372 Fall 2022, Haskell Slide 240

Debugging

CSC 372 Fall 2022, Haskell Slide 241

My general strategy for debugging Haskell code:
AVOID THE NEED TO DO ANY DEBUGGING IN HASKELL!

A good process for Haskell beginners when writing a function:
1. Work out expressions at the ghci prompt as shown on 177.
2. Write a single clause for the function using those expressions

and put it in a file.
3. Load the file with ghci and test that one clause.
4. Repeat with the next clause for function. Etc.

With conventional languages I might write dozens of lines of code
before trying them out.

With Haskell I might write a half-dozen lines of code before trying
them out.

Debugging in general

CSC 372 Fall 2022, Haskell Slide 242

The Debug.Trace module has a trace function.

Observe:
> import Debug.Trace -- put it in your ghci config file
> :t trace
trace :: String -> a -> a

> trace "a tuple" (True, 'x')
a tuple
(True,'x')

What's happening?
trace string expr returns expr but also outputs string as a side-
effect. (!)
• Great for debugging!
• Completely subverts Haskell's isolation of the side-effects of

output.

The trace function

CSC 372 Fall 2022, Haskell Slide 243

Here's a trivial function:
f 1 = 10
f n = n * 5 + 7

Let's augment it with tracing:
import Debug.Trace
f 1 = trace "f: first case" 10
f n = trace "f: default case" n * 5 + 7

Execution:
> f 1
f: first case
10

> f 3
f: default case
22

trace, continued

CSC 372 Fall 2022, Haskell Slide 244

Let's add trace calls to sumElems:
sumElems [] = trace "sumElems []" 0
sumElems lst@(h:t) =

trace ("sumElems " ++ show lst) h + sumElems t

Execution:
> sumElems [5,1,4,2,3]
sumElems []
sumElems [3]
sumElems [2,3]
sumElems [4,2,3]
sumElems [1,4,2,3]
sumElems [5,1,4,2,3]
15

Unfortunately, due to Haskell's lazy evaluation, the output's order is
the opposite of what we'd expect. But it does show "progression".

trace, continued

CSC 372 Fall 2022, Haskell Slide 245

Code for buildingAtHeight in street.hs, a 372 veteran:
buildingAtHeight (width, height, ch) n =

replicate width (if n > height then ' ' else ch)

Outputting width, height, and ch with labels is tedious:
buildingAtHeight (width, height, ch) n =

trace ("width " ++ show width ++ ", height: " ++
show height ++ ", ch: " ++ show ch)

replicate width (if n > height then ' ' else ch)
Example of trace output: width: 3, height: 2, ch: 'x'

Use a tuple to simplify the trace call:
buildingAtHeight (width, height, ch) n =

trace (show ("width:", width, "height", height, "ch", ch))
replicate width (if n > height then ' ' else ch)

Example of trace output: ("width:",3,"height",2,"ch:",'x')

trace, continued

CSC 372 Fall 2022, Haskell Slide 246

Icon has a built-in tracing mechanism.

Here's sumElems in Icon:
% cat -n sumElems.icn

1 procedure main()
2 sumElems([5,1,4,2,3])
3 end
4
5 procedure sumElems(L)
6 if *L = 0 then
7 return 0
8 else
9 return L[1] + sumElems(L[1:-1])
10 end

Sidebar: Tracing in Icon

CSC 372 Fall 2022, Haskell Slide 247

Execution:
% TRACE=-1 icont sumElems.icn -x
...

: main()
sumElems.icn : 2 | sumElems(list_1 = [5,1,4,2,3])
sumElems.icn : 9 | | sumElems(list_2 = [5,1,4,2])
sumElems.icn : 9 | | | sumElems(list_3 = [5,1,4])
sumElems.icn : 9 | | | | sumElems(list_4 = [5,1])
sumElems.icn : 9 | | | | | sumElems(list_5 = [5])
sumElems.icn : 9 | | | | | | sumElems(list_6 = [])
sumElems.icn : 7 | | | | | | sumElems returned 0
sumElems.icn : 9 | | | | | sumElems returned 5
sumElems.icn : 9 | | | | sumElems returned 10
sumElems.icn : 9 | | | sumElems returned 15
sumElems.icn : 9 | | sumElems returned 20
sumElems.icn : 9 | sumElems returned 25
sumElems.icn : 3 main failed

I know of no better out-of-the-box tracing facility in any language.

Sidebar, continued

CSC 372 Fall 2022, Haskell Slide 248

ghci does have some debugging support but debugging is expression-
based. Here's some simple interaction with it on countEO:
> :step countEO [3,2,4]
Stopped at countEO.hs:(1,1)-(6,29)
_result :: (t, t1) = _
> :step
Stopped at countEO.hs:3:7-11
_result :: Bool = _
x :: Integer = 3
> :step
Stopped at countEO.hs:3:15-29
_result :: (t, t1) = _
evens :: t = _
odds :: t1 = _
> :step
(Stopped at countEO.hs:6:20-29
_result :: (t, t1) = _
xs :: [Integer] = [2,4]

ghci's debugger

countEO [] = (0,0)
countEO (x:xs)

| odd x = (evens, odds+1)
| otherwise = (evens+1, odds)

where
(evens,odds) = countEO xs

_result shows type of current
expression

Arbitrary expressions can be
evaluated at the > prompt (as
always).

CSC 372 Fall 2022, Haskell Slide 249

Larger examples

CSC 372 Fall 2022, Haskell Slide 250

Imagine a function that counts occurrences of even and odd numbers
in a list.

> countEO [3,4,5]
(1,2)

Code:
countEO [] = (0,0)
countEO (x:xs)

| odd x = (evens, odds+1)
| otherwise = (evens+1, odds)

where
(evens, odds) = countEO xs

countEO

-- one even, two odds

-- no odds or evens in []

-- do counts for tail first!

CSC 372 Fall 2022, Haskell Slide 251

At hand:
countEO [] = (0,0)
countEO (x:xs)

| odd x = (evens, odds + 1)
| otherwise = (1+ evens, odds)

where (evens, odds) = countEO xs

Here's one way to picture this recursion:
countEO [10,20,25]

countEO [20,25]

countEO [25]

countEO []

countEO, continued

returns (0,0)

returns (0,1) (result of (0,0 + 1))

returns (1,1) (result of (1 + 0,1))

returns (2,1) (result of (1 + 1,1))

CSC 372 Fall 2022, Haskell Slide 252

Here's countEO with tracing:
import Debug.Trace
countEO [] = (0,0)
countEO list@(x:xs)

| odd x = (evens, odds+1)
| otherwise = (evens+1, odds)

where
result = countEO xs
(evens,odds) =
trace ("countEO " ++ show xs ++ " --> " ++ show result) result

Execution:
> countEO [3,2,4]
countEO [] --> (0,0)
countEO [4] --> (1,0)
countEO [2,4] --> (2,0)
(2,1)

countEO with trace

Before tracing the where was:
(evens,odds) = countEO xs

CSC 372 Fall 2022, Haskell Slide 253

Imagine a robot that travels on an infinite grid of cells. Movement is
directed by a series of one character commands: n, e, s, and w.

Let's write a function travel that moves the robot about the grid and
determines if the robot ends up where it started (i.e., it got home) or
elsewhere (it got lost).

travel

R

If the robot starts in square R the
command string nnnn leaves the robot
in the square marked 1.

The string nenene leaves the robot in
the square marked 2.

nnessw and news move the robot in a
round-trip that returns it to square R.

2
1

CSC 372 Fall 2022, Haskell Slide 254

Usage:

> travel "nnnn" -- ends at 1
"Got lost; 4 from home"

> travel "nenene" -- ends at 2
"Got lost; 6 from home"

> travel "nnessw"
"Got home"

How can we approach this problem?

travel, continued

1
2

R

CSC 372 Fall 2022, Haskell Slide 255

One approach:
1. Map letters into integer 2-tuples representing X and Y

displacements on a Cartesian plane.
2. Sum the X and Y displacements to yield a net displacement.

Example:
Argument value: "nnee"
Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
Sum of tuples: (2,2)

Another:
Argument value: "nnessw"
Mapped to tuples: (0,1) (0,1) (1,0) (0,-1) (0,-1) (-1,0)
Sum of tuples: (0,0)

travel, continued

CSC 372 Fall 2022, Haskell Slide 256

First, let's write a helper function to turn a direction into an (x,y)
displacement:

mapMove :: Char -> (Int, Int)
mapMove 'n' = (0,1)
mapMove 's' = (0,-1)
mapMove 'e' = (1,0)
mapMove 'w' = (-1,0)
mapMove c = error ("Unknown direction: " ++ [c])

Usage:
> mapMove 'n'
(0,1)

> mapMove 'w'
(-1,0)

travel, continued

CSC 372 Fall 2022, Haskell Slide 257

Next, a function to sum x and y displacements in a list of tuples:
> sumTuples [(0,1),(1,0)]
(1,1)

> sumTuples [mapMove 'n', mapMove 'w']
(-1,1)

Implementation:
sumTuples :: [(Int,Int)] -> (Int,Int)
sumTuples [] = (0,0)
sumTuples ((x,y):ts) = (x + sumX, y + sumY)

where
(sumX, sumY) = sumTuples ts

travel, continued

CSC 372 Fall 2022, Haskell Slide 258

travel itself, with makeTuples in a where

travel :: [Char] -> [Char]
travel s

| disp == (0,0) = "Got home"
| otherwise = "Got lost; " ++ show (abs x + abs y) ++

" from home"
where

tuples = makeTuples s
disp@(x,y) = sumTuples tuples -- note "as pattern"

makeTuples :: [Char] -> [(Int, Int)]
makeTuples [] = []
makeTuples (c:cs) = mapMove c : makeTuples cs

As is, mapMove and sumTuples are at the top level but
makeTuples is hidden inside travel. How should they be arranged?

travel, continued

CSC 372 Fall 2022, Haskell Slide 259

travel s
| disp == (0,0) = "Got home"
| otherwise = "Got lost; " ...
where

tuples = makeTuples s
disp = sumTuples tuples

makeTuples [] = []
makeTuples (c:cs) =

mapMove c:makeTuples cs

mapMove 'n' = (0,1)
mapMove 's' = (0,-1)
mapMove 'e' = (1,0)
mapMove 'w' = (-1,0)
mapMove c = error ...

sumTuples [] = (0,0)
sumTuples ((x,y):ts) = (x + sumX, y + sumY)

where
(sumX, sumY) = sumTuples ts

Sidebar: top-level vs. hidden functions

Top-level functions can be
tested after code is loaded
but functions inside a
where block are not visible.

The functions at left are
hidden in the where block
but they can easily be
changed to top-level using a
shift or two with an editor.
Note: Types are not shown, to
save space.

CSC 372 Fall 2022, Haskell Slide 260

Consider a function tally that counts character occurrences in a
string:

> tally "a bean bag"
a 3
b 2
2

g 1
n 1
e 1

Note that the characters are shown in order of decreasing frequency.

How can this problem be approached?
In a nutshell: [('a',3),('b',2),(' ',2),('g',1),('n',1),('e',1)]

tally

CSC 372 Fall 2022, Haskell Slide 261

Let's start by writing incEntry c tuples, which takes a list of
(character, count) tuples and produces a new list of tuples that
reflects the addition of the character c.

incEntry :: Char -> [(Char, Int)] -> [(Char, Int)]

Calls to incEntry with 't', 'o', 'o':
> incEntry 't' []
[('t',1)]

> incEntry 'o' it
[('t',1),('o',1)]

> incEntry 'o' it
[('t',1),('o',2)]

tally, continued

CSC 372 Fall 2022, Haskell Slide 262

{- incEntry c tups

tups is a list of (Char, Int) tuples that indicate how many
times a character has been seen. A possible value for tups:

[('b',1),('a',2)]

incEntry produces a copy of tups with the count in the tuple
containing the character c incremented by one.

If no tuple with c exists, one is created with a count of 1.
-}

incEntry::Char -> [(Char,Int)] -> [(Char,Int)]
incEntry c [] = [(c, 1)]
incEntry c ((char, count):entries)

| c == char = (char, count+1) : entries
| otherwise = (char, count) : incEntry c entries

CSC 372 Fall 2022, Haskell Slide 263

Next, let's write mkentries s. It calls incEntry for each character in
the string s in turn and produces a list of (char, count) tuples.

mkentries :: [Char] -> [(Char, Int)]

Usage:
> mkentries "tupple"
[('t',1),('u',1),('p',2),('l',1),('e',1)]

> mkentries "cocoon"
[('c',2),('o',3),('n',1)]

Code:
mkentries :: [Char] -> [(Char, Int)]
mkentries s = mkentries' s []

where
mkentries' [] entries = entries
mkentries' (c:cs) entries =

mkentries' cs (incEntry c entries)
CSC 372 Fall 2022, Haskell Slide 264

{- insert, isOrdered, and sort provide an insertion sort -}
insert v [] = [v]
insert v (x:xs)

| isOrdered (v,x) = v:x:xs
| otherwise = x:insert v xs

isOrdered ((_, v1), (_, v2)) = v1 > v2

sort [] = []
sort (x:xs) = insert x (sort xs)

> mkentries "cocoon"
[('c',2),('o',3),('n',1)]

> sort it
[('o',3),('c',2),('n',1)]

CSC 372 Fall 2022, Haskell Slide 265

{- fmtEntries prints (char,count) tuples one per line -}
fmtEntries [] = ""
fmtEntries ((c, count):es) =

[c] ++ " " ++ show count ++ "\n" ++ fmtEntries es

{- top-level function -}
tally s = putStr (fmtEntries (sort (mkentries s)))

> tally "cocoon"
o 3
c 2
n 1

• How does this solution exemplify functional programming? (slide
33+)

tally, continued

CSC 372 Fall 2022, Haskell Slide 266

Let's run it on lectura...
% code=/cs/www/classes/cs372/fall22/haskell

% cat $code/tally.hs
... everything we've seen before and now a main:
main = do

bytes <- getContents -- reads all of standard input
tally bytes

% echo -n cocoon | runghc $code/tally.hs
o 3
c 2
n 1

Running tally from the command line

CSC 372 Fall 2022, Haskell Slide 267

$code/genchars N generates N random letters:

% $code/genchars 20
KVQaVPEmClHRbgdkmMsQ

Lets tally a million letters:
% $code/genchars 1000000 |

time runghc $code/tally.hs >out
21.79user 0.24system 0:22.06elapsed
% head -3 out
s 19553
V 19448
J 19437

tally from the command line, continued

CSC 372 Fall 2022, Haskell Slide 268

Let's try a compiled executable.

% cd $code
% ghc --make -rtsopts tally.hs
% ls -l tally
-rwxrwx--- 1 whm whm 940968 Sep 13 12:09 tally

% ./genchars 1000000 > 1m
% time ./tally < 1m > out
real 0m5.554s
user 0m5.393s
sys 0m0.100s

tally from the command line, continued

CSC 372 Fall 2022, Haskell Slide 269

Here are user CPU times for implementations of tally in several
languages. The same ten million letter file was used for all timings.

Our tally implementation is very simplistic. An implementation of tally
by an expert Haskell programmer, Chris van Horne, ran in 1.71 seconds
for one billion letters. (See fall22/haskell/tally-cwvh[12].hs.)

Then I revisited the C version (tally2.c) and processed one billion letters
in 0.59 seconds.

tally performance in other languages

Language Time in seconds; mean of two or more runs
Haskell 57.284
Ruby 18.589 (v2.7.0; much slower than 2.2.4 (or 1.9.3?))
Icon 8.248
Python 3 1.131
Python 2 0.824
C w/ gcc -O3 0.031 (2.97 for one billion letters)

CSC 372 Fall 2022, Haskell Slide 270

Java?

Here's an early question when planning a course for a
particular semester:

"How many lectures will there be, and on what dates?"

How should we answer that question?

Real world problem: "How many lectures?"

CSC 372 Fall 2022, Haskell Slide 271

One approach:
> classdays ...arguments...
#1 H 1/15 (for 2015...)
#2 T 1/20
#3 H 1/22
#4 T 1/27
#5 H 1/29
...

What information do the arguments need to specify?
First and last day
Pattern, like M-W-F or T-H
How about holidays?

classdays

CSC 372 Fall 2022, Haskell Slide 272

Let's start with something simple:
> classdays (1,15) (5,6) [('H',5),('T',2)]
#1 H 1/15
#2 T 1/20
#3 H 1/22
#4 T 1/27
...
#32 T 5/5
>

The first and last days are represented with (month,day) tuples.

The third argument shows the pattern of class days: the first is a
Thursday, and it's five days to the next class. The next is a Tuesday,
and it's two days to the next class. Repeat!

Arguments for classdays

CSC 372 Fall 2022, Haskell Slide 273

There's a Data.Time.Calendar module but writing two minimal
date handling functions provides good practice.

> toOrdinal (12,31)
365 -- 12/31 is the last day of the year

> fromOrdinal 32
(2,1) -- The 32nd day of the year is February 1.

What's a minimal data structure that could help us?
[(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),(7,212
),(8,243),(9,273),(10,304),(11,334),(12,365)]

(1,31) The last day in January is the 31st day of the year
(7,212) The last day in July is the 212th day of the year

Date handling

CSC 372 Fall 2022, Haskell Slide 274

offsets =
[(0,0),(1,31),(2,59),(3,90),(4,120),(5,151),(6,181),(7,212),(8,2
43),(9,273),(10,304),(11,334),(12,365)]

toOrdinal (month, day) = days + day
where

(_,days) = offsets!!(month-1)

fromOrdinal ordDay =
fromOrdinal' (reverse offsets) ordDay

where
fromOrdinal' ((month,lastDay):t) ordDay

| ordDay > lastDay = (month + 1, ordDay - lastDay)
| otherwise = fromOrdinal' t ordDay

fromOrdinal' [] _ = error "invalid month?"

toOrdinal and fromOrdinal

> toOrdinal (12,31)
365

> fromOrdinal 32
(2,1)

CSC 372 Fall 2022, Haskell Slide 275

Recall:
> classdays (1,15) (5,6) [('H',5),('T',2)]
#1 H 1/15
#2 T 1/20
...

Ordinal dates for (1,15) and (5,6) are 15 and 126, respectively.

With the Thursday-Tuesday pattern we'd see the ordinal dates
progressing like this:

15, 20, 22, 27, 29, 34, 36, 41, ...

+5 +2 +5 +2 +5 +2 +5 ...
...

CSC 372 Fall 2022, Haskell Slide 276

Imagine this series of calls to a helper, showLecture:

showLecture 1 15 'H'
showLecture 2 20 'T'
showLecture 3 22 'H'
showLecture 4 27 'T'
...
showLecture 32 125 'T'

What computations do we need to transform
showLecture 1 15 'H'

into
"#1 H 1/15\n"?

Desired output:
#1 H 1/15
#2 T 1/20
#3 H 1/22
#4 T 1/27
...
#32 T 5/5

CSC 372 Fall 2022, Haskell Slide 277

We have: showLecture 1 15 'H'
We want: "#1 H 1/15"

Let's write showOrdinal :: Integer -> [Char]
> showOrdinal 15
"1/15"

showOrdinal ordDay = show month ++ "/" ++ show day
where

(month,day) = fromOrdinal ordDay

Now we can write showLecture:
showLecture lecNum ordDay dayOfWeek =

"#" ++ show lecNum ++ " " ++ [dayOfWeek] ++
" " ++ showOrdinal ordDay ++ "\n"

1 is lecture #1; 15 is 15th day of year

CSC 372 Fall 2022, Haskell Slide 278

Recall:
showLecture 1 15 'H'
showLecture 2 20 'T'
...
showLecture 32 125 'T'

Let's "cons up" a list out of the results of those calls...
> showLecture 1 15 'H' :

showLecture 2 20 'T' :
"...more..." : -- I literally typed "...more..."
showLecture 32 125 'T' : []

["#1 H 1/15\n","#2 T 1/20\n", "...more...","#32 T
5/5\n"]

How close are the contents of that list to what we need?

Desired output:
#1 H 1/15
#2 T 1/20
...
#32 T 5/5

CSC 372 Fall 2022, Haskell Slide 279

Now lets imagine a recursive function showLectures that builds up a
list of results from showLecture calls:

showLectures 1 15 126 [('H',5),('T',2)] "#1 H 1/15\n"
showLectures 2 20 126 [(T',2),('H',5)] "#2 T 1/20\n"

...
showLectures 32 125 126 [('T',2),('H',5)] "#32 T 5/5\n"

showLectures 33 127 126 [('H',5),('T',2)]
Result:

["#1 H 1/15\n","#2 T 1/20\n", ... ,"#33 H 5/5\n"]

Now let's write showLectures:
showLectures lecNum thisDay lastDay

(pair@(dayOfWeek, daysToNext):pairs)
| thisDay > lastDay = []
| otherwise = showLecture lecNum thisDay dayOfWeek

: showLectures (lecNum+1) (thisDay + daysToNext)
lastDay (pairs ++ [pair])

CSC 372 Fall 2022, Haskell Slide 280

Finally, a top-level function to get the ball rolling:
classdays first last pattern = putStr (concat result)

where
result =

showLectures 1 (toOrdinal first) (toOrdinal last) pattern

Usage:
> classdays (1,15) (5,6) [('H',5),('T',2)]
#1 H 1/15
#2 T 1/20
#3 H 1/22
...
#31 H 4/30
#32 T 5/5

Full source is in fall22/haskell/classdays.hs

classdays—top-level

CSC 372 Fall 2022, Haskell Slide 281

Higher-order functions

CSC 372 Fall 2022, Haskell Slide 282

Recall this fundamental characteristic of a functional language:
Functions are values that can be used as flexibly as values of
other types.

Here are some more examples of that. What do the following do?
> (if 3 < 4 then head else last) "abc"

> funcs = (tail, (:) 100)

> nums = [1..10]

> fst funcs nums

> snd funcs nums

Remember: Functions are values

CSC 372 Fall 2022, Haskell Slide 283

Is the following valid?
> [take, tail, init]

What's the problem?

Puzzle: Make [take, tail, init] valid by adding two characters.

Lists of functions

CSC 372 Fall 2022, Haskell Slide 284

Can functions be compared?
> add == (+)
• No instance for (Eq (Integer -> Integer -> Integer))

arising from a use of ‘==’
• In the expression: add == (+)

In an equation for ‘it’: it = add == (+)

You might see a proof based on this in CSC 473:
If we could determine if two arbitrary functions perform the same
computation, we could solve the halting problem, which is
considered to be unsolvable.

Because functions can't be compared, this version of length won't
work for lists of functions: (len's type: (Num a, Eq t) => [t] -> a)

len list@(_:t)
| list == [] = 0
| otherwise = 1 + len t

Comparing functions

CSC 372 Fall 2022, Haskell Slide 285

Definition: A higher-order function is a function that (and/or)
• Has one or more arguments that are functions
• Returns a function

twice is a higher-order function with two arguments: f and x
twice f x = f (f x)

What does it do?
> twice tail [1,2,3,4,5]

> tail (tail [1,2,3,4,5])

.

A simple higher-order function

CSC 372 Fall 2022, Haskell Slide 286

At hand:
> twice f x = f (f x)
> twice tail [1,2,3,4,5]
[3,4,5]

Let's make the left-associativity explicit:
> (twice tail) [1,2,3,4,5]
[3,4,5]

Consider a partial application...
> t2 = twice tail
> t2
<function>
it :: [a] -> [a]

twice, continued

-- like t2 x = tail (tail x)

CSC 372 Fall 2022, Haskell Slide 287

At hand:
> twice f x = f (f x)
> twice tail [1,2,3,4,5]
[3,4,5]

Let's give twice a partial application!
> twice (drop 2) [1..5]

Let's make a partial application with a partial application!
> twice (drop 5)
<function>
> it ['a'..'z']

twice, continued

Try these!
twice (twice (drop 3)) [1..20]
twice (twice (take 3)) [1..20]

CSC 372 Fall 2022, Haskell Slide 288

At hand:
twice f x = f (f x)

What's the the type of twice?
> :t twice
twice :: (t -> t) -> t -> t

Parentheses added to show precedence:
twice :: (t -> t) -> (t -> t)

twice f x = f (f x)

What's the correspondence between the elements of the clause
and the elements of the type?

twice, continued

A higher-order function is...
a function that (1) has one or more
arguments that are functions
and/or (2) returns a function.

CSC 372 Fall 2022, Haskell Slide 289

The map function

CSC 372 Fall 2022, Haskell Slide 290

Recall double x = x * 2

map is a Prelude function that applies a function to each element of
a list, producing a new list:

> map double [1..5]

> map length (words "a few words")

> map head (words "a few words")

Is map a higher order function?

The Prelude's map function

CSC 372 Fall 2022, Haskell Slide 291

At hand:
> map double [1..5]
[2,4,6,8,10]

Problem: Write map!

What is its type?

What's the relationship between the length of map's input and
output lists?

map, continued

CSC 372 Fall 2022, Haskell Slide 292

More mapping:
> map chr [97,32,98,105,103,32,99,97,116]

> map isLetter it

> map not it

> map head (map show it) -- Note: show True is "True"

Problem: Write a function f such that map f values "removes" the
odd numbers from the list values.

map, continued

CSC 372 Fall 2022, Haskell Slide 293

Another mapping:
> map windSpeed [loc1, loc2, loc3, ...]
[8.7,12.3,10.2,...]

Equivalent:
[windSpeed loc1, windSpeed loc2, windSpeed loc3, ...]

• Because functions have no side effects we can immediately
turn a mapping into a parallel computation.

• If a machine has 64 CPUs we might process a thousand-
element list with sixteen(+/-) batches of 64-element maps.

See Parallel and Concurrent Programming in Haskell by Marlow

Google for MapReduce

Sidebar: map can go parallel

CSC 372 Fall 2022, Haskell Slide 294

https://learning.oreilly.com/library/view/parallel-and-concurrent/9781449335939/

What's the result of these?
> map (add 5) [1..10]

> map (drop 1) (words "the knot was cold")

> map (replicate 5) "abc"

map and partial applications

CSC 372 Fall 2022, Haskell Slide 295

What's going on here?
> f = map double
> f [1..5]

> map f [[1..3],[10..15]]

Here's the above in one step:
> map (map double) [[1..3],[10..15]]
[[2,4,6],[20,22,24,26,28,30]]

Here's one way to think about it:
[(map double) [1..3], (map double) [10..15]]

map and partial applications, cont.

CSC 372 Fall 2022, Haskell Slide 296

Instead of using map (add 5) to add 5 to the values in a list, we
should use a section instead: (it's the idiomatic way!)

> map (5+) [1,2,3]
[6,7,8]

More sections:
> map (10*) [1,2,3]

> map (++"*") (words "a few words")

> map ("*"++) (words "a few words")

Sections

-- [5+ 1, 5+ 2, 5+ 3]

CSC 372 Fall 2022, Haskell Slide 297

Sections have one of two forms:

(infix-operator value) Examples: (+5), (/10)

(value infix-operator) Examples: (5*), ("x"++)

Iff the operator is commutative, the two forms are equivalent.
> map (3<=) [1..4]

> map (<=3) [1..4]

Sections aren't just for map; they're a general mechanism.
> twice (+5) 3

Sections, continued

[3 <= 1, 3 <= 2, 3 <= 3, 3 <= 4]

[1 <= 3, 2 <= 3, 3 <= 3, 4 <= 4]

CSC 372 Fall 2022, Haskell Slide 298

Python 2:
>>> map(len,"map in Python".split())
[3, 2, 6]

>>> type(map)
<type 'builtin_function_or_method'>

Python 3:
>>> map(len,"map in Python".split())
<map object at 0x11418d240>

>>> list(map(len,"map in Python".split()))
[3, 2, 6]

>>> type(map)
<class 'type'>

map in Python

CSC 372 Fall 2022, Haskell Slide 299

>>> map(print, range(1,6))

>>> list(_) # _ in the Python REPL is like it in ghci

>>> map(print, range(1,10000000000000000000000))

More: docs.python.org/3/library/functools.html

map in Python, continued

CSC 372 Fall 2022, Haskell Slide 300

https://docs.python.org/3/library/functools.html

"[Higher-order functions] allow common programming
patterns to be encapsulated as functions." —Hutton, 2e

"..we can think of higher-order functions as control structures
which we can define ourselves." —Thompson, 3e

Contrast:
• Design Patterns, by the "Gang of Four", provides a textual

recipe for approaching common programming problems.
"Making C++ Suck Less"—Vlissides

• Higher-order functions provide encapsulated units for
common programming problems.

(Instead of "write it this way...", it's "call this function".)

Bird's-eye view of higher order functions

CSC 372 Fall 2022, Haskell Slide 301

travel, revisited

CSC 372 Fall 2022, Haskell Slide 302

Some of the problems on assignment 5 will encourage working with
higher-order functions by prohibiting you from writing any
recursive functions!

Think of it as isolating muscle groups when weight training.

Here's a simple way to avoid what's prohibited:
Pretend that you don't understand recursion!

What's a base case? Is it related to baseball?
Why would a function call itself? How's it stop?
Is a recursive plunge refreshing?

If you were UNIX machines, I'd do chmod 0 on an appropriate
section of your brains.

Now that we're good at recursion...

CSC 372 Fall 2022, Haskell Slide 303

Recall our traveling robot: (slide 254+)
> travel "nnee"
"Got lost"

> travel "nnss"
"Got home"

Recall our approach:
Argument value: "nnee"
Mapped to tuples: (0,1) (0,1) (1,0) (1,0)
Sum of tuples: (2,2)

How can we solve it without writing any recursive functions?

travel revisited

CSC 372 Fall 2022, Haskell Slide 304

Recall:
> :t mapMove
mapMove :: Char -> (Int, Int)

> mapMove 'n'
(0,1)

Now what?

travel, continued

CSC 372 Fall 2022, Haskell Slide 305

We have:
> disps = map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]

We want: (2,3)

Any ideas?

travel, continued

CSC 372 Fall 2022, Haskell Slide 306

We have:
> disps= map mapMove "nneen"
[(0,1),(0,1),(1,0),(1,0),(0,1)]
> map fst disps
[0,0,1,1,0]
> map snd disps
[1,1,0,0,1]

We want: (2,3)

Ideas?

travel, revisited

CSC 372 Fall 2022, Haskell Slide 307

travel :: [Char] -> [Char]
travel s

| totalDisp == (0,0) = "Got home"
| otherwise = "Got lost"
where

disps = map mapMove s
totalDisp = (sum (map fst disps),

sum (map snd disps))

Did we have to know of recursion to write this version of travel?
No.

Did we write any recursive functions?
No.

Did we use any recursive functions?
Maybe. But using recursive functions doesn't violate the
prohibition at hand.

travel—Final answer

CSC 372 Fall 2022, Haskell Slide 308

Filtering

CSC 372 Fall 2022, Haskell Slide 309

Another higher order function in the Prelude is filter:
> filter odd [1..10]

> filter isDigit "(800) 555-1212"

What's filter f list doing?

Note: Think of filter as filtering in, not filtering out.

What is the type of filter?

Filtering

CSC 372 Fall 2022, Haskell Slide 310

filter's first argument (a function) is called a predicate because
inclusion of each value is predicated on the result of calling that
function with that value.

More...
> filter (<= 5) (filter odd [1..10])

> map (filter isDigit) ["br549", "24/7"]

For following, note that (`elem` ...) is a section.
> filter (`elem` "aeiou") "some words here"

filter uses a predicate

CSC 372 Fall 2022, Haskell Slide 311

At hand:
> filter odd [1..10]
[1,3,5,7,9]

> :t filter
filter :: (a -> Bool) -> [a] -> [a]

Problem: Write filter!

filter, continued

CSC 372 Fall 2022, Haskell Slide 312

Several Prelude functions use predicates. Here are two:
all :: (a -> Bool) -> [a] -> Bool
> all even [2,4,6,8]
True
> all even [2,4,6,7]
False

dropWhile :: (a -> Bool) -> [a] -> [a]
> dropWhile isSpace " testing "

> dropWhile isLetter it

How could we find other Prelude functions that use predicates?

Prelude functions that use predicates

CSC 372 Fall 2022, Haskell Slide 313

For reference:
> map double [1..10]
[2,4,6,8,10,12,14,16,18,20]

> filter odd [1..10]
[1,3,5,7,9]

map:
transforms a list of values
length input == length output

filter:
selects values from a list
0 <= length output <= length input

Python has filter, too. Ditto for JavaScript and many other
languages. And, most higher-order functions are easy to write; a
language simply needs to treat functions as values.

map vs. filter

CSC 372 Fall 2022, Haskell Slide 314

Here is filter in Python, along with two predicates:
% cat haskell/filter.py
def filter1(p, L):

result = []
for e in L:

if p(e):
result.append(e)

return result

def odd(n): return n % 2 == 1

def short(x): return len(x) < 4

def filter2(p,L): return [e for e in L if p(e)]

filter in Python

CSC 372 Fall 2022, Haskell Slide 315

Usage:
% python -i haskell/filter.py # -i loads the source file

and starts the REPL
>>> filter1(odd, [3,1,4,6,9])
[3, 1, 9]

>>> filter1(short, "here are the words".split())
['are', 'the']

>>> filter1(bool, ["abc", "", 1, 0, [False], 2 < 3])
['abc', 1, [False], True]

There's a built-in filter, too!

filter in Python, continued

CSC 372 Fall 2022, Haskell Slide 316

Anonymous functions

CSC 372 Fall 2022, Haskell Slide 317

Imagine that for every number in a list we'd like to double it and
then subtract five.

Here's one way to do it:
> f n = n * 2 - 5
> map f [1..5]
[-3,-1,1,3,5]

We could instead use an anonymous function to do the same thing:

> map (\n -> n * 2 - 5) [1..5]

[-3,-1,1,3,5]

What benefits does the anonymous function provide?

Anonymous functions

CSC 372 Fall 2022, Haskell Slide 318

At hand:
f n = n * 2 - 5
map f [1..5]

vs.
map (\n -> n * 2 - 5) [1..5]

The most common use case for an anonymous function: (my speculation)
Supply a simple "one-off" function to a higher-order function.

Anonymous functions...
• Directly associate a function's definition with its only use.
• Let us avoid the need to think up a good name for a function! J
• Can be likened to not using an intermediate variable:

int t = a * 3 + g(a+b); // Java
return f(t);

vs.
return f(a * 3 + g(a+b));

Anonymous functions, continued

an anonymous function

CSC 372 Fall 2022, Haskell Slide 319

The general form of an anonymous function:
\ pattern1 ... patternN -> expression

Simple syntax suggestion: enclose the whole works in parentheses.
map (\n -> n * 2 - 5) [1..5]

These terms are synonymous with "anonymous function":
Lambda abstraction (H10)
Lambda expression
Just lambda (LYAH).

The \ character was chosen due to its similarity to λ (Greek lambda),
used in the lambda calculus, another system for expressing
computation.

Anonymous functions, continued

CSC 372 Fall 2022, Haskell Slide 320

What will ghci say?
> \x y -> x + y * 2

\x y -> x + y * 2 is an expression whose value is a function.

Here are three ways to bind the name double to a function that
doubles a number:

double x = x * 2

double = \x -> x * 2

double = (*2)

Anonymous functions, continued

CSC 372 Fall 2022, Haskell Slide 321

Anonymous functions are commonly used with higher order
functions such as map and filter.

> map (\w -> (length w, w)) (words "a test now")

> map (\c -> "{" ++ [c] ++ "}") "anon."

> filter (\x -> head x == last x) (words "pop top suds")

Anonymous functions, continued

CSC 372 Fall 2022, Haskell Slide 322

A simple anonymous function in Haskell...
> \s -> s ++ "-" ++ show (length s)
<function>
> it "abc"
"abc-3"

Python...
>>> lambda s: s + '-' + str(len(s))
<function <lambda> at 0x10138af28>
>>> _('abc')
'abc-3'

and JavaScript...
> f = function (s) { return s + '-' + s.length }
> f("abc")
"abc-3"

Sidebar: Three languages

CSC 372 Fall 2022, Haskell Slide 323

Larger example: longest

CSC 372 Fall 2022, Haskell Slide 324

Imagine a program to print the longest line(s) in a file, along
with their line numbers:

% runghc longest.hs $f22/web2
72632:formaldehydesulphoxylate
140339:pathologicopsychological
175108:scientificophilosophical
200796:tetraiodophenolphthalein
203042:thyroparathyroidectomize

Imagining that we don't understand recursion, how can we
approach it in Haskell?

Example: longest line(s) in a file

CSC 372 Fall 2022, Haskell Slide 325

% head .../web2
A
a
aa
aal
aalii
aam
Aani
aardvark
...

Let's work with a small file for development purposes:
% cat longest.1
data
to
test

readFile in the Prelude lazily returns the full contents of a file as a
string:

> readFile "longest.1"
"data\nto\ntest\n"

Let's have a longest function that operates on a single string that
represents the contents of a file:

> longest "data\nto\ntest\n"
"1:data\n3:test\n"

longest, continued

CSC 372 Fall 2022, Haskell Slide 326

Let's work through a series of transformations of the data:
> bytes = "data\nto\ntest\n"

> lns = lines bytes
> lns
["data","to","test"]

Note: To save space in this example, we'll show the value bound
immediately after each binding.

Let's use zip3 and map length to create (length, line-number, line)
triples:

> triples = zip3 (map length lns) [1..] lns
[(4,1,"data"),(2,2,"to"),(4,3,"test")]

longest, continued

CSC 372 Fall 2022, Haskell Slide 327

We have (length, line-number, line) triples at hand:
> triples
[(4,1,"data"),(2,2,"to"),(4,3,"test")]

Let's use Data.List.sort :: Ord a => [a] -> [a] on them:
> sortedTriples = reverse (Data.List.sort triples)
[(4,3,"test"),(4,1,"data"),(2,2,"to")]a

Tuples are sorted based on their first value, with the second value
resolving any ties, etc. (Just like Python.)

Why do we reverse the list?

"The sort function [...] is a special case of sortBy, which allows the
programmer to supply their own comparison function."

longest, continued

CSC 372 Fall 2022, Haskell Slide 328

At hand:
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

Let's make a helper function to get the first element of a 3-tuple:
> first (len, _, _) = len

Let's get the length of the longest word:
> maxLength = first (head sortedTriples)
4

We have a tie for the longest word! What to do?

longest, continued

CSC 372 Fall 2022, Haskell Slide 329

The Prelude's takeWhile has this type:
(a -> Bool) -> [a] -> [a]

Speculate: What does takeWhile do?

Let's experiment!
> :t odd
odd :: Integral a => a -> Bool

> takeWhile odd [9, 13, 5, 12, 7]

> takeWhile (>5) [9, 13, 5, 12, 7]

longest, continued

CSC 372 Fall 2022, Haskell Slide 330

At hand:
> sortedTriples
[(4,3,"test"),(4,1,"data"),(2,2,"to")]

> maxLength
4

> maxTriples = takeWhile
(\triple -> first triple == maxLength) sortedTriples

[(4,3,"test"),(4,1,"data")]

Should we have just used filter instead?
maxTriples = filter

(\triple -> first triple == maxLength) sortedTriples

longest, continued

anonymous function for takeWhile

CSC 372 Fall 2022, Haskell Slide 331

At hand:
> maxTriples
[(4,3,"test"),(4,1,"data")]

Let's map an anonymous function to turn the triples into lines
prefixed with their line number:

> linesWithNums =
map (\(_,num,line) -> show num ++ ":" ++ line)

maxTriples
["3:test","1:data"]

We can now produce a ready-to-print result:
> result = unlines (reverse linesWithNums)
"1:data\n3:test\n"

longest, continued

CSC 372 Fall 2022, Haskell Slide 332

Let's package up our work into a function:
longest bytes = result

where
lns = lines bytes
triples = zip3 (map length lns) [1..] lns
sortedTriples = reverse (Data.List.sort triples)
maxLength = first (head sortedTriples)
maxTriples = takeWhile

(\triple -> first triple == maxLength) sortedTriples
linesWithNums =

map (\(_,num,line) -> show num ++ ":" ++ line)
maxTriples

result = unlines (reverse linesWithNums)

first (x,_,_) = x

longest, continued

Look, Ma! No conditional code!

CSC 372 Fall 2022, Haskell Slide 333

At hand:
> longest "data\nto\ntest\n"
"1:data\n3:test\n"

Let's add a main that handles command-line args and does I/O:
% cat longest.hs
import System.Environment (getArgs)
import Data.List (sort)

longest bytes = ...from previous slide...

main = do -- 'do' "sequences" its expressions
args <- getArgs -- Get command line args as list
bytes <- readFile (head args)
putStr (longest bytes)

Execution:
% runghc longest /usr/share/dict/words
42702:electroencephalograph's

longest, continued

CSC 372 Fall 2022, Haskell Slide 334

Composition

CSC 372 Fall 2022, Haskell Slide 335

Definition:
The composition of functions f and g is a function c that for all
values of x, (c x) equals (f (g x))

Here is a function that applies two functions in turn:
compose f g x = f (g x)

How many arguments does compose have?

Its type:
(b -> c) -> (a -> b) -> a -> c

> compose init tail [1..5]

> compose signum negate 3

Function composition

CSC 372 Fall 2022, Haskell Slide 336

The Prelude binds the symbolic variable dot to a "compose" function:
> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c

Dot is an operator whose operands are functions. Its result is a
function.

> numwords = length . words

> numwords
<function>

> numwords "just testing this"

> map numwords ["a test", "up & down", "done"]

Composition, continued

CSC 372 Fall 2022, Haskell Slide 337

At hand:
numwords = length . words

A model:

Usage:
> numwords "a b"
2

Composition, continued

lengthwords

numwords

"a b" ["a","b"]
"a b"

2
2

CSC 372 Fall 2022, Haskell Slide 338

At hand:
numwords = length . words

What's the type of numwords?
> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c

[t] -> Int String -> [String]
(length) (words)

> :t numwords

Composition, continued

CSC 372 Fall 2022, Haskell Slide 339

Problem: Using composition create a function that returns the next-
to-last element in a list:

> ntl [1..5]
4

> ntl "abc"
'b'

Two solutions:

Composition, continued

CSC 372 Fall 2022, Haskell Slide 340

Problem: Recall twice f x = f (f x). Define twice as a composition.

Solution:

Problem: Use composition to create a function that reverses the
words in a string:

> f "flip these words around"
"pilf eseht sdrow dnuora"

Hint: unwords is the inverse of words.

Solution:

Composition, continued

CSC 372 Fall 2022, Haskell Slide 341

Problem: Create a function to remove the digits from a string:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb :: MST "

Solution:

Given the following, describe f:
> f = (*2) . (+3)

> map f [1..5]

Would an anonymous function be a better choice for f's
computation?

Composition, continued

CSC 372 Fall 2022, Haskell Slide 342

Recalling the following, what's the type of f?
head :: [a] -> a
length :: [a] -> Int
words :: String -> [String]
show :: Show a => a -> String

f = head . show . length . words

Simple rule:
If a composition is valid, the type of the resulting function is
based only on the input of the rightmost function and the output
of the leftmost function.

What's the type of f?

Composition, continued

CSC 372 Fall 2022, Haskell Slide 343

Consider the following:
> s = "It's on!"
> map head (map show (map not (map isLetter s)))
"FFTFTFFT"

Can we use composition to simplify it?

Question: Is
map f (map g x)

always equivalent to the following?
map (f . g) x

Composition, continued

CSC 372 Fall 2022, Haskell Slide 344

What would be a better name for the following function?

f2 = f . f
where f = reverse . dropWhile isSpace

Credit: Eric Normand on Stack Overflow

Mystery function

CSC 372 Fall 2022, Haskell Slide 345

https://stackoverflow.com/questions/6270324/in-haskell-how-do-you-trim-whitespace-from-the-beginning-and-end-of-a-string

- explode;
val it = fn : string -> char list

- implode;
val it = fn : char list -> string

- rev;
val it = fn : 'a list -> 'a list

Problem: Write revstr s, which reverses the string s.
- revstr "backwards";
val it = "sdrawkcab" : string

Solution:

Sidebar: A little Standard ML
- explode "abc";
val it = [#"a",#"b",#"c"] : char list

- implode it;
val it = "abc" : string

sml runs Standard ML on lectura

CSC 372 Fall 2022, Haskell Slide 346

Point-free style

CSC 372 Fall 2022, Haskell Slide 347

FOR THE

CURIOUS!

Recall rmdigits:
> rmdigits "Thu Feb 6 19:13:34 MST 2014"
"Thu Feb :: MST "

What the difference between these two bindings for rmdigits?
rmdigits s = filter (not . isDigit) s

rmdigits = filter (not . isDigit)

The latter version is said to be written in point-free style.

A point-free binding of a function f has NO parameters!

Point-free style

CSC 372 Fall 2022, Haskell Slide 348

I think of point-free style as a natural result of fully grasping partial
application and operations like composition.

Although it was nameless, we've already seen examples of point-free
style, such as these:

nthOdd = (!!) [1,3..]
t2 = twice tail
numwords = length . words
ntl = head . tail . reverse

There's nothing too special about point-free style but it does save some
visual clutter. It is commonly used.

The term "point-free" comes from topology, where a point-free
function operates on points that are not specifically cited.

Point-free style, continued

CSC 372 Fall 2022, Haskell Slide 349

Problem: Using point-free style, bind len to a function that works like
the Prelude's length.

Handy:
> :t const
const :: a -> b -> a

> const 10 20
10

> const [1] "foo"
[1]

Solution:
len = sum . map (const 1)

See also: Tacit programming on Wikipedia

Point-free style, continued

CSC 372 Fall 2022, Haskell Slide 350

Hocus-pocus with
higher order functions

CSC 372 Fall 2022, Haskell Slide 351

What's this function doing?
f a = g

where
g b = a + b

Type?
f :: Num a => a -> a -> a

Interaction:
> f ' = f 10
> f ' 20
30

> f 3 4
7

Mystery function

CSC 372 Fall 2022, Haskell Slide 352

Fact:
Curried function definitions are really just syntactic sugar––they just
save some clutter. They don't provide something we can't do without.

Compare these two completely equivalent declarations for add:
add x y = x + y

add x = add'
where

add' y = x + y

The result of the call add 5 is essentially this function:
add' y = 5 + y

The combination of the code for add' and the binding for x is known as
a closure. It contains what's needed for execution at a future time.

DIY Currying

The x used in add' refers to the x parameter
of add.

CSC 372 Fall 2022, Haskell Slide 353

Peter Landin coined the term "syntactic sugar" in 1964.

A language construct that makes something easier to express but
doesn't add a new capability is called syntactic sugar. It simply
makes the language "sweeter" for human use.

What are some more examples of syntactic sugar in Haskell?
• We can say | otherwise = ... instead of | True = ...
• We can say "A#1" instead of ['A','#','1']
• ...instead of 'A':'#':'1':[]
• ...instead of '\65':'\35':'\49':[]
• We can say [1,3..10] instead of enumFromThenTo 1 3 10
• We can say ("<"++) str instead of ((++) "<") str.

What are examples of syntactic sugar in Python? Java? C?

Sidebar: Syntactic sugar

CSC 372 Fall 2022, Haskell Slide 354

DIY currying in JavaScript
JavaScript doesn't provide the syntactic sugar of curried
function definitions but we can do this:

function add(x) {
return function (y) { return x + y }
}

Try it in Chrome!

View>Developer>
JavaScript Console
brings up a console.

Type in the code for
add.

CSC 372 Fall 2022, Haskell Slide 355

>>> def add(x):
... return lambda y: x + y
...

>>> f = add(5)

>>> type(f)
<type 'function'>

>>> list(map(f,[10,20,30]))
[15, 25, 35]

>>> list(map(add("*"),"a new test".split()))
['*a', '*new', '*test']

DIY currying in Python

CSC 372 Fall 2022, Haskell Slide 356

Here's another mystery function:

> m f x y = f y x

> :type m
m :: (t1 -> t2 -> t) -> t2 -> t1 -> t

Can you devise a call to m?

Another mystery function

CSC 372 Fall 2022, Haskell Slide 357

At hand:
m f x y = f y x

m is actually a Prelude function named flip:
> :t flip
flip :: (a -> b -> c) -> b -> a -> c

Recall take :: Int -> [a] -> [a]

> flip take [1..10] 3
[1,2,3]

> ftake = flip take
> ftake [1..10] 3
[1,2,3]

flip

CSC 372 Fall 2022, Haskell Slide 358

From assignment 3:
> splits "abcd"
[("a","bcd"),("ab","cd"),("abc","d")]

Some students noticed the Prelude's splitAt:
> splitAt 2 [10,20,30,40]
([10,20],[30,40])

Problem: Write a non-recursive version of splits.

Solution:

Spring '18 solution:

flip, continued

CSC 372 Fall 2022, Haskell Slide 359

At hand:
flip f x y = f y x

> map (flip take "Haskell") [1..7]
["H","Ha","Has","Hask","Haske","Haskel","Haskell"]

Problem: write a function that behaves like this:
> f 'a'
["a","aa","aaa","aaaa","aaaaa",...infinitely...

Solution:

flip, continued

CSC 372 Fall 2022, Haskell Slide 360

$ is the "application operator".
> :info ($)
($) :: (a -> b) -> a -> b
infixr 0 $ -- right associative infix operator with very

-- low precedence

The following binding of $ uses an infix syntax:
f $ x = f x -- Equivalent: ($) f x = f x

Usage:
> negate $ 3 + 4
-7

What is this operator good for?

The $ operator

CSC 372 Fall 2022, Haskell Slide 361

$ is a low precedence, right associative operator that applies a
function to a value:

f $ x = f x

Because + has higher precedence than $, the expression
negate $ 3 + 4

groups like this:
negate $ (3 + 4)

Problem: Rewrite the following to take advantage of $:
filter (>3) (map length (words "up and down"))

Common mistake: Confusing $ with . (composition)!

The $ operator, continued

CSC 372 Fall 2022, Haskell Slide 362

Problem: We're given a function whose argument is a 2-tuple but we
wish it were curried so we could map a partial application of it.

g :: (Int, Int) -> Int
g (x,y) = x^2 + 3*x*y + 2*y^2

> g (3,4)
77

Solution: Curry g with curry from the Prelude!
> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Your problem: Write curry! (And don't peek ahead!)

Currying the uncurried

CSC 372 Fall 2022, Haskell Slide 363

At hand:
g :: (Int, Int) -> Int
> g (3,4)
77
> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

Here's curry:
curry :: ((a, b) -> c) -> a -> b -> c

Usage:
> cg = curry g
> :type cg
cg :: Int -> Int -> Int

> cg 3 4
77

Currying the uncurried, continued

CSC 372 Fall 2022, Haskell Slide 364

At hand:
curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f (x, y)

> map (curry g 3) [1..10]
[20,35,54,77,104,135,170,209,252,299]

The key: (curry g 3) is a partial application of curry!

Call: curry g 3

Dcl: curry f x y = f (x, y)
= g (3, y)

Currying the uncurried, continued

CSC 372 Fall 2022, Haskell Slide 365

At hand:
curry :: ((a, b) -> c) -> (a -> b -> c) (parentheses added)
curry f x y = f (x, y)

> map (curry g 3) [1..5]
[20,35,54,77,104]

Let's get flip into the game!
> map (flip (curry g) 4) [1..5]
[45,60,77,96,117]

The counterpart of curry is uncurry:
> uncurry (+) (3,4)
7

Currying the uncurried, continued

Effectively turns
g (x,y) = x^2 + 3*x*y + 2*y^2

into
g y x = ...

CSC 372 Fall 2022, Haskell Slide 366

function curry(f) {
return function(x) {

return function (y) { return f(x,y) }
}

}

A curry function for JavaScript

CSC 372 Fall 2022, Haskell Slide 367

Folding

CSC 372 Fall 2022, Haskell Slide 368

We can reduce a list by a binary operator by inserting that operator
between the elements in the list:

[1,2,3,4] reduced by + is 1 + 2 + 3 + 4

["a","bc", "def"] reduced by ++ is "a" ++ "bc" ++ "def"

Imagine a function reduce that does reduction by an operator.
> reduce (+) [1,2,3,4]

> reduce (++) ["a","bc","def"]

> reduce max [10,2,4]

Reduction

-- think of 10 `max` 2 `max` 4

CSC 372 Fall 2022, Haskell Slide 369

At hand:
> reduce (+) [1,2,3,4]
10

An implementation of reduce:
reduce _ [] = error "emptyList"
reduce _ [x] = x
reduce op (x:xs) = x `op` reduce op xs

Quick! Does reduce (+) [1,2,3,4] do
((1 + 2) + 3) + 4

or
1 + (2 + (3 + 4)) ?

[Dropped question re grouping...]

Reduction, continued

CSC 372 Fall 2022, Haskell Slide 370

In the Prelude there's no reduce but there is foldl1 and foldr1.

> foldl1 (+) [1..4]

> foldl1 max "maximum"

> foldl1 (/) [1,2,3]
0.16666666666666666 -- behaves like left associative: (1 / 2) / 3

> foldr1 (/) [1,2,3] -- behaves like right associative: 1 / (2 / 3)
1.5

The types of both foldl1 and foldr1 are (a -> a -> a) -> [a] -> a.

foldl1 and foldr1

CSC 372 Fall 2022, Haskell Slide 371

Another folding function is foldl (no 1). Let's compare the types of
foldl1 and foldl:

foldl1 :: (a -> a -> a) -> [a] -> a
foldl :: (a -> b -> a) -> a -> [b] -> a

What's different between them? (No peeking—eyes on the screen!)

First difference: foldl requires one more argument:
> foldl (+) 0 [1..10]
55

> foldl (+) 100 []

> foldl1 (+) []

foldl1 vs. foldl

CSC 372 Fall 2022, Haskell Slide 372

Again, the types:
foldl1 :: (a -> a -> a) -> [a] -> a
foldl :: (a -> b -> a) -> a -> [b] -> a

Second difference:
foldl can fold a list of values into a different type! (This is BIG!)

Examples:
> foldl f1 0 ["just","a","test"]
3 -- folded strings into a number

> foldl f2 "stars: " [3,1,2]
"stars: ******" -- folded numbers into a string

> foldl f3 0 [(1,1),(2,3),(5,10)]
57

foldl1 vs. foldl, continued

CSC 372 Fall 2022, Haskell Slide 373

For reference:
foldl :: (a -> b -> a) -> a -> [b] -> a

Here's another view of the type: (acm_t stands for accumulator type)
foldl :: (acm_t -> elem_t -> acm_t) -> acm_t -> [elem_t] -> acm_t

foldl takes three arguments:
1. A function that takes an accumulated value and an element value

and produces a new accumulated value
2. An initial accumulated value
3. A list of elements

Recall:
> foldl f1 0 ["just","a","test"]
3

> foldl f2 "stars: " [3,1,2]
"stars: ******"

foldl

CSC 372 Fall 2022, Haskell Slide 374

Recall:
> foldl f1 0 ["just","a","test"]
3

Here are the computations that foldl did to produce that result
> f1 0 "just"
1
> f1 it "a"
2
> f1 it "test"
3

Let's do it in one expression, using backquotes to infix f1:
> ((0 `f1` "just") `f1` "a") `f1` "test"
3

CSC 372 Fall 2022, Haskell Slide 375

At hand:
> f1 0 "just"
1
> f1 it "a"
2
> f1 it "test"
3

Problem: Write a function f1 that behaves like above.

Starter:
f1 :: acm_t -> elem_t -> acm_t
f1 acm elem =

Congratulations! You just wrote a folding function!

foldl, continued
For reference:

> foldl f1 0 ["just","a","test"]
3

CSC 372 Fall 2022, Haskell Slide 376

Recall:
> foldl f2 "stars: " [3,1,2]
"stars: ******"

Here's what foldl does with f2 and the initial value, "stars: ":
> f2 "stars: " 3
"stars: ***"
> f2 it 1
"stars: ****"
> f2 it 2
"stars: ******"

Write f2, with this starter:
f2 :: acm_t -> elem_t -> acm_t
f2 acm elem =

Look! You wrote another folding function!
CSC 372 Fall 2022, Haskell Slide 377

Folding abstracts a common pattern of computation:
A series of values contribute one-by-one to an accumulating result.

The challenge of folding is to envision a function that takes nothing but
an accumulated value (acm) and a single list element (elem) and produces
a result that reflects the contribution of elem to acm.

f2 acm elem = acm ++ replicate elem '*'

We then call foldl with (1) the folding function, (2) an appropriate initial
value, and (3) a list of values.

foldl f2 "stars: " [3,1,2]

foldl orchestrates the computation by making a series of calls to the
folding function.

> (("stars: " `f2` 3) `f2` 1) `f2` 2
"stars: ******"

SUPER IMPORTANT: A folding function NEVER sees the list!

CSC 372 Fall 2022, Haskell Slide 378

Recall:
> foldl f3 0 [(1,1),(2,3),(5,10)]
57

Here are the calls that foldl will make:
> f3 0 (1,1)
1
> f3 it (2,3)
7
> f3 it (5,10)
57

Problem: write f3!

foldl, continued

CSC 372 Fall 2022, Haskell Slide 379

Remember that
foldl f 0 [10,20,30]

is like
((0 `f` 10) `f` 20) `f` 30

Here's an implementation of foldl:
foldl f acm [] = acm
foldl f acm (elem:elems) = foldl f (acm `f` elem) elems

We can implement foldl1 in terms of foldl:
foldl1 f (x1:xs) = foldl f x1 xs
foldl1 _ [] = error "emptyList"

foldl, continued

CSC 372 Fall 2022, Haskell Slide 380

Let's use folding to implement our even/odd counter non-recursively.
> countEO [3,4,7,9]
(1,3)

Often a good place to start on a folding is to figure out what the initial
accumulator value should be. What should it be for countEO?

Given countEO [3,4,7,9], what will be the calls to the folding function?

A non-recursive countEO

Problem: Write the folding function

Problem: Write countEO as a foldl with f

CSC 372 Fall 2022, Haskell Slide 381

Anonymous functions are often used for folds.

Here are three earlier folds with anonymous functions:
> foldl (\acm _ -> acm + 1) 0 ["just","a","test"]
3

> foldl (\acm elem -> acm ++ replicate elem '*') "stars: " [3,1,2]
"stars: ******"

> foldl (\acm (a,b) -> acm + a * b) 0 [(1,1),(2,3),(5,10)]
57

Folds with anonymous functions

CSC 372 Fall 2022, Haskell Slide 382

The counterpart of foldl is foldr. Compare their meanings:

foldl f zero [e1, e2, ..., eN] == (...((zero `f` e1) `f` e2) `f`...)`f` eN

foldr f zero [e1, e2, ..., eN] == e1 `f` (e2 `f` ... (eN `f` zero)...)

"zero" represents the computation-specific initial accumulated value.
Note that with foldl, zero is leftmost; but with foldr, zero is rightmost.

Their types, with long type variables:
foldl :: (acm -> val -> acm) -> acm -> [val] -> acm
foldr :: (val -> acm -> acm) -> acm -> [val] -> acm

Mnemonic aid:
foldl's folding function has the accumulator on the left.
foldr's folding function has the accumulator on the right.

foldr

CSC 372 Fall 2022, Haskell Slide 383

Because cons (:) is right-associative, folds that produce lists are often
done with foldr.

Imagine a function that keeps the odd numbers in a list:
> keepOdds [5,4,2,3]
[5,3]

Implementation, with foldr:
keepOdds list = foldr f [] list

where
f elem acm

| odd elem = elem : acm
| otherwise = acm

foldr, continued

What are the calls to the folding
function?

CSC 372 Fall 2022, Haskell Slide 384

keepOdds could have been defined using filter:
keepOdds = filter odd

Can we implement filter as a fold?
filter predicate list = foldr f [] list

where
f elem acm

| predicate elem = elem : acm
| otherwise = acm

Problem: Implement map as a fold

Is folding One Operation to Implement Them All?

filter and map with folds?

CSC 372 Fall 2022, Haskell Slide 385

Can a3's paired be done with a fold?
> paired "((())())"
True

Sure!
counter (-1) _ = -1
counter total '(' = total + 1
counter total ')' = total – 1
counter total _ = total

paired s = foldl counter 0 s == 0

paired is a fold with a simple wrapper, to test the result of the
fold.

paired with a fold

CSC 372 Fall 2022, Haskell Slide 386

Let's do a progression of folds related to finding vowels in a string.

First, let's count vowels in a string with a fold:

> foldr (\val acm ->
acm + if val `elem` "aeiou" then 1 else 0) 0 "ate"

2

Next, let's produce both a count and the vowels themselves:

> foldr (\letter acm@(n, vows) ->
if letter `elem` "aeiou" then (n+1, letter:vows)

else acm) (0,[]) "ate"
(2,"ae")

A progression of folds

Note: s/val/letter/g

CSC 372 Fall 2022, Haskell Slide 387

Finally, let's write a function that produces a list of vowels and their
positions:

> vowelPositions "Now for some Prolog!"
[('o',1),('o',5),('o',9),('e',11),('o',15),('o',17)]

Solution:
vowelPositions s = reverse result

where (result, _) =
foldl (\acm@(vows, pos) letter ->

if letter `elem` "aeiou" then ((letter,pos):vows,pos+1)
else (vows,pos+1))

([],0) s

The foldl produces a 2-tuple whose first element is the result, a list, but in
reverse order.

This is another function that's a fold with a wrapper, like paired.

A progression of folds, continued

CSC 372 Fall 2022, Haskell Slide 388

map:
transforms a list of values
length input == length output

filter:
selects values from a list
0 <= length output <= length input

folding
Input: An initial accumulator value and a list of values
Output: A value of any type and complexity

True or false?
Any operation that processes a list can be expressed in a
terms of a fold, perhaps with a simple wrapper.

map vs. filter vs. folding

CSC 372 Fall 2022, Haskell Slide 389

Far-fetched foldings:

Refrigerators in Gould-Simpson to
((grams fat, grams protein, grams carbs), calories)

Keyboards in Gould-Simpson to
[("a", # of "a" keys), ("b", #), ..., ("$", #), ("CMD", #)]

[Backpack] to
(# pens, pounds of paper,

[(title, author, [page #s with the word "computer")])

[Furniture]
to a structure of 3D vertices representing a convex hull
that could hold any single piece of furniture.

We can fold a list of anythings into anything!

CSC 372 Fall 2022, Haskell Slide 390

In conclusion...

CSC 372 Fall 2022, Haskell Slide 391

If we had a whole semester to study functional programming, here's what
might be next:

• Exploration of lazy/non-strict evaluation

• Infinite data structures, such as x = 1: x

• Implications and benefits of referential transparency (which means that
the value of a given expression is always the same).

• Monads (for representing sequential computations, including I/O)

• Functors (structures that can be mapped over)

• Monoids (a set of things with a binary operation over them)

• Zippers (a structure for traversing and updating another structure)

• And LOTS more!

If we had a whole semester...

CSC 372 Fall 2022, Haskell Slide 392

Recursion and techniques with higher-order functions can be used in most
languages. Some examples:

JavaScript, Python, PHP, all flavors of Lisp, and lots of others:
Functions are "first-class" values; anonymous functions are supported.

C
Pass a function pointer to a recursive function that traverses a tree and
applies the function to each node.

C#
Excellent support for functional programming with the language itself,
and LINQ, too. There's F#, too!

Java
Lambda expressions were added in Java 8, released in 2014.

OCaml
"an industrial strength programming language supporting functional,
imperative and object-oriented styles" –OCaml.org
http://www.ffconsultancy.com/languages/ray_tracer/comparison.html

Even if you never use Haskell again...

CSC 372 Fall 2022, Haskell Slide 393

